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Clifford algebras over finite-dimensional vector spaces endowed with degenerate quadratic form 
contain a nontrivial two-sided nilpotent ideal (the Jacobson radical) generated by the orthogonal 
complement of such spaces. Thus, they cannot be faithfully represented by matrix algebras. 
Following the theory of spin representations of classical Clifford algebras, the left regular (spin) 
representations of these degenerate algebras can be studied in suitably constructed left ideals. 
First, structure of the group of units of such algebras is examined for a quadratic form of arbitrary 
rank. It is shown to be a semidirect product of a group generated by the radical and the group of 
units of a maximal nondegenerate Clifford subalgebra. Next, in the special case of corank 1, 
Clifford, pin, and spin groups are defined an their structures are described. As an example, a 
Galilei-Clifford algebra over the Galilei space-time is considered. A covering theorem is then 
proved analogous to the one well known in the theory of spin and orthogonal groups. 

I. INTRODUCTION 

The theory of Clifford algebras over nondegenerate qua
dratic spaces and their spin representations are well known 
(Refs. 1-3). There have been few attempts, however, to ex
pand this theory to algebras over degenerate spaces (i.e., en
dowed with a degenerate quadratic form) of any rank (Refs. 4 
and 5). One has to keep in mind that whereas the former 
algebras are semisimple, hence representable faithfully by 
real, complex, or quaternion matrices, the latter are not since 
they contain a nontrivial two-sided nilpotent ideal called the 
Jacobson radical. The radical of a degenerate Clifford alge
bra is generated by the orthogonal complement of the asso
ciated quadratic space, i.e., by the set of null vectors orthogo
nal to the entire space. In fact, the radical contains every 
nilpotent right or left ideal in such algebras (Ref. 6). 

In this paper R d•p•k denotes a real Clifford algebra over a 
real vector space R d.p.k of dimension d + p + k and en
dowed with a quadratic form Q of rank p + k and signature 
(d,p,k ) (i.e., dim ker Q = d) whereas rad Rd,p,k denotes its Ja
cobson radical. We examine structure of the group of units of 
a degenerate Clifford algebra of any rank (d :;':0). Using gen
eral properties of the Jacobson radical of a ring with unity 
(Ref. 6) we show (Sec. II) that this group is a.emidirect pro
duct of a group generated by the radical and the group of 
units of a maximal nondegenerate Clifford subalgebra R p•k 

contained in Rd,p,k (here Rp,k stands for RO,p,k)' We apply this 
result to a special case of degeneracy. in one dimension 
(d = 1). As an example we consider a Clifford algebra over 
the Galilei space-time of classical physics. Then we define 
Clifford, pin, and spin groups and analyze their structure by 
viewing them as subgroups of the group of units. We prove a 
covering theorem analogous to the one in the theory of spin 
and orthogonal groups associated with nondegenerate qua
dratic spaces (Sec. III). 

II. GROUP OF UNITS OF A DEGENERATE CLIFFORD 
ALGEBRA AND ITS STRUCTURE 

Throughout this section R :,p,k denotes the group of 
units of Rd,p,k' The following results can be immediately ap-

plied to complexified algebras R ~'P,k and, in particular, to 
the Galilei-Clifford algebra R t3,O' which is our main inter
est. To simplify our notation we write C (Q) [resp. C *(Q), 

C (Q '), C *(Q ')] for Rd,p,k (resp. R :'p.k' Rp,k' R :'k)' where Q I 

denotes the nondegenerate part of Q with signature (p,k ) (the 
diagonalized form of Q' contains k plus ones and p minus 
ones). 

Notice that for every m in C (Q ) there exist unique m' in 
C (Q ') (the latter is being considered as the semisimple subal
gebra ofthe former) and r in rad C (Q ) such that m = m' + r. 
It is a direct consequence of writing m in terms of the stan
dard basis of C (Q), or from the direct sum decomposition 
C (Q) = C (Q ') e rad C (Q ) into C (Q 'I-modules. Thenexttwo 
lemmas follow from the above remark and from Nakaya
ma's lemma for rings (Ref. 6). 

Lemma 2.1: For every min C *(Q) there exist unique m' 
in C *(Q ') and r in rad C (Q ) such that m = m' + r. 

Lemma 2.2: For every m in C *(Q) there exist unique x,y 
in rad C (Q ) and m' in C *(Q ') such that 
m = m'(1 +x) = (I + y)m'. 

The following proposition describes the structure of the 
group of units of C (Q). Here, H·G = I hglh e H, g e G 1, 
H <l G indicates that H is a normal subgroup of G, HCxG 
denotes the semidirect product of Hand G with G acting on 
H through a homomorphism X:G-Aut H such thatH~G is 
the group (H X G, .), with multiplication defined as 
(h,g)(h ' ,g') = (hX(g)(h '), gg') and xoz = x + z + xz for 
any x,zin C(Q). 

Proposition 2.3: 
(i) C *(Q) = C *(Q ')-G = G·C *(Q '), 

whereG= It +xlxeradC(Q)jCC*(Q). 
(ii) G<lC*(Q) and Gn C*(Q') = {I}. 
(iii) C *(Q ) = G~C *(Q ') with the conjugate action of 

C*(Q') on G. 
(iv) Letz(G) = (x e C*(Q)lxg =gx,ge G I, Ganysub

groupofC*(Q), andg =g'(1 +x)ez(G), k = 1 +ze G,x, 
ze rad C(Q), g' e C*(Q'). Then xoz = (g'-lzg')oX and, 
similarly, if g =g'(1 +X) e C*(Q) and xoz = (g'-Izg') ox, 
zerad C(Q), thengez(G). 
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(v) If gez(g) and g=g'(l +x), xeradClQ), then 
g'x=xg'. 

(vi) z(G) n C *(Q') 

= {g' e C*(Q')lg'z =zg', ze rad C(Q)}. 

Moreover, z(G)n C*(Q') =z(C(Q))nC*(Q') =R *, 
where R * denotes the nonzero reals and z( C (Q )) denotes the 
center of C (Q ). 

(vii) C*(Q)lR *~G~(C*(Q')IR *). 
Proot 
(i) See Lemma 2.2. 
(ii) If 1 +xeG, meC*(Q) then m- l(l +x)m 

= 1 + m-Ixm e G since rad C(Q) is a two-sided ideal in 
C (Q). For the second part notice that rad C (Q ) n C (Q ') 
=0. 

(iii) By part (i) we have C *(Q) = G·C *(Q '). Let 
m =gr, m' =g'r', g,g' e G, and r,r' e C*(Q'). Then 
mm' =gx(r)(g')rr' and C*(Q) = G~C*(Q'), where 
x: C *(Q ')_Aut G is the conjugation ~rgr-I. 

(iv) Since gk = kg we have 
g'(1 + x)(l + z)(l + X)-Ig,-I = 1 + z, or XOz = (g'-lzg')oX, 
Z e rad C (Q ). On the other hand, XOz = (g' -lzg')oX, 
Z e C (Q ), implies that g( 1 + z) = (1 + zig. 

(v) Follows from part (iv): apply XOz = (g' -lzg')oX when 
X=Z. 

(vi) Let g =g'(l + x) ez(G) n C*(Q'). Thus x = 0 and 
for any z e rad C (Q ) we have by part (iv): z = OOz 
=g,-lzg'oO=g,-lzg' or g'z =zg'. In the other cUrection, 
let g'e C *(Q') be such that g'z = zg', z e rad C (Q). Then 
g'(l +z) = (1 + zig' andg' ez(G)nC*(Q'). 

We now set K =z(G) n C*(Q'). Since Z(C(Q))Cz(G), 
we only need to show K Cz( C (Q )) n C *(Q '). If g' e K then 
g'ej = ejg' for every generator ej of R d,p,k with vanishing 
square [i.e., Q(e;) = 0]. If (ej )2 = ± 1, then g'eij = ejelg' 
since eij e rad ClQ). Also if m = ~ImIel' 0< II I <.p + k, 
then by the linear independence of {eIel } in C (Q), mel = 0 
implies m = O. Thus (g' ej - ejg')ej = 0 for any generator ej 
of R d,p,k implies g' e Z(C (Q)) n C *(Q '). 

Finally, since 

z(R ) = d,O,O' 
{
R + 

d,p,k + 
R d,o,O + Rel'"ed + p + k' 

if d+p+k even, 

if d+p+k odd 
(2.1) 

(Refs. 3-5) thus in either case Z(C (Q)) n C *(Q') = R *. 
(vii) See Refs. 7 and 8. 0 
We now recall that the complexification of any nonde

generate quadratic form is of maximum Witt index, i.e., the 
dimension of maximal totally isotropic subspaces of given 
complex quadratic space is maximum (Ref. 2). Following 
Ref. 9 one can then describe the generators of CC (Q) [resp. 
CC (Q 'I], and, in particular, the generators ofrad CC (Q) [con
sidered as a CC (Q )-submodule] using the limiting Witt de
composition. In the following, the superscript c denotes the 
complexification of the underlying algebraic structure, and 
we assume that d + P + k = 2r. There are two cases: (i) 
d=2t, 

rad CC(Q) = {:LaJKXJYK' al(J e CC(Q'), 

O<IJI,IKI<t, l<IJI + IKI<d}, (2.2) 
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while the generator F of a spin space of CC (Q) can be ex
pressed (modulo a scalar factor) as F =YI"'YtYt+ I'''Y,; (ii) 
d= 2t+ 1, 

rad CC(Q) = {:LaJKLeLXJYK' aJKL e CC(Q'), 

O<IL 1<1, O<IJI,IK I<t, 

l<IJI + IKI + IL I<d}, (2.3) 

while F = YI'''Ytet + IYt+2 ".y,. 
Notice that in case (i) 

rad CC(Q) n ann F = {:LaJKXJYK' IK I> 1 }, (2.4) 

while in case (ii) 

radCC(Q)nannF= {:LaJKLeLXJYK' IL I + IKI>l}, 

(2.5) 
whereannF= {xeCC(Q)lxF=O}. 

Lemma 2.4: Let x, Y e rad CC (Q ) n ann F and 
G~ = {l +xlxeradCC(Q)nannF}. (i) xoyeradCC(Q) 
n ann F, (ii) G" is a subgroup of G, and (iii) every generator 
X MF of the spin space CC (Q )E, 0< 1M I < [d 12], is stabilized 
by G", i.e.,gxMF=xMF for every gin G~. 

Now we de~ribe the structure of the group G, the nor
mal subgroup of CC' (Q) (see Proposition 2.3). Let 

G' = {I + xix = :LaJxj e rad CC(Q), aj e CC(Q '), 

1<IJI<[dI21l, 

if d > 1, and G' = { l} if d = 1. 
Lemma 2. 5: Let G, G " and G " be as above. Then (i) G ' is 

a subgroup of G, (ii) G = G'·G "=G ~ ·G " (iii) G' n G It 

= { I}, and (iv) G " is a normal subgroup of G. 

Proot 
(i) Let 1 + x, 1 + Y e G '. Then (1 + x)( 1 + y) e G ' since 

rad CC (Q) is a two-sided ideal of CC (Q) and xOye rad 
CC(Q). 

(ii) Let 1 + X e G. Then there exist unique 
x', x~ e rad CC(Q) such that x =x' +x" and x" e annF. 
Thus 

1 +x = 1 +x' +x~ = (1 +x')[l + (1 +X,)-IX"] 

= [1 +x"(l +X')-I](1 +x') 

since 1 + x' e G '. Moreover x,m = 0 for some m > 0 and 
m-I 

(1 +X,)-I = 1 + :L (-x,)j. 
;=1 

Thus 1 +(1 +X,)-IX", 1 +x"(l +X')-leG". 
(iii) Immediate since {XjjiK} are linearly independent. 
(iv) Let 1 + Y" E G", 1 + X e G. We need to show that 

(1 +x)(l +y~)(l +X)-leG". Let (1 +X)-I = 1 +x for 
some X e rad CC (Q). Using the same argument as in (ii) 
we may write x = x' + x" and x = x' + x", x", x" e rad 
CC(Q) n annF, x', x' e annF, such that 1 +x', 1 + x' e G' 
and 1 + x", 1 + x" e G". Then one can check that 
(l+x)(I+y")(I+x)-lisinG". 0 
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Theorem 2.6: Let G, G I, and G" be as above. Then 
G = G "f!.G I with the conjugate action of G I on G " . 

Corollary 2. 7: C· (Q) = Gf!.cc* (Q ') = (G "f!.G ') 
f!.C· (Q ') where C· (Q ') (resp. G ') acts on G (resp. G ") by 
conjugation. 

We consider now the following example of degeneracy 
in one dimension. 

Example 2.8: In the Galilei-Clifford algebra R ~.3.0 we 
have rad R ~.3.0 = {mellm E R ~.o ] and F = el Y2' where el 
spans the one-dimensional null subspace of the Galilei space 
(Ref. 9). Then the spin space R ~.3,oF can be viewed as the 
limit spin ideal obtained by contracting a family of deformed 
twistor spaces. Thus rad R ~,3,O C ann F and G = G " 
= {1 + me II mER ~,o J, G I = {1 ] . In fact 1 + me I 
= exp (mel) and the Lie algebra ofG (overR to) is generated 

by one element e I' Then 

R ~),O = G·R ~:t = Gf!.R ~:t 

and G is normal in R ~),o. 

III. SPIN AND PIN GROUPS OF A DEGENERATE 
CLIFFORD ALGEBRA 

In this section we extend the definitions of Clifford, pin, 
and spin groups found in the theory of classical (nondegener
ate) Clifford algebras (Refs. 2 and 10) to degenerate algebras 
Rd,p,k' In particular, we determine their structures when 
d = 1. The results presented below are similar to the ones in 
Ref. 4, where the groups above are defined with the main 
automorphism a of R I,p,k . 

Recall that when d = 1 then G I is the trivial group, 
G = G" = { 1 + mel 1m E R ;,k J, and every invertible in 
R ~:,k can be uniquely written as r( I + me I)' r E R ;", and 
1 + mel E G. Then the inverse ofthe latter is 1 - mel since 
(meJ!2 = ma(m)ei = 0, mER ;,k' In the following, the com
plexification of R I,p,k is denoted by X and we decompose X 

into the direct sum (e l ) EflX', where X I denotesthenondegen
erate part of X. Also, C (Q ) and C (Q ') will be used instead of 
RI,p,k and Rp,k' respectively, and (m)r will be the r-vector 
part ofm in C(Q). 

Definition 3.1: The Clifford group r( l,p,k) of C (Q) is 
the set {gE C· (Q)lgxg- 1 EX, X EX J. 

Lemma 3.2: Let X I be identified with the space of one
vectors in C(Q') and mE C(Q'). If x'm + mx' 
= (x 'm + mx')o, x' EX', then 

if p+k is odd, 

if P + k is even. 
(3.1) 

Proof: Write m = (m)o + (m)1 + ~JmJeJ + (m)p+k' 
2<IJ I<p + k - 1. Let p + k be even. Then 
(m)p+kx'+x'(m)p+k =OandforeveryeiJ l<i<p+k, 

{ 
(- l)IJleJej' if if$J, 

ejej = (-I)IJI-IeJeiJ if iEJ. (3.2) 

Thus mej + ejm = 2(m)oej + 2ej .(m)1 + ~jEJmJ[ 1 
+ (- 1)IJI]eJej + ~jEJmJ[1 + (- Ij1Jl-l]eA (summation 

over 2< IJ I <p + k - 1), where· denotes the inner product inX I 
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induced by the inner product in X. Separating the even and odd 
parts we get 

(mej + ejm) + = 2ej .(m)1 + ~1mJeJej, 
iEJ, IJI odd, 

(mej + ejm) - = 2(m)oej + ~2mJeA, 
iEJ, IJI even. (3.3) 

Due to the linear independence of the generators of C (Q ') we 
conclude that (m)o = mJ = OiflJI isoddandiEJor,iflJI is 
even and iEJ. Thus mJ = 0, 2<IJI<p + k - 1 and 
m = (m)1 + (m)p+k' 

Nowletp + kbeodd. Then (m)p+ kX' = x'(m)p+ k since 
(m)p+ k EZ(C(Q ')) and 

(mej + ejm)+ = 2ej ·(m)1 + 2(m)p+kej + I2mJeJ• (3.4) 
ieJ 

for IJ I odd while the odd part is given in (3.3). Considering all 
vector parts and again using the linear independence argument 
we conclude that m = (m)I' 0 

Proposition 3.3.' Let r± (P,k) = {gE r(p,k)la(g) = ±gJ, 
where a is the main automorphism in C (Q ) and let 

- { _I {(m)l, P+kOdd,} 
G = 1 + mel m = () () . 

m 1+ m p+k' p+k even 

Then r(IJJ,k) = Gf!.r ± (P,k). 
Proof: Let g = r( 1 + meJ! E C· (Q ), r E cc* (Q '), 

mEC(Q'), and x =X' +x" EX=X ' Efl(ed. Then 

gxg- I = r(1 + me l )x(1 - me1)r- 1 

(3.5) 

where A '= r[A - (x'm + mx')]a(r)-I and rx'r- 1 EX ' since 
gxg- 1 EX, rE r(p,k), A, A I E C. In particular, if x' = 0 and 
A #0 then r = a(r~, IL = A '/ A and aIr) = ItT = 1L2a(r), or 
IL = ± 1. Thus r = r ± E r ± (P,k) = r(p,k ) n C ± (Q) and by 
Lemma 3.2m = (m)I'p + k~d, or,!" = (m)p+k + (m)I' 
p + k even. Finally, I + me lEG and G n cc* (Q ') = { 1]. 

Now let r = r± E r ± (P,k). Ifp + k is odd then 

r±(l + (m)lel)(r±)-1 = 1 ±r± (m)I(r±)-lel EG, (3.6) 

1 + mel E G, since r± (m) I(r± )-1 is a one-vector for every 
r± E r ± (P,k). Similarly, if p + k is even then 

r±(l + (m)le l + (m)p+ked(r±)-I 

= 1 ± r± (m)l(r)-le l ± r± (m)p+ k(r± )-le l E G, (3.7) 

since r± (m) p + k(r± )-1 is a (p + k )-vector in C (Q '). Thus 
r ± (p,k ) acts on G by conjugation. In fact one can show that G 
is normal in r(IJJ,k). 0 

Following now the standard approach (Refs. 2 and 3) we 
define the homomorphism p: r(IJJ,k ~EnddX) as 
Pg(x)=gxg- I and the spinor map N: r(IJJ,k~·(Q) as 
N (g) = /3 (gig, where/3is the main antiautomorphism of C (Q ). 
Since gxg-I above is a one-vector, N(g) Ekerp =z*(C(Q)), 
the set of invertibles in the center of C (Q). Here N (g) is called 
the spinor norm of g; notice that N (g) E C*, P + k odd, 
and N (g) E C* + Ce N' P + k even, where eN represents a 
(1 + P + k )-vector in C (Q). Finally N (gg') = N (g)N (g'). 

Using standard arguments one can show that for every g E 
r(1J),k), Pg is an isometry defined on X and Pa (x) 
= axa- I + [2B (a,x)lQ (a)]a for every nonisotropic vector 
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a e X, where B is the bilinear fonn associated with Q. Thus 
- Pa is a reflection in the plane perpendicular to a. Following 

Ref. 3 we call the intersection r( 11P,k ) n C' + (Q) 
Crespo r(p,k) n C'+ (Q ')] the special Clifford group r+(I1P,k) 
Crespo r+(p,k)]. Superscript + (resp. -) denotes the even 
(resp. odd) part of the given algebraic structure. 

Corollary 3.4: r+(I1P,k)=G'<2<r+(p,k), where 
G'={1+(m)lel lmeC'(Q')}CG for any p+k. 
Notice that if g e r+(I1P,k) then NIg) = N(r+) e C* for some 
r+ e r+(p,k). We define the special reduced Clifford group 
r o+(I1P,k) Crespo ro+(p,k)] to be the intersection kerN 
n r(11P,k) Crespo ker N n r+(p,k )]. 

Corollary 3.5: ro+(I,p,k) =G'<2<ro+(p,k~ 
Since we are primarily interested here in the case when 

p + k = 3, we define the reduced Clifford group r o(l1P,k) 
(p + k odd) to be the kernel of N in r( IJ],k ) and the pin group 
Pin(I1P,k)= (ger(I1P,k)INIg)= ± I}. Notice that NIg) 
= N(r± ) eZ*(C'(Q)), henceNIg) is a scalar sincep(r± )r± is 

always even. Thus, a general element ofPin( 11P,k ) is of the fonn . 
r± (1 + (m)lel,r± e r± (p,k),and[N(r± J]2 = 1 (seeProposi
tion 3.3). 

If we let the spin group Spin(IJ],k) be the intersection 
Pin(I1P,k)nC'(Q), then r(I + (m)lel)eSpin(IJ],k) implies 
r = r+ . Recalling now that Spin(p,k ) = (r+ 
e r+(p,k )IN(r+) = ± I} whenp + kisodd(Ref. 3) and denot
ingbyrt(P,k)= {r± er± (P,k)I[N(r±)]2 = 1} we have the 
following proposition. 

Proposition 3.6: Let p + k be odd. 
(i) Pin(I,p,k) = G'<2<r6=(p,k). 
(ii) Spin( 1, p,k ) = G '<2<Spin(p,k ). 
When p + k is even we define the pin and spin groups in 

exactly the same way as above: 

Pin(l,p,k) = (ger(l,p,k)IN(g) = ± I}, 

Spin(I,p,k)= (ger+(l,p,k)IN(g)= ± I}. 
(3.8) 

Notice that NIg) is not necessarily a scalar for all g e r(1,p,k) 
since the center of C' (Q) is nontrivial. However, we will view 
NIg) = ± I in (3.8) as a condition on the elements of this group. 

Thus let g e r(I1P,k ), p + k even. Proposition 3.3 shows 
that g can be factored into r± (1 + (m)lel + (m)P+keJ!, 
r± e r± (P,k) and 

N(g) = N(r±)(1 + [1 + ( - W+ kV2l(m)p+kel)' (3.9) 

The condition NIg) = ± I together with (3.9) implies that 
[N(r± If = 1 while 

m = {
(m)1 + (m)p+ k' (p + k )=2Plod 4), 

(m) I' otherwise. 
(3.10) 

Define a subgroup G" of G as the set {I + mellm satisfies 
(3.10)}. IfgePin(I,p,k)nCc+(Q), theng=r+(1 + (m)lel), 
where 1 + (m) lei e G' and r+ e Spin(p,k). 

Proposition 3. 7: Let p + k be even. 
(i) Pin( 11P,k ) = G "<2< r o± (p,k ). 
(ii) Spin(I1P,k)= G '<2<Spin(p,k). 
Corollary3.8: Spin(I1P,k ) = G , <2<Spin(p,k ) for any parity of 

p+k. 
For the similar result when the action on X is defined using the 
principal automorphism a of C' (Q) see Ref. 4. 
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In physical applications we are mostly concerned with the 
orientation preserving component of the identity. For example, 
the proper ~tz group L6 is the identity component of 
SO(l,3) denoted usually by SO+(1,3), the proper de Sitter group 
SIO is defined as 80+(1,4), the homogeneous Galilei group 
G6 = R 3 <2<SO(3) is isomorphic to 80+(1,0,3) and is doubly cov
eredbySpin+(1,0,3), theidentitycomponentofSpin(I,0,3). We 
define the component of the identity in pin, spin, and Clifford 
groups for any parity of p + k as follows: 

Pino(l,p,k) = Ige r(I,p,k )INIg) =I}, 

Spino(l,p,k)= (ger+(I,p,k)INIg) =1}, (3.11) 

oro±(p,k) = (re ro±(p,k )IN(r) = 1}. 

Proposition 3.8: 
(i) Pino(I,p,k) = G " <2<°r! (P,k), 

Spino(l,p,k) = G '<2<Spino(p,k), ifp + k is even. 
(ii) Pino( I,p,k ) = G '<2<°r o± (p,k ), 

Spino( l,p,k ) = G , <2<Spino(P,k ), if p + k is odd, 
where Spino(p,k) is the component of the identity of Spin(p,k ). 

Proof: If g e Pin(I1P,k) then g = r± (1 + mel)' where 
I + mel eG'(resp.G"),p + kodd(resp.p + keven). Then one 
can easily check that N Ig) = N (r ± ) = 1 implies r± e or o± 
~~ 0 

As it was mentioned above, the conjugate . action of the 
Clifford group r(I1P,k) on X induces certain actions on the 
nondegenerate part X ' and on the degenerate orthogonal com
plement (e l ). We now proceed to find these actions explicitly. 

Let g = r± (I + mel) e r(lJ],k), r± e r ± (P,k), and 
1 + mel e G (see Proposition 3.3) and let x =A.el +x' eX (see 
Lemma 3.2). Then 

Pg(x) = gxg- l 

= ± (A. -A. '~I +r±x'(r±)-I 

= p;(A:eI ) + p;(x'), (3.12) 

whereA. ' = mx' + x'm is a scalar (see Lemma 3.2) and the pro
jection ofpg(x) onX' Crespo on (e l )] is denoted by p;(x) Crespo p; 
(x)]. 

Lemma 3.9: Letp: r(IJ],kJ-EnddX) be the homomor-
phism above. 

(i)Pg is an isometry on X which reduces to ± Idon (e1). 

(ii) p induces orthogonal rotations onX' . 
(iii) Let a = a' + a" be isotropic in X. Then - Pa is a re

flection in the plane perpendicular to a and - p~ is a reflection 
in the plane perpendicular to a'. 

Proof: (i) Clearly (pg(XW=X2, ger(l,p,k), xeX. If 
x="ielthenpg(x)= ±"iel = ±xby(3.12). 

(ii) Notice that (P;(X,))2 = '(r± x'(r± )-1)2 = x,2for x' eX'. 
(iii) Since a2 = a,2 =FO in C' (Q) then 

-Pa(x) = ra(X) =x - 2(a·x/a.a)a 

= [x" - 2(a'·x'/a'.a')a"] 

+ [x' - 2(a'.x'/a'·a')a1 

= -p;(X") +r~(x'), (3.13) 

where ~ denotes the reflection in X' with respect to a plane 
perpendicular to a' induced by the reflection ra and· is the inner 
~ooinX 0 
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Finally, we state and prove our last result which provides 
an extension of the Cartan-Dieudonne Theorem (Ref. 2) to real 
quadratic spaces endowed with a quadratic form of corank 1. 

Proposition 3.10: Let P be the restriction of the homomor
phism p: r(l,p,kl---+EndR (X), X=R(I,p,k), to G'<!<ro±(p,k) 
and let T be the Abelian subgroup of the orthogonal group 
O(l,p,k) generated by pIG '). 

(i) The kernal of P is Z2' 
(ii) If P + k is even then p: G' <!< r o± (p,k l---+ T<!<O(p,k) is a 

covering map. Ifp + kisoddthenp: G '<!<r o± (p,k l---+TCxSO(p,k) 
is a covering map. 

Proof (i) Recall that G ' < G < R T,p,k (see Corollary 3.4). Let 
gekerp. Then for every xeX=(et!alX', gx=xg or 
gez*(R I,p,k)nPin'(l,p,k), where Pin'(l,p,k) = G'<!<r6'(P,k) 
[notice that Pin'(l,p,k) = Pin(l,p,k), p + k odd, and 
Pin'(l,p,k )#Pin(l,p,k ),p + k even]. Since 

{
R *, P + k odd, 

z*(R ) = (3.14) 
I,p,k R * + Re le2 .. ·ep + k' P + k even 

(Ref. 4) andN(g) = ± 1, ker P = Z2 ifp + k is odd. Ifp + k is 
even then an invertible element of the center of R I,p,k is of the 
formAo +Alele2· .. ep+ k,Ao#O, and it belongs to Pin'(l,p,k) if 
and only if A I = O. Again, ker P = Z2' 

(ii) Notice that for every g in Pin'(I,p,k) we have 
pg(x) =Pr(Pm(x)), where 

Pm (x) = (1 + (m)le lx(1 - (m)le l ) 

= (AI -A2)e l +x', 

PrIx) =arAlel +r±x'(r±)-I, 

(3.15) 

A2 = (m)lx' + x'(m)I' a r = 1 (resp. - 1) if r = r+ (resp. 
r = r-) for every x = A Ie I + x' eX. Thus the image set of P in 
O(l,p,k) is generated by Pr' r± ero±(p,k), and Pm' 
1 + (m)lel e G'. We proceed now to findp(ro±(p,k )). Letp'be 
the projection of X', i.e., p'(x) = x', X eX. Then 
(p'oPr)(x) = r± x'(r± )-1 andp'oPr is an isometry inX' for every 
r± e ro±(p,k). Now let a be an anisotropic vector in X, i.e., 
a2 =a'2#Oin C(Q). Then - p'oPa is a reflection in the plane 
perpendicular to a' in X' (see Lemma 3.9). Thus if rv is any 
reflection inX', v2#0, let a = b + v for someb e (e l ) and then 
( - p'OPa)(x') = r:(x'),x' eX'. This implies that the negative of 
every reflection in X' is in the image of p. 

Ifn =p + k is even, then - Id = ( - rl ) .. ·( - rn) and ifr 
is any reflection in X, then r = ( - Id)( - r), thus P covers 
O(p,k) by the Cartan-Dieudonne theorem. 

If n = p + k is odd then the negative of a reflection has 
determinant( - l)n( - 1) = 1, thus - p'oPa e SO(p,k ).Butev
ery element ofSO(p,k ) must be a product of an even number of 
reflections or an even number of negative reflections each of 
which belongs to the image of p. Thus P covers SO(p,k ) by the 
theorem. 

Finally, we establish the semidirect product structure of 
p(Pin'(I,p,k)). It follows from (3.15) that p(Pin'(I,p,k)) 
= T.p(r o± (p,k )). Thus we need only to show that 
Tn~r6'(P,k,)) = Pl, z(T)np(ro±(p,k)) = (lj, and 
T <I p(Pin'( 1,p,k )) since then we may refer to the classical result 
in the group theory (Ref. 7). 

Suppose that te Tnp(ro±(p,k)), i.e., t=Pm =Pr for 
some 1 + (m)lel e G' and r± e ro±(p,k). Since Tis Abelian, 
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for every (m)1 eR l,p,k we have tPm =Pmt. But PrPm(x) 

=ar!AI-A2~t +r±x'(r±)-t, x'eX', and PmPr(x) 
= (a.AI -A; Jel + r± x'(r± )-1, A2 =x'(m)1 + (m)lx',A i 
= (m)t r±x'(r± )-1 + r±x'(r± )-I(m)I' a.A2 =A i. Since 
the bilinear form onX' is nondegenerate, we may conclude that 
r+ ez*(Rp,d if a r = 1. When a r = - 1 then r = r-, 
- r- (m) I = (m) Ir-, and there are two cases to consider: if 

p + k is even then multiplying both sides of the last equation by 
the volume element eN of Rp,k we see that r-eN(ml) 
= (m)lr-eN, (m)1 eR I,P,\ or r-eN ez*(Rp,d. This is 
impossible since r-eN e R p-:k and z*(Rp,d = R *. If p + k is 
odd then one can decompose r- uniquely into s-vector parts 
(r- ) s' s odd and 1 <.s<p + k. Moreover, 

p+k 
0= (m)lr- + r-(m)1 = L (m)l(r-)s + (r-)s(m)I)' 

s= I 
(3.16) 

It can be checked that each summand in (3.16) is a homogen
eous element of order s - 1, 1 <.s<p + k (Ref. to), and, by the 
degree argument, is equal to O. Therefore, every s-vector part of 
r- vanishes and r- = O. We may conclude that Pr = t = 1, 
hence T np(r o± (p,k )) = (ll. This computation also shows 
that the intersection of the centralizer zIT) of Tinp(Pin'(l,p,k)) 
with p(r o± (p,k )) contains only the identity element. 

Now we show that Tisnormalinp(Pin'(l,p,k)). Letpm and 
Pr be as in (3.15). Then 

P,PmPr' (x) = P,Pm (r± - Ixr) 

= p,((l + (m) I et!r± - Ixr± )(1 - (m) I etl 

= (1 + (m')le l )x(l - (m')letl 

= Pm' (x), (3.17) 

where r' = r- I, (m')1 = a,r± (m)I(r± )-1. 
Finally, consider an Abelian subgroup T' of O(I,p,k) 

whose action on x e X depends linearly on the x' part of 
x=Alel +x' 

(3.18) 

for te T', where A2 is a linear functional on X'. We want to 
show that for every x' #0 andA2 there exists (m) I e R I,p,k such 
that Pm (x) = t (x), i.e., A2 = (m) IX' + x' (m) I' 

Assume that x' is anisotropic and A2 #0. Then take 
(m) I = A~' 12(x'·x'). For x' isotropic, i.e., X'2 = 0, let K = (x') 
be the one-dimensional totally isotropic subspace of R p,k 
spanned by x'. Hence K c;,K 1 and there exists a vector v e R p,k 

such that v·x' #0 due to the nondegeneracy of X' = R p,k. Thus 
let V'X'IA2 = 1 and (m)1 = v. Therefore, T' = T=p(G'). 0 

IV. SUMMARY 

The main result of this paper was to prove, using the the
ory of radicals for rings with unity, that the group of units of the 
degenerate Clifford algebra of any rank is the semidirect pro
duct of two groups: the group generated by the radical, and the 
group of units of the nondegenerate Clifford subalgebra. In the 
simpler example of degeneracy in one dimension this basic 
structure was carried over to nontwisted Clifford, pin, and spin 
groups which were defined here in analogy with the classical 
theory of Clifford algebras. Finally, we proved the covering 
theorem reminiscent of the well-known covering theorem in 
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the theory of spin and orthogonal groups (Ref. II). Using the 
results presented in this paper and the ones formulated in Ref. 
12 we will attempt to provide a classification of degenerate 
Clifford algebras of any rank according to the finite multiplica
tive groups which are uniquely associated with each algebra. 
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Hamiltonian particle mechanics is formulated on a space-time (M!?). The restrictions imposed by 
the isometry group G of p on the possible dynamics are analyzed; a no-interaction theorem is 
obtained on a large class of homogeneous space-times. The results are in particular applied to the 
de Sitter space-time: here it is proven that a G-invariant dynamics can describe geodesic particle 
motion only. 

I. INTRODUCTION 

The last two decades have witnessed a growing interest 
in the study of relativistic direct particle interactions. This 
has lead to extensive investigations 1 of systems consisting of 
two or more particles in Minkowski space-time M 3.1. A ma
jor obstacle encountered in these studies is the Currie-Jor
dan-Sudarshan no-interaction theorem2

•
3

: it says, loosely 
stated, that Hamiltonian particle mechanics on phase space, 
when coupled with Poincare invariance, can only describe 
free particles. In other words, the dynamics is completely 
determined by the kinematic framework, in particular by the 
symmetry group, and it is trivial. 

The role played by the phase space formulation of Poin
care-invariant particle mechanics in obtaining the no-inter
action result has extensively been investigated. 1 However, 
the question of whether this result is an idiosyncrasy of Min
kowski space and its large isometry group has been left open. 
In this paper, we therefore examine the phase space formula
tion of particle mechanics on a general space-time (M,9') with 
Lorentz metric 9' and isometry group G; we determine in 
particular conditions on G for a no-interaction result to hold. 

In order to formulate Hamiltonian particle mechanics 
on a space-time (M,9')' we first need to generalize to the new 
context the kinematic framework of nonrelativistic Hamil
tonian particle mechanics: i.e., the notions of observer, phase 
space, and symmetry. This is done in Sec. II, where we also 
give a precise definition of a Hamiltonian n-particle system. 
It is then proven that the G-invariance of the particle systems 
considered induces a (local) action of G on the phase space. 
Actions arising in this fashion satisfy a number of conditions 
that are a generalization to the new framework of the world
line conditions, well known for the case where M is Min
kowski space-time. They express the compatibility of the ac
tion of G on phase space with its action on M and are 
essential for the worldline interpretation of the theory. In 
Sec. III we introduce a local and observer-dependent notion 
of time and the concept of dynamics, associated with it. We 
consider the case where the observer's worldline is the flow
line of a one-parameter subgroup of isometries. It is then 
shown that complete information about the dynamics of the 
n-particle system can be obtained from knowledge of the 
action of G on phase space. It is in particular possible to give 

a) Research assistant NFWO, Belgium. 

a precise definition of the notion of a free n -particle system in 
terms of the action of G on phase space. This framework 
allows us to formulate and prove, in Sec. IV, a no-interaction 
theorem for Hamiltonian particle mechanics on a space-time 
(M,9')' provided its isometry group is large enough, in a sense 
to be made precise. The theorem states assumptions under 
which a Hamiltonian n-particle system is necessarily free in 
the sense of Sec. III. The assumptions can be summarized as 
follows. First, we require that the action of G on phase space 
is realized by canonical transformations [Theorem 4.1, as
sumption (i)]. Second, we consider the case (as in Sec. III) 
where the observer's worldline is a flowline of a one-param
eter subgroup of isometries [Theorem 4.1, assumption (ii)). 
Third, we express the fact that initial positions and velocities 
determine the motion uniquely [Theorem 4.1, assumption 
(iii)]. Finally, we impose a crucial condition on G: we require 
that the local notion of simultaneity, introduced in Sec. III, 
is not preserved under the action of G on M. In Sec. V, we 
first show how the original no-interaction theorem can be 
obtained as a special case of the theorem proved in Sec. IV. 
We then give other examples and, in particular, study in 
detail the case where (M,9') is the de Sitter space-time. 

II. HAMILTONIAN PARTICLE MECHANICS ON (M,9'): 
KINEMATICS 

Let (M,9') be a space-time with Lorentz metric 9' and 
isometry group G. Denote by 

<1>: G XM-M , (2.1) 

the action of G on M. In the following, G will always be a Lie 
group. First, we define the notions of particle and particle 
system. A particle is a one-dimensional, timelike, and con
nected submanifold y(k) of M; in other words, a particle is a 
worldline. An n-particle system is a G-stable collection r of 
n-tuples y = (y(l) ,y(2) , ... ,y(n» of particles. It is the goal of 
relativistic particle mechanics to explicitly construct, in a 
mathematically convenient way, physically meaningful n
particle systems. 

We illustrate the above definition with an example of its. 
nonrelativistic analog. Consider two masses m 1 and m 2 con
nected by a spring with spring constant K. This system can be 
identified with all couples of trajectories in R3 X R that de
scribe the possible motions the system can execute. Another 
choice of interaction between the two masses would have 
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yielded other trajectories. Moreover, the Galilei invariance 
of the system manifests itself in the invariance of the collec
tion of pairs of trajectories under the action of the Galilei 
group on R3 X R. In other words, "the transform of a possi
ble motion is a possible motion." 

Returning to the definition of an n-particIe system on 
(M,?), we see that a choice of r is interpreted as a choice of 
interaction between the particles. The G-stability of r ex
presses the invariance of the dynamics under the isometry 
group of (M,?). We will refer to elements of r as possible 
motions. 

The purpose of this paper can now be rephrased as fol
lows: we investigate which n-particle systems r can be de
scribed by a Hamiltonian particle mechanics on phase space. 

We now introduce the notion of an instantaneous ob
server. An instantaneous observer w at me Mis an orthonor
mal basis {eV e2,e3,e4 } ofthe tangent space TmM of Mat m, 
with e4 a timelike, future-pointing unit vector.4 Two instan
taneous observers w and w' are equivalent if there exists an 
element geG such that TmCPg-e j =e;, for i= 1,2,3,4. We 
write w' = g[w]. 

We now show how to use the notion of an instantaneous 
observer w at me M to describe the properties of certain n
particle systems r in a neighborhood of me M. First remark 
that the geodesics generated by span {e 1,e2,e3 } form locally a 
three-dimensional spacelike hypersurface Hw of M. Given 
an open subset I.w of Hw containing m, we define the n
particle phase space Sw associated to w as the cotangent bun
dle Sw = T*(I.w X···XI.w) (n copies). We denote by r::": 
Sw-I.w the natural projection of Sw onto the ath copy of 
I.w (a = 1,2, ... ,n). On Minkowski space, to the choice of w 
corresponds a unique geodesic coordinate system (x,y,z,t) 
with m:s(O,O,O,O) and e1 = a lax, e2 = a lay, e3 = a laz, 
e4 = a I at. Then H w is given by the hypersurface t = O. Tak
ing I. = H , S can indeed be identified with T*R3n

, the w w w 
usual phase space for an n-particle system. On other space
times (M,?), I.w can usually not sensibly be taken equal to 
H as will be seen later. Next, recalling the nonrelativistic w' . 
example of the harmonic oscillator, we remark that in this 
case the possible motions are labeled in a one-to-one fashion 
by points in phase space. This would no longer be true if the 
two masses had additional degrees of freedom, such as spin, 
for example. In that case, one would have to use a larger 
space to label the possible motions of the system. In other 
words, it is a restriction on the system to say that its possible 
motions can be labeled by points in phase space. Applying 
the preceding considerations to the general case, we arrive at 
the following definition. 

Definition 2.1: An n-particIe system r is a Hamiltonian 
n-particle system with respect to an instantaneous observer 
w if there exists an open subset I.w CHw and a map 

bw: seSw-bw(s)er, (2.2) 

such that (1) bw is injective; (2) if for every tal in 
y = (y(i), ... ,tn))er, the intersection ya)nI.a is a singleton, 
then yelm bw ; and (3) if s = b;; I((Yi), ... ,tn))), then 
ta)nI.w = (r::"(s)}, fora = 1,2, ... ,n. Ifbw(s) = y, we refer to 
s as the state of the possible motion y for w. Condition (3) 
guarantees the interpretation of ~(s) as the "position" of 
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the ath particle in the possible motion bw(s) = y. Given 
0' = (O'w"'O'n )eI.w X .. · X I.w , we consider 

ru = {y=(t1
),y<2),· .. ,tn))erlta)nI.w = {O'a}, 

a = 1,2, ... ,n} . (2.3) 

Conditions (1)-(3) assure that bw maps the fiber 
T !(I.w X ... X I.w ) bijectively onto r u' In other words: initial 
positions and momenta determine uniquely a possible mo
tion. 

In order to exploit the G stability of r, we make the 
following smoothness assumption: for ye 1m bw , there exists 
a neighborhoodf(y) of eeG, such that CPg(yjelm bw for all 
ge f(y). We can then define a local group actions t/lw of G on 
Sw as follows: 

~: (g,s)e~ w CG XSw-¢,;(s)eSw , (2.4) 

with 

(2.5) 
and 

¢,;(s) = b;; loCPgobw(s). (2.6) 

The interpretation of t/lw is as follows: if s is the state of y for 
w, then ¢';(s) is the state ofCPg(Y) for w. 

In the following, we investigate the properties of n-parti
cIe systems r which are Hamiltonian with respect to an in
stantaneous observer w by analyzing the corresponding local 
group action ¢'W on Sw' 

As a first remark, we notice that ¢'W satisfies what is 
known as the worldline conditions. This is an immediate 
consequence of condition (3) in Definition 2.1. A convenient 
form of the worldline conditions is given in the following 
lemma. (Notice that the lemma holds for every value of 
ae{ 1,2, ... ,n) separately.) 

Lemma 2.1: If r is a Hamiltonian n-particle system with 
respect to an instantaneous observer w then the correspond
ing local group action ¢'W of G on Sw satisfies 

(2.7) 

for all (g-l,s)e~ w such that CPg- dr::(s))eI.w' 

Proof: Take (g-l,s)e~w such that CPg-.(r:*(s))eI.w ' 

Write bw(s) = y = (ti),t2
), ... ,tn

)). Then 

CPg-' (ta))nI.w ~ {CPg-. (r::(s))} . (2.8) 

But (g-l,s)e~w' so that CPg-.(y)e1m bw ' Hence, by (3) of 
Definition 2.1, cP g-' (ta))nI.w is a singleton. Consequently, 

CPg-.(ta))nI.w = (CPg-.(r:*(s))} . (2.9) 

Moreover, from (2.6) and (3) of Definition 2.1 

CPg-.(ta))nI.w = (r::"(¢';-ds))} . (2.10) 

From (2.9) and (2.10), (2.7) follows immediately. 0 
The worldline conditions will be of crucial importance 

in proving the no-interaction theorem of Sec. IV. 
In order to make further contact with Hamiltonian me

chanics, we assume from now on that the local action ¢'W of G 
on the phase space Sw is strongly symplectic, i.e., all the 
generators of ¢'W are Hamiltonian vector fields. In other 
words, if 2'(G) is the Lie algebra of G, if Cd is the natural 
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symplectic form on Sw = T *(l:w X ... X l:w)' and if we de
note by (5 )sw the generator of the action t/Jw corresponding to 
se2'(G), we have 

(5 )sw J a.l = dK (S ) , (2.11) 

for some K(5)eY(Sw)' the smooth functions on Sw' We 
write (.,.) for the Poisson bracket on Sw' 

III. HAMILTONIAN PARTICLE MECHANICS ON (M,~): 
DYNAMICS 

We first introduce in this section a local and observer
dependent notion of time as follows. Let w = (e 1,e2,e3,e4 ) be 
an instantaneous observer at a point m of the space-time 
(M,?). Assume the existence of an element in 2'(G ) that we 
shall denote by S4 such that its corresponding infinitesimal 
generator (54)M on M satisfies (54)M(m) = e4. We then con
struct a one-parameter family of instantaneous observers 
wIt )=exp tS4[W], teR. A straightforward application of the 
"straightening out theorem6

" assures the existence of an 
open neighborhood ffCHw of me M and a positive real 
number a elR + such that the map 

1': (t,u)e( - a,a)xff _cI>(exp ts4,u)eM (3.1) 

is injective and onto a neighborhood U of me M. Conse
quently, given m'eU, 3!(t,u)e( - a,a) Xff such that 

cI>(exp ts4 ,u) = m' . (3.2) 

The value of t is interpreted as the value of the time at m'; it 
depends on the choice of wand of S4' On Minkowski space S4 
is usually taken to be the generator of translations in the e4 

direction and t is then the usual notion of observer time. 
Now let r be a Hamiltonian n-particle system with re

spect to w. We can take, without loss of generality, l:w = ff. 
We prove that r is locally fully determined by the knowledge 
of the action ~ of G on the phase space Sw' Consider a state 
se Sw, the phase space associated to w, and denote the corre
sponding possible motion bw(s) by r: 

bw(s) = r = (ylll,yl2), ... ,yln)) . (3.3) 

From (2.5), it follows that 3belR+ such that Vte( - b,b), 
(exp - tS4,s)e9 w' Without loss of generality, we can take 
a = b. For fixed a in (1,2, ... ,n), choose m'eyla)nU. Then, by 
(3.2), 3!(t,ua)e( - a,a)xl:w such that 

cI>(exp - ts4,m') = Ua . (3.4) 

Clearly, by (3) of Definition 2.1, and the definition (2.4)-(2.6) 
of t/Jw, 

( U a) = l:wncl> exp _ tS. (yla)) (3.5) 

and 

ua = ~·(t/J~xp -ts.!s)). (3.6) 

From (3.4) and (3.6), we conclude 

m' = cI>(exp tS4,~·(t/J~xp _ ts, (s))) . (3.7) 

Since we can repeat the argument for every m'eyahU, we 
conclude that 

1m fa) = yahU, (3.8) 

where 

(3.9) 
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This proves indeed that, given a state se Sw and the local 
action t/Jw of G on Sw, we can reconstruct locally the possible 
motion bw (s) = r corresponding to the state s by considering 
(3.9). 

We are now justified in calling (S4)S the dynamic vector 
field on Sw and K(54) [see (2.11)] the c;rresponding Hamil
tonian: indeed, considering the special case where Mis Min
kowski space-time and S4 the generator of time translations 
in the e4 direction, (3.9) expresses that the "time evolution" is 
given by the Hamiltonian flow corresponding to K (54)===K'4' 

In the sequel we will only consider the case where the 
Legendre transformation (fiber derivative4) 

FK4: Sw = T*(l:w X .. · X l:w)-T(l:w X"'Xl:w) (3.10) 

is a diffeomorphism onto its image. This expresses the fact 
that, instead of "initial positions and momenta," we can use 
"initial positions and velocities" to label the possible mo
tions. 

Given ~ and FK4 , we construct a local group action :;Pw 
of G on TQw ==T (l:w X ... X l:w) as follows: 

;pw: /g,v)eDwCG XTQw-~;(v)eTQw, (3.11) 
where 

~;(v) = (F'K40t/J;oFK 4- 1)(V) (3.12) 
and 

Dw = (/g,v)eG xTQwi/g,(FK4)-1(v))e9w)' (3.13) 

One can make TQw into a symplectic manifold by con
structing the Lagrange two-form,4 using FK4 in the usual 
way. The action ~w is then symplectic with respect to this 
symplectic structure. In particular, the infinitesimal gener
ator (S4)TQw of the action ~w corresponding to S4 (i.e., the 
dynamic vector field on TQw) is a second-order Lagrangian 
vector field on TQw' In local coordinates on TQw, 

(l" ) () _ . (a) a I A (a)() a I ~4 TQw V - qi a.-J.a ) + i V a (a) , 
Yi v V, v 

(3.14) 

wherethesummationofae( 1,2, ... ,n J andie( 1,2,3 J is under
stood and 

v=(qP),q\2), ... ,q\n),q\I), ... ,q\n))==(q(a),q(a)) . (3.15) 

We now say that an n-particle system r is free if the "accel
eration" Ala), i = 1,2,3, of the ath particle only depends on 
the position and velocity of the ath particle itself. This idea is 
expressed in the following definition. 

Definition 3.1: Let (i) r be a Hamiltonian n-particle sys
tem with respect to an instantaneous observer 
w = (e 1, ... ,e4 ); (ii) the corresponding local group action ~ 
of G on Sw be strongly symplectic; and (iii) S4eY (G) be such 
that ((S4)M(m) = e4 and such that FK4 is a diffeomorphism 
onto its image. Then we say that r is a free n-particle system 
with respect to w and S4 if there exist local group actions i a

) 

of G on Tl:.w such that V/g,v)e~ w' with v==(v(1),v(2), ... ,v(n)) , 

¢.;(v) = U'~)(v(1))'X~)(v(2)), ... ,xin)(vln))) . (3.16) 

In other words, the local action ~w "factorizes" into the n
fold product of the local actions i a

). 

IV. A NO-INTERACTION THEOREM 

We are now ready to state and prove the main result of 
this paper. 
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Theorem 4.1: Let w = {e 1, ... ,e4} be an instantaneous ob
server at a point m of a space-time (M,?) with isometry group 
G. Let r be a Hamiltonian n-particle system with respect to 
w. If (i) the corresponding local action t/lw of G on the phase 
space Sw is strongly symplectic; (ii) there exists an element 
s4e2'(G), the Lie algebra of G, such that (54)M(m) = e4; (iii) 
the Legendre transformation FK4 is a diffeomorphism onto 
its image; and (iv) for every oel:w, the isotropy group of u 
does not leave the normal to l:w at u invariant; then r is a 
free n-particle system with respect to (W,S4)' 

In physical terms, condition (iv) requires that the local 
notions of time and simultaneity, associated with the pair 
(W,S4) by (3.1) and (3.2) are not preserved under the invar
iance group G. We break the proof of the theorem up into 
several lemmas. The flow of the argument is a generalization 
of a proof of the original no-interaction theorem, given for 
the first time in that form in Ref. 3. 

As a first step, we exploit in Lemma 4.1 the worldline 
conditions (2.7) to determine the infinitesimal generators 
(S)TQw(Se2'(G)) of the local action f/I": the result shows 
that, independently of assumption (iv) of Theorem 4.1, all the 
generators are determined uniquely by (S4)TQw' 

We assume for simplicity that there exists a global coor
dinate system on l:w: 

t/J: oel:w-t/J(u)eR3
, (4.1) 

with t/J(u) = (t/Jl(U), t/J2(U), t/J3(U))==(ql>q2,q3)' Corresponding
ly, we have coordinates (tta), q\a)) on TQw and (tta), pIa)) on 
T·Qw = Sw (i = 1,2,3; a = 1,2, ... n). Moreover, defining 

(4.2) 

we have 

lFK4: S = (q\a),p\a))e Sw_(q\a),v\a)(s))eTQw' (4.3) 

We can now write, using the definition (3.11H3.13) of ~w 
and summing over ae{ 1,2, ... ,n} and ie{ 1,2,3}, 

(5 )TQJlF K4(S)) = {q\a),K (s ) }(s) !l ~a) I 
uqj FK.(s) 

+ {v\a),K (5)} (s) ~a) I ' (4.4) 
aqj FK.(s) 

with se2'(G) andseT·Qw' In particular, for S = S4, and in 
obvious shorthand notation 

I ~ ) _ . (a) a { (a),K} a 
~4 TQw - qj !l (a) + V; 4 !l'(a)' 

dq; uq; 
(4.5) 

Comparing with (3.14), we have 

A \a) = {v\a),K4}. (4.6) 

(We will use the same notation A \a), whether considered as a 
function onSw or TQw.) 

In Lemma 4.1 we compute the functions {K (s ),q\a)} and 
{K (5 ),v\a)} in terms of vIa) and A \a). For that purpose, we 
need the following function: 

T: (u,s)el:wx2'(G)-T(u,s)e( -a,a)ClR, (4.7) 

which is defined, using (3.1) and (3.2), by 

<1»( exp - T(u,s )S4,<I»( exp s,u))el:w. (4.8) 

Here T is well defined on an open subset of l:w X 2' (G) that 
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contains l:w X { O}: indeed, if S is small enough, then 
<I»(exp s,CT)eUCM [see (3. 1) and (3.2)); hence T(u,s)in (4.8) is 
unique by (3.2). Now T (u,s ) is the time value associated to the 
point <I»(exp s,u) by w. Notice that T(u,O) = 0, 'o'oel:w' 

Let {SI'''',Sk} be a basis of 2'(G). WewriteKm==K{5m) 
(see 2.11). For the partial derivative of T (4.7) with respect to 
the mth component of se2'(G), we use the notation 
T,m (u,s). Notice also that we can construct a coordinate 
system (ql>q2,q3,t) on U, using (3.1) and (3.2), and (4.1). As a 
consequence, we will consider the function t/J in (4.1) altema
tivelyas defined on U or on l:w, without using different nota
tions. In the sequel a, ,8e{l,2, ... ,n}, i,je{l,2,3}, 
[,mEr 1,2, ... ,k}. 

Lemma 4.1: Under conditions (iHiii) of Theorem 4.1, 
summing over m andj, V seSw ' 

{q~a) ,K,}(s) = (G ~or,:*)(s) + T,,(r,:*(s),O)v~a) (s), (4.9) 

{vfa ) ,K,} (s) 
=c4i{q~a),Km}(s) + (GD'j(~*(s)vJa)(s) 

+ (T,,), j(r,:* (s),O)v~a) (s)vY) (s) 

+ T'j(r,:*(s),O)A fa)(s), 

with 

G;:oel:w-(s')M(t/J;)(u)eR, 

[S4,Sr] = c4ism, 
and 

aT" . aG; 
(T,,),j=--' (Gj)'j=--' 

aqj aqj 

(4.10) 

(4.11) 

(4.12) 

Proof: Take se Sw' Choose,ueR small enough such that 
(i) T(~*(s).,us,) exists, and (ii) (g-l,s)e Dw, with 

g = exp -,us, exp T(l":*(s),,us, )S4eG. (4.13) 

It follows from (4.8) that 

<I»(g-I,l":(s))el:w' (4.14) 

Hence, Lemma 2.1 applies: for fe.'7(M), Eq. (2.7) yields 

(/b~*)(t/I;_. (s)) = ifo<l»g_' )(~*(s)). (4.15) 

Choosing! = t/J;, taking the derivative for,u = 0 in both sides 
of (4.15) and remembering that T(r,:*(s),O) = 0, one obtains 
(4.9) upon using (S4)M(t/J;)(U) = O. 

In order to derive (4.10), one first writes, using the Ja
cobi identity, 

{ V\a),Ki } (s) = { {tta) ,K4},K, } (s) (4.16) 

= ({K4,K, },q\a)} - {{K"q\al },K4}. 

Inserting (4.12) and (4.9) into (4.16), (4.10) follows. 0 
The next lemma uses assumption (iv) of Theorem 4.1 in a 

crucial way. 
Lemma 4.2: Under the conditions of Theorem 4.1, for 

all se Sw and for a ¥-,8, 

{q\al,vjPl}(s) = 0, (4.17) 

{v\al,VjPl}(S) = 0, 

{q\al,A jPl}(s) = 0, 

{v\al,A jPl}(s) = O. 

(4.18) 

(4.19) 

(4.20) 

Proof: Upon using, in that order, the Jacobi identity, 
{iftal,qjPl} = 0, and Eq. (4.9), one calculates, 'o'se Sw' 
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HK"qfa>},qjP>}(S) = - T'I (1'P" (s),O){vjP> ,qfa>}(s). 
(4.21) 

Alternatively, using (4.9) directly, one has 

HK"qfa>},qjP>}(s) = - T,/(~*(s),O){vfa>,qjP>}(s). 
. 'd . (4.22) 

But, with (4.2) and the JacobI I entIty, 

{vJP> ,q~a>} = {{qJP> ,K4} ,q~a>} 

= - {{K4,qfa>} ,qJP>} - {{q}a> ,qjP>},K4} 

= {v}a>,qjP>}. (4.23) 

Hence, from (4.21 )-( 4.23), V SE Sw' 

(T'/(rp*(s), 0) - T'/(~*(s)O»{q}a>,vjP>}(s) = O. (4.24) 
Consequently we have, VsESw and VsE2"(G), 

~(T(rp*(s).AS) - T(1'~*(s).As)) I [q\al,vjPlJ(s) = o. 
dA -<=0 

(4.25) 

It follows from (4.25) that [q\al,vjPlJ(s) = 0 whenever 
3sE2"(G) such that 

~T(rp*(s).AS) - T(~*(S).As))1 ;60. (4.26) 
dA -<=0 

In order to prove (4.17), we need to prove that, even if, for 
somesESw , 

~(T(rp*(s).AS) - T(1'~·(S).As))1 = 0, 
dA -<=0 

VsE2"(G), (4.27) 

[q\al,vjPlj (s) is nevertheless equal to zero. 
Suppose therefore that for some SE Sw' (4.27) is satisfied. 

Choose So in the Lie algebra of the isotropy group of 1'~·(s) 
such that the flow cl>exp-<so of the corresponding one-param
eter group exp ASo(AER) does not leave the normal to ~w at 
1'~*(s) invariant. Alternatively, 

(cI>exp-<sa!* (TT::"lsl~w);6 TT::"lsl~W' (4.28) 

Such a So exists by assumption (iv) of Theorem 4.1. Since 
exp ASo(AER) is in the isotropy group of 1'~·(s), it follows from 
(4.7) and (4.8) that 

T(1'~·(s).ASo) = 0, AER. (4.29) 

Hence, from (4.27), with S = So' 

~T(1'P"(s).ASo) I = O. 
dA -<=0 

(4.30) 

We now prove by contradiction that 

VNC~w' neighborhood of 1'~·(s), 

d 
3UEN such that dA T(u.ASo)IA=0;60. (4.31) 

Indeed, suppose there exists a neighborhood NC ~w of 1'~·(s) 
such that VUEN, (d IdA) T(u.Aso)I-<=o = 0; recall that, in 
the coordinate system (q),q2,q3,t) introduced before Lemma 
4.1, we can write 

cI>(expAso,U) = (q&i ),q2(A ),q3(A ),T(u.ASo)), (4.32) 

with u = (q)(0),q2(0),q3(0),0). Consequently, 

(d IdA)T(u.ASo) 1-<=0 = 0 

implies (SO)M(U)E T<T~w' If this is true for all UEN, (SO)M' 
when restricted to N, is a vector field on N. Hence, Eq. (4.28) 
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cannot be satisfied. This proves (4.31) by contradiction. 
Consider therefore a sequence of points UkE ~w, kEN, 

such that Uk approaches ~·(s) as k-oo and satisfying 
(d IdA )T(Uk.ASO) I -<=0 ;60. Writing Uk==(qk pqk2,qk3)' 
construct a sequence of points SkE Sw as follows: if 

s=(q\ll,q\21, ... ,q\al, ... ,qf[1I, ... ,q\nl,p\II, ... ,p\nl), (4.33) 

then 

Sk=(q)Il,q\21, ... ,qk;, ... ,qf[1I, ... ,q\nl,p\II, ... ,p\nl). (4.34) 

Here a;6{3; clearly Sk approaches s as k goes to infinity. 
Upon using (4.30), (4.33), and (4.34), Eq. (4.25) reads, VkEN, 

~T(~(Sk)'ASo)1 {q}a>,VjP>}(Sk) =0. (4.35) 
dA -<=0 

Hence {qfa>,VjP>}(Sk) = 0, VkEN. It follows by continuity 
that {qfa>,vjP>}(s) = O. This proves (4.17). 

Equations (4.18)-(4.20) are proved in a similar way. 
First, using the Jacobi identity, Eqs. (4.9) and (4.17), one 
finds, VSESw ' 

{ {K"v~P>},q~a>}(s) = - T'/(~*(S),O){v~a>,v~P>}(s). 
I , a, I (436) 

Alternatively, from (4.10) and (4.17) and VsESw ' • 

{{K1,v}P>,qja>}(s) = - T,/(1'P"(s),O){A }P>,qja>}(s). 
(4.37) 

Furthermore, from the Jacobi identity and (4.17) one ob
tains, VSE Sw' 

[A f[11,qJalj = [vJal,vf[1lj. (4.38) 

Inserting (4.38) into (4.37) and comparing to (4.36), one has 
VSESw and VSE 2"(G), 

~(T(rp·(S),AS) - T(~*(S),AS) I {vja>,v}P>(s) = O. 
dA -<=0 

(4.39) 

Comparing (4.39) to (4.25), we see that (4.18) follows if we 
repeat the arguments in (4.26)-(4.34). 

Equation (4.20) is proven in a similar way. To prove 
(4.19), note that 

[A jPl,i{;alj = [ [vjPl,K4j ,i{;alj 

= [[K4,q\al j,vjPlj - [[q\al,vjPlj,K4j 

= 0, (4.19') 
where we used (4.6), (4.2), (4.17), (4.18) and the Jacobi identi
~ D 

Having obtained Lemma 4.2, the proof of the theorem 
now follows along precisely the same lines as in the flat case. 
We briefly recall the argument. 

Proof of Theorem 4.1: From (4.17)-(4.20) and the defini
tion of the Poisson bracket on Sw, we obtain, for a ;6{3, 

aA!f31 

[q\al,A !f3lj = 0 = [q\al v1alj_'_ 
I, I 'k alai' 

Vk 

aA!f3 1 aA!f3 1 

[v\al,A !f3lj = 0 = [vl,al vlalj __ '_ + [v\al q1alj __ '_ 
I, I , k alai ' 'k alai' Vk Vk 

(4.40) 

where k is summed over from 1 to 3. From (4.17) and condi
tion (iii) of Theorem 4.1, we also have 

det[ q\al,vJalj ;60, VaE[ 1,2, ... ,n J. (4.41) 

Consequently, the only solutions to (4.40) are 
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aAIfl) aAIfl) 
_'_=0=_'_, Vi,je{1,2,3j, Va=.#:1e{a, ... ,nj. 
aula) aq\a) 

(4.42) 

In other words, the acceleration A j1) does not depend on the 
position or the velocity of the ath particle, provided a i=/3. 
Inserting (4.42), (4.9), and (4.10), into (4.4), we see that we can 
write 

" IS )TQw = L IS )!;iw' 
a=1 

where IS )!;iw is a vector field on the ath copy of Ti. w in 
TQw = Ti.w X Ti.w X ... X Ti.w' We construct local group 
actions tal of G on Ti. w by exponentiation of the infinitesi
mal generators 1S)!;i . Hence, (3.16) is satisfied and r is free 

w 

with respect to W and 54' 0 

V.EXAMPLES 

As an immediate example, we recover the original no
interaction theorem. In this case (M,?) is Minkowski space
time M 3

.
1 with the Poincare group as isometry group. All 

instantaneous observers are equivalent. Choosing 
w=(e l , ... ,e4), at me M, we can set up the unique geodesic 
coordinate system (xJ!,z,t) determined by m=:s(O,O,O,O) and 
el = a lax, e2 = a lay, e3 = a laz, e4 = a lat. HereHw is the 
hyperplane t = 0. For 54 we choose the generator for transla
tions in the t direction and condition (iv) of Theorem 4.1 is 
now satisfied everywhere on H w' Choosing l:w = H w' we 
can apply Theorem 4.1. A little extra algebra proves more
over that the particles move in geodesics, i.e., the accelera
tions are identically equal to zero.3 Notice that in this case 
the curve 

(S.I) 

is a geodesic: hence it makes sense to refer to the family of 
instantaneous observers W(A ) = exp A54[W] as a "freely fall
ing observer." The no-interaction theorem stated in Sec. IV 
also applies to the so-called "uniformly accelerated observ
ers 7" on Minkowski space-time. Choose a geodesic coordi
nate system (xJ!,z,t) onM3

.
1 and consider w=(a lax, a lay, 

a laz,a lat )atm=(xJ!,z,t) = (l,0,0,0).Let54bethegenerator 
of the Lorentz boosts in the x direction; these leave the origin 
(0,0,0,0) fixed. Moreover, with this choice of w and 54' the 
curve (S.I) now represents a uniformly accelerated motion, 
asymptotically approaching the speed of light. Again, Hw is 
the surface t = 0, but l:w is given by {(xJ!,z,t )It = 0, x> OJ. 
Theorem 4.1 applies here also: Hamiltonian particle me
chanics with respect to w and 54 only describes free particles. 

We now give examples where (M,?) is not Minkowski 
space-time. First note that conditions (ii) and (iv) of Theorem 
4.1 put restrictions on the space-times to which the theorem 
can be applied. A large class of examples is found among the 
homogeneous space-times; condition (ii) can then be satisfied 
for any choice of w. If the isometry group is at least five
dimensional, then (iv) can also be satisfied for some choice of 
w. Indeed, the isotropy group of any point is now at least 
one-dimensional and therefore cannot leave every timelike 
direction invariant. Hence, we can choose w such that e4 is 
not invariant and so (iv) is satisfied. 

12 J. Math. Phys., Vol. 27, No.1, January 1986 

More specifically, we are interested in the homogeneous 
solutions of the Einstein equations. Those have been studied 
extensively.8 We already mentioned Minkowski space-time 
as a first example. 

We now apply Theorem 4.1 to the de Sitter space-time, 
M 3'; .M 3'; has the topology ofR I xs 3 and can be identified 
with the hyperboloid 

(S.2) 

in the five-dimensional Minkowski space-time M 4
.
1 

• Its iso
metry group is the ten-dimensional Lorentz group in M 4

.
1 

; 

the isotropy group of any point is isomorphic to the six
dimensional Lorentz group in M 3

.
1 

• M 3'; is a homogeneous 
space-time of constant positive curvature. Let 
m=(R,O,O,O,O) and w=:s(e l ,e2,e3,e4) = (a lax, a lay, a laz, 
a I at); then H w is given by the hypersurface t = ° in M 3'; . 

Let 54 be the generator of the Lorentz boosts in the (u,t) 
plane. Notice that the curve 

AeR_<I>(exp A54,m)e M 3'; (S.3) 

is a geodesic so that we are again dealing with a "freely fall
ing observer." The theorem. immediately applies: the parti
cles move independently of one another. We now prove that 
the particle motion is actually geodesic. 

We first remark that it is sufficient to show that a parti
cle at rest at the origin (i.e., at m = (R,O,O,O,O)e M 3'; ) feels 
no acceleration. Indeed, in this case it will remain at rest and 
consequently move on the curve (S.3), which is geodesic. 
Moreover, every other initial position and velocity can be 
obtained from the first one using an element of the isometry 
group. As the isometry group maps geodesics into geodesics 
and since initial positions and velocities determine the mo
tion uniquely, every particle motion has to be geodesic. We 
now prove 

(S.4) 
for 

(q,q) = (ql,q2,q3,ql,Q2.q3) = (0,0) 

[cf. (3.14) and (3.1S), where we dropped the superscript a]. 
First, returning to (4.7H4.12), note that we have, in the 

coordinate system (QvQ2,q3.t) on a neighborhood U of m, 

. a a 
(51)M(U) = Gj(u)-. + T,I(u.O)-, Vuel:w • (S.S) 

aq' at 

forl = {1,2, .... k}. (OnM 3
';. we have k = 10.) 

The isotropy group of m = (R,O.O.O,O) contains as a 
subgroup the group SO( 3) of rotations around the u axis. 
leaving the hypersurface Hw invariant. We write Ul.52,53} 
for the corresponding generators and notice that 

[51.54] = 0, for 1 = 1.2,3, (S.6) 

and 

T'I(u,O) =0. for 1= 1.2,3,Vuel:w • (S.7) 

Using (4.3), (4.4), (4.9), (4.10), (S.6), and (S.7) we have 

(5Ih~w=G~~a + (GD'Jq): ' for 1=1,2,3. (S.8) 
vqj tlqj 

For the qi component of [lSI h~w' 1S4h~w] (q,q) = ° at 
(q,q) = (0,0). we have. summing overje{ 1.2.3 I. 
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(S.9) 

where we used (G;) (0) = 0 since the Sl are generators of 
the isotropy group of m. Finally, as the three matrices 
(G~ )'J (0), (G~ )'J (0), (G~ )'i (0) forman irreducible rep
resentation of the SO(3) Lie algebra on Tm'I.w , (S.4) imme
diately follows from (S.9). 

This concludes the proof of our assertion that, on de 
Sitter space-time M 3.;!, particle motion is necessarily geo
desic. 

Notice that, upon taking the limit for R toifinityin (S.2), 
the isometry group of M 3.;! contracts to the Poincare group. 
In this sense we can recover the original no-interaction 
theorem on Minkowski space-time as a limiting case. Notice, 
however, that the Poincare group similarly contracts to the 
Galilei group, but that the no-interaction theorem no longer 
holds in the limit! This illustrates the crucial role played by 
condition (iv) in obtaining the conclusion of Theorem 4.1. 

We finally consider the Einstein static universe. This is a 
homogeneous space-time with a seven-dimensional isometry 
group. The isotropy group is three dimensional and leaves a 
preferred ("cosmic") time direction invariant. For an observ
er traveling with the substratum, the theorem therefore does 
not apply; other observers can be chosen, however, such that 
it does! This brings about the peculiar situation that, depend
ing on the choice of observer, interaction can or cannot be 
described by the Hamiltonian formalism outlined in this pa
per. This situation is reminiscent of the situation in quantum 
field theory on curved space-times, where the choice of ob
server also can be of crucial importance.9 

Finally, we remark that the proof of the theorem given 
here makes implicit use of the Lagrange two-form on TQw. 
For the flat case, this has been exploited further recently by 
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several authors lO
; their results also carryover to the general 

case considered in this paper. 
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Nonlinear ordinary differential equations admitting a superposition principle based on the action 
of the group SL(n,q on the homogeneous spaces SL(n,q/O(n,q and SL(n,q/Sp(n,q are derived. 
The superposition formulas are presented explicitly. In the O(n,q case the general solution is 
expressed in terms of three particular solutions (for any n). For the Sp(n,q case three solutions are 
needed for n = 2k ~ 8, four solutions for n = 6, and five solutions for n = 4. 

I. INTRODUCTION 

Almost exactly one hundred years ago Lie showed that 
certain systems of n ordinary differential equations, not nec
essarily linear ones, admit a "nonlinear superposition princi
pie." That is to say, their general solution can be expressed in 
terms of a finite number m of particular solutions and n con
stantS. I

•
2 For n = 1 [one ordinary differential equation 

(ODE)] only one nontrivial, i.e., nonlinear, equation of this 
type exists, namely the Riccati equation 

y = a(t) + b (t}y + C(t}y2 . (1.1) 

It is well known that the general solution of this equation can 
be expressed algebraically (but not linearly) in terms of three 
particular solutions. The Riccati equation is quite important 
in many branches of physics. In particular it figures in Back
lund transformations for such important integrable partial 
differential equations as the Korteweg-de Vries equation, 
the sine-Gordon equation, the nonlinear SchrOdinger equa
tion, and many others.3

,4 

For systems of n ~ 2 nonlinear ordinary differential 
equations the situation is much richer. Indeed, a system of 
ODE's with a superposition formula can be associated with 
every group-subgroup pair G::> Go. The system of equations 
will be nonlinear if the action of the group G on the homo
geneous space M - GIGo is nonlinear. The number of equa
tions is 

n = dim G - dim Go , (1.2) 

where Go is the isotropy group of the origin in M. The equa
tions can be obtained by introducing local coordinates 
(Xl, ... , xn ) in the neighborhood of the origin on M and ex
pressing the elements of the Lie algebra L of G as vector 
fields 

£. -fl'( I n) a . - 1 ~; - ; x , ... , x -, I - , ... , r, 
axl' 

(1.3) 

where r is the dimension of the Lie algebra. The correspond
ing ODE's are 

r 

jcI' = L Z;(t lff(x l
, ... , xn) , (1.4) 

;=1 

·'On leave of absence from Departamento de Fisica Te6rica, Facultad de 
Ciencias, Universidad de VaIladolid, VaIladolid, Spain. 

h, On leave of absence from Departamento de Metodos MatemAticos de 1a 
Fisica, Facultad de Fisicas, Universidad Complutense, Madrid, Spain. 

whereZ/(t) are arbitrary functions oft. Conversely, a system 

of ODE's 

(1.5) 

will allow a superposition formula, precisely if(1.S) has the 
form (1.4) and the vector fields (1.3) generate a finite dimen
sional Lie algebra with respect to the usual commutator 
bracket.2 The superposition formula itself can be written as 
the mapping 

x(t) = S(xl(t ), ... , xm(t ),a) , (1.6) 

wherexl(t ), ... , xm (t) are particular solutions of(1.4) andaisa 

constant vector related to the initial conditions. The vector 
function S can be explicitly calculated for each equation of 
the considered type. 

The problem that arises is twofold: (1) to classify all sys
tems of ODE's with superposition formulas, and (2) to obtain 
the superposition formula (1.6) in each case. 

A series of recent publications has been devoted to the 
above problem. 5-1 I In particular, it has been shown II that an 
additional requirement, namely that the system of ODE's 
(1.4) be "indecomposable," implies that the action of the 
group G on the space M - GIGo should not only be transi
tive, but also primitive. 12

-
15 Indecomposability in this case 

means that it is not possible to introduce coordinates on M in 
such a manner that a subset of the equations (1.4) splits off 
and has a superposition law of its own. This would occur if 
the space M allowed an invariant foliation. For details see 
Ref. 11, where the classification of indecomposable systems 
of equations with superposition laws is reduced to a classifi
cation of transitive primitive Lie algebras I 1-15 (L, Lo). 

Much of the previous work concentrated on the case 
where L [the Lie algebra of the vector fields (1.3)] is simple, 
and Lo (the subalgebra of vector fields vanishing at the ori
gin) is a maximal parabolic algebra. 

The purpose of this article is to start a systematic treat
ment of the most complicated case, when L is again simple, 
but Lo is a maximal reductive subalgebra (i.e., Lo is the direct 
sum of one or more simple Lie algebras and possibly of an 
Abelian Lie algebra). More specifically, we analyze the 
ODE's related to two series of homogeneous spaces, namely 
SL(n,q/SO(n,q and SL(2n,C)/Sp(2n,q. 

In Sec. II we discuss the construction of these homogen
eous spaces and the action of G on GIGo (in several different 
manners). In Sec. III we present the corresponding ODE's 
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explicitly. The superposition formula for both cases is ob
tained in Sec. IV. Section V is devoted to low-dimensional 
examples where special features occur. The conclusions and 
perspectives for future work are outlined in the final section, 
Sec. VI. 

II. REALIZATIONS OF HOMOGENEOUS SPACES 

In order to construct the systems of ODE's (1.4) asso
ciated with a homogeneous space M - GIGo, we need a spe
cific and explicit realization of this space. This can be 
achieved by a direct construction of the left cosetsgGO.16 The 
action ofG on G /Go is given in terms ofa section of the ho
mogeneous space. The vector fields ti of (1.3) are invariant 
with respect to the choice of a section s of G /Go on G. Hence 
Eqs. (1.4), which can be written as 

dxl' = ± Zi(t )ti . xI', (2.1) 
dt i=1 

are also invariant under changes of section. 
The explicit construction of G /Go and of the action of G 

may involve considerable algebraic complications. The re
mainder of this section is devoted precisely to this problem, 
concentrating on the case when the group Gis SL(n,F) (with 
F = R or q and the subgroup Go leaves a nondegenerate 
symmetric or skew-symmetric bilinear form K invariant. 

A. The direct construction of G/Go 

Let Gbe a simple Lie group and Go a maximal reductive 
subgroup of G (i.e., Go can be a simple Lie group, the direct 
product of several simple Lie groups, or the direct product of 
one or more simple Lie groups with an Abelian group). We 
consider the homogeneous space G /Go, i.e., the set of left 
cosets gGo, geG. The action of G on G /Go is, by assumption, 
primitive, i.e., there does not exist an invariant foliation of 
G /Go. This is assured by the maximality of Go in G (see Ref. 
15). 

If we take a continuous local section 

s:G /Go-+-G, 

we obtain a decomposition of the elements of G 

g = s(gGo)r(g) , 

(2.2) 

(2.3) 

where r is a local map from G into Go. The transitive left 
action of G on G /Go is defined by 

G X G /Go-+-G /Go, (g,x)-.gx. 

In terms of the section s we can write 

s(gx) = gs(x)[ y(gs(x))] - 1 , 

having made use of (2.2) to decompose gs(x) as 

gs(x) = s(gx)y(gs(x)). 

(2.4) 

We must now choose a local section s and determine s(gx), 
i.e., specify y(gs(x)). This is often quite difficult, but once s(gx) 
is known it is quite straightforward to calculate the vector 
fields tdx) and hence Eq. (2.1). The variables xl' are then 
coordinates in some appropriate chart on G /Go. 

Two different local sections of G /Go, say sand s', are 
related by 

s'(x) = s(x}l5(x) , (2.5) 
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where {j:G /Go-+-Go is a continuous local map. The vector 
fields are invariant under (2.5). We shall work with normal
ized sections, i.e., put 

s(eGo)==S(xo) = e . 

Let us now restrict ourselves to the case of interest for 
this article, namely let G act linearly on F n (with F = R, or 
F = q and let Go be the subgroup of G leaving a nondegener
ate symmetric or skewsymmetric bilinear form invariant 

Go = {gEG IgKgT =K j, detK #0, 
K=pK T, p= ± 1. (2.6) 

Here, K is the matrix of the bilinear form in some chosen 
basis. 

Since y(gs(x))eGo, we have 

y(gs(x))K [y(gs(x))] T = K . 

Using (2.4) we can write 

[s(gx)] -lgS(x)K [[s(gx)] -lgS(X)] T = K . 

From here we obtain 

s(gx)K [s(gx)] T = gs(x)K [gs(x)] T. 

Defining 

W==s(x)K [s(x) V , 
we obtain 

W'=gWgT , 

where we have 

W'==s(gx)K [s(gx)] T. 

(2.7) 

(2.8) 

Notice that if K is symmetric (skew symmetric) then the 
same holds for W: 

W=pWT. 

Note also that W is not a section. 
Relation (2.8) realizes the action of G on G /Go, i.e., W 

provides a coordinate patch for this space. This will prove to 
be very useful below, where Go will be chosen to be SO(n,q 
or Sp(2n,q. 

The differential equations (2.1) associated with the ac
tion (2.8) are given by 

W=AW+ WA T , (2.9) 

where A (t) is an element of the Lie algebra of the group G. 
The equations are thus linear, however, in general W will be 
subject to nonlinear constraints. 

B. Homogeneous spaces via Lie algebra 

There are many ways of choosing the section s and, as a 
consequence, W. Let us discuss now a special section asso
ciated with the decomposition of the Lie algebra of G. 

Let Land Lo be the Lie algebras of G and Go respective
ly, and consider the direct sum decomposition of L as a vec
tor spacel4

: 

L = Lo -+- LI (2.10) 

where L 1 is a subspace of L. In the cases we will treat below, 
this is always possible, in view of (2.6). The definitions of Lo 
andL] are 

Lo= {AeL IAK +KA T =OJ, (2.11) 

Del Olmo. Rodriguez. and Winternitz 15 



                                                                                                                                    

(2.12) 

It is easy to show that the sum is a direct one and that the 
following properties are true: 

[Lo, Lo] ~Lo, [Lo, L I] ~LI' [LI' L I] ~Lo . 

The subspaces Lo and L I are orthogonal with respect to 
the Killing form of L. The decomposition (2.10) is related to 
the existence of an involutive automorphism () of L, 

() (A ) = - KA TK -I , 

Lo and LI are identified with the eigenspaces of eigenvalues 
+ 1 and - 1, respectively, and L is a Z2-graded Lie algebra. 

It is also interesting to remark that this decomposition 
corresponds to a splitting of L into two parts, symmetric and 
skew symmetric with respect to the metric given by K, that 
is, 

Aa = (A - KA TK -1)12, As = (A + KA TK -1)12, 

and AsK = (AsK)T, AaK = - (AaK)T. Then Lo = [Aa) 
and LI = [As}. Using known properties of Lie groups and 
Lie algebras, we can construct a continuo~s local section s 
given by the exponential of L I • Its existence is due to the 
isomorphism between L I and the tangent space at the point 
xo=eGo of GIGo [We have a local chart at xo, (Vxo ,,p) such 
that, ,p: VXo __ U C R" and R" is isomorphic to T Xo (G I Go)]; 
that is, for every Xe L I' exp(X) belongs to G and evidently, 
to a coset of GIGo, so that we choose exp(X) as the repre
sentative of this coset. [It is easily shown that if X and Y 
belong to L I and exp(X), and exp( Y) are in the same coset, 
then X = Y.] 

The matrix W of (2.7) is now 

W = exp(X)K exp(X)T = exp(2X), (2.13) 

because XeL I and XK = KX T (2.12). If we define Y=2X, 
the action of G on GIGo is given by (2.8): 

exp(Y')=gexp(Y)gT. (2.14) 

It is not always easy to calculate exp( Y). 

C. Homogeneous apaces via maximal parabolic 
subgroups and Grassmannlans 

If the isotropy subgroup is a maximal parabolic one (de
fined, for F = C, as a maximal subgroup of G containing the 
maximal solvable subgroup), then the corresponding homo
geneous space is easily realized as a Grassmannian of k-di
mensional planes in some higher-dimensional linear space. 
In some cases, when G is simple and Go reductive, use can be 
made of certain ditfeomorphisms, given by Kobayashi and 
Nagano,14 to reduce the construction of GIGo to that of a 
Grassmannian. 

This is possible ifthere exists a group G, such that G is a 
subgroup of G and Go is the intersection of G with some max
imal parabolic subgroup PCG. We then have 

(2.15) 

The following ditfeomorphisms were established for 
F=R: 

Sp(2n,R)/PzU(n)/O(n) , (2.16) 

SO*(4n)/PzU(2n)/Sp(2n) , (2.17) 

where P is the corresponding parabolic subgroup in each 
case. Note that the pairs appearing in the Kobayashi-Na-
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gano list are given up to a local group isomorphism. If we 
complexify the relations (2.16) and (2.17) we get 

Sp(2n,C)1 pz GL(n,C)/O(n,C) , 

SO(4n,C)IPzGL(2n,C)/Sp(2n,C) , 

where P is again the appropriate complexified parabolic sub
group. 

Let us consider the first case; the second has been recent
ly studied in some detail. II 

The group Sp(2n,C) can be defined by 

Sp(2n,C) = [geSL(2n,C): gKgT = K } (2.18) 

where K is given by 

K= [0 I] 
-I 0 

(2.19) 

(I is the n X n identity matrix). 
'" We want to give a particular realization of GL(n,C), 
GL(n,C), as a subgroup ofSp(2n,C) with the property 

- '" O(n,C) = GL(n,C)nP , (2.20) 

where O(n,C) is a particular imbedding of O(n,C) into 
Sp(2n,C) and P is a maximal parabolic subgroup ofSp(2n,C). 

To give an explicit form to the subgroup P, we make use 
of the Sp(2n,C) action over a submanifold of G,,(C2"), the 
Grassmannian of n-planes in C2". While Sp(2n,C) does not 
act transitively on G" (C2"), it does so on the isotropic n-plane 
manifold G~(C2n): 

(~) are homogeneous coordinates in G" (C2n). 
The isotropy group of the point Xo = (~) in G~(C2") is a 

maximal parabolic subgroupl7 ofSp(2n,C) and is given by 

P = {[gil 0] e SP(2n,C)} , 
g21 g22 

where gije cnxn . 

The most obvious way of realizing GL(n,C) as a sub
group ofSp(2n,C) is 

[
g 0] ~ 

geGL(n,C}-+ 0 (gT)-1 eGL(n,C)CSp(2n,C). (2.22) 

This is, however, not the correct realization, since we have 

st(n,C) CP and hence (2.20) is not satisfied. If we conjugate 
(2.22) by a matrix 

(2.23) 

preserving the chosen form of K (2.19), but shifting the origin 
to m = go(~), we obtain a different realization of GL(n,C), 

namely f""ooJ 

r-J _If''''ooJ 
GL(n,C) = go GL(n,C)go 

{ [
g g _ (gT)-I] } 

= 0 (gT)-1 ,geGL(n,C). 
(2.24) 

With this !ealization of GL(n,C) we find that (2.20)Eatis
fied, i.e., O(n,C) is obtained as the intersection of tn,(n,q 
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and P. Here, O(n,q is a particular choice of O(n,q as a sub
group of Sp(2n,q. In fact, 

O(n,q = {[~ (gT~-!]: gEO(n,q}. (2.25) 

rv 
The action ofGL(n,q on G~(C2n) is 

-(Xl = [gX+g_(gT)-!]_[gXg
T 

+ggT -1] 
g 1) ((gT)-! l' (2.26) 

in a neighborhood~ the point Xo; we have X = X T (2.21). 
The action ofGL(n,q is transitive and in particular, act

ing on the origin, we have (locally) 

(~=g~) = [gg~ -1], 
(2.27) 

so that X = XT. 
rv The isotropy group of _xo [when one considers the 
GL(n,q action] is evidently O(n,q. 

We want to find the SL(n,q action so that we must im
pose the constraint det g = 1. The isotropy group of Xo is 
SO(n,q [a realization ofSO(n,q as given in (2.25)], and the 
orbit of Xo is (2.27), with the condition g ESL(n,q. As a con
sequence, 

det(X+1)= 1. (2.28) 

The differential equations corresponding to the action 
of SL(n,q are obtained from the concrete realization (2.24) 
and its Lie algebra 

[;] = [~ A _+AATl [:], (2.29) 

where A EsI(n,q, that is tr A = O. 
If we use affine coordinates W = Xy -! ( in a neighbor

hood of the point xo) we get 
A A A 

W=AW+ WA T +A +AT, 

or, calling W = W + 1, 

W=AW+ WA T, (2.30) 

with constraints coming from (2.21) and (2.28): 

W=W T, 

detW=l. 

(2.31) 

(2.32) 

The case SL(2n,q/Sp(2n,q was treated earlier!! in a 
similar way and lead to the same equation with different con
straints, given (after some trivial changes) by 

W=AW+ WA T , 

W T = - W, 

det W= 1. 

(2.33) 

(2.34) 

(2.35) 

The same equation was obtained above [see formula 
(2.9)] by a different method. There we have W = s(x)K [s(xW 
[see (2.7)] so that if G = SL(n,q and Go = SO(n,q, K is a 
symmetric matrix and W = wr (and det W = 1). If 
G = SL(2n,q and Go = Sp(2n,q, K is skew symmetric and 
W= - wr (anddet W= 1). 

III. EXPLICIT FORM OF THE DIFFERENTIAL 
EQUATIONS 

In Sec. II we found the general form (2.9) of the differen
tial equations, independently of the local section or the para-
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metrization of the group. We will now give an explicit form 
of these equations, related to concrete choices for the section 
and the parametrization. 

A. SL(n,C)/SO(n,C) 

In this case the equations are 

W=AW+ WA T, TrA =0, W= W T, det W= 1. 
(3.1) 

The constraint det W = 1 can be eliminated if we solve for 
one of the matrix elements of W, for instance Wnn , 

(3.2) 

where Wij is the determinant (with the appropriate sign) of 
the matrix adjoint to the element wij' In this way (3.1) yields 

n 

wij = L (aikwkj + ajkwid, if 1 <j<J<n - 1, (3.3a) 
k=! 

n n-l 

wnj = I ankwkj + I ajkWnk 
k= I k= I 

1 - ~j~!1 WnjWnj + ajn A 

Wnn 

(3.3b) 

if j = 1, ... , n - 1. 

The nonlinear term in (3.3a) can be further simplified by 
using a specific section. In particular if we use the section 

s: SL(n,q/SO(n,q-+SL(n,q, 

x-+s(x) , 

where sIx) is a lower triangular matrix with determinant 
equal to one, that is 

s(x)ij = xij' if i>j, s(x)ij = 0, if i <j, 

XII ... Xnn = 1 . 
(3.4) 

(It can be easily shown that this is a continuous local section.) 
The system of differential equations is given in a recurrent 
way by 

j<i, 1<j<n - 1, l<i<n, (3.5) 

where 
j n i n 

hij = L xjl L aikxkl + (1 - oij) L Xii L ajkxkl , i>j. 
1=1 k=1 1=1 K=I 

(3.6) 

B. SL(2n,C)/Sp(2n,C) 

As in the previous case we can express one of the func
tions appearing in Was a function of the other W ij' using the 
constraint det W = 1. However, in this case W is a skew
symmetric matrix, and we choose to solve for wn,n _ I (which 

is equal to - Wn _ I,n)' 
The determinant of a skew-symmetric matrix of even di

mension can be written as the square of an expression in the 
matrix elements, 
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[

,,-I ] 
det W = .I W"j W"j 2 = 1 . 

)=1 

(3.7) 

We can obtain equations with rational nonlinearities by tak
ing, for instance, the positive root: 

1 - ~j::12 W"j W"j 
Wnn_1 = W: 

n,,.-1 

(3.8) 

The expressions W"j are determinants of the matrices (as in 

the previous case, with a sign + or -, depending on the 
position ofw"j) obtained by removing from the matrix W two 

rows and two columns, containing the elements W"j and 

wj ,,( = - Wnj)' The equations can then be written in the 

same way (see Eq. 3.3), as in the orthogonal case (now i>j, 
because W is skew symmetric), with the appropriate inter
pretation of Wnj • 

We can always use a particular section to write the equa
tions. For instance, 

s: SL(2n,C)/Sp(2n,C)---.SL(2n,C), 

x-sIx), 

where sIx) is a lower triangular 2X2 block matrix and the 
blocks on the diagonal are multiples of the 2 X 2 identity ma
trix: 

i<j, 

sulx) =xJ, i= 1, ... , n. 

Equations (2.9) are now constructed in the following 
way: 

with 

W = s(x)KS(X)T , 

J=( 0 
-1 ~) . 

We consider Was consistingof2 X 2 matrices ~j' Then 

j 

Wij = I X ik JX;, t>j, (3.9) 
k=1 

and the system is given in a recurrent form by 
. 1 {j - I . T j - I • T 

Xij = L X ik JX jk + L X ik JX jk 
(1 +c5ij)xii k=1 k=1 

+ (1 - c5ij)Xij JX§ - Hij }J, i>j, (3.10) 

where 

(3.11) 

Note that the particular sections taken in these para
graphs correspond to a neighborhood of the point xij = 0, 

i> 1, Xii = 1, i = 1, ... , n - 1. If we want to work with the 

origin, xij = 0, we should make a translation in the Xii co

ordinates, Xii-Xii - 1. 
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IV. THE SUPERPOSITION FORMULAS 

The general solution of the system of equations (2.1) is 
given by6 

x(t) = g(t )x(to) , (4.1) 

whereg(t) is a curve in the group G, the solution of the equa
tion 

dg(t) g-I(t) = ± Zi(t)ti , 
dt i=1 

with some initial condition g(to) = go. 
Our aim is to construct g(t ) from a finite number m of 

particular solutions ofEqs. (2.1), xdt ), k = 1, ... , m, with ini

tial conditions Xk (to). The number m is determined as the 

smallest number of initial conditions for which the joint iso
tropy group is the identity group only. Such a minimal set of 
solutions, satisfying certain independence conditions is 
called a fundamental set of solutions. 

Solving the equations 

xk(t) =g(t)xdto), k = 1, ... , m, (4.2) 

for g(t ), we obtain the expression for g as a function of Xk (t ) 
and substituting into (4.1), the general solution for our sys
tem (2.1). For more details see Refs. 6 and 7. 

We shall obtain the superposition formulas for the two 
cases we have studied above. 

A. SL{n,C)/SO{n,C) 

The equations in this case are given by (2.9) 

WIt) =A (t)W(t) + W(tjA T(t), (4.3a) 

with the constraints 

W(t) = WIt )T, det W(t) = 1, Tr A (t) = O. (4.3b) 

The general solution can hence be written in the form (2.8) 

W(t)=g(t)W(tO)[g(t)]T, (4.4) 

with 

detg(t) = 1, W(to) = [W(to)]T, det W(to) = 1, 

whereg(t )eSL(n,C) is a curve in the group manifold to be de
termined in terms of a fundamental set of particular solu
tions. 

Let us first show that a fundamental set of solutions in 
this case consists of three generically chosen particular solu
tions. 

Theorem 1: A fundamental set of solutions ofEqs. (4.3) 
consists ofthree particular solutions Wi(t) (i = 1,2,3) with 

initial conditions satisfying the following. 
(i) Wi(tO) = Wj(to), det ~(to) = 1. 

(ii) The matrix WI(tO) has all eigenvalues distinct. 
(iii) The matrix Q2(tO) = W2(tO) W 1- l(tO) has all eigenval

ues distinct. 
(iv) The matrices Q2(tO) and Q3(tO) = W3(tO) W 1- l(tO) have 

no common nontrivial invariant eigenspaces. 
Proof: We must show that the joint isotropy group of 

Wi(tO) in SL(n,C) is G1 = 1. Notice, first of all, that two ele
ments ± g(t ) must be identified, since they produce the same 
W(t) in (4.4). For n odd this is imposed by the requirement 
det g(t ) = 1, for neven we impose a consistent choice of sign 
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by continuity. In view ofthe group condition in (4.4) we can 
replace the initial conditions W;(to), with no loss of genera

lity, by 

W;(to) = h W;(to)h T, (4.5) 

where hESL(n,C) is a constant matrix. Put h = RtDR2, 

where R2EO(n,C) diagonalizes WI(tO), D = diag(lI~, 
... , 1IJX":), where A; are the eigenvalues of WI (to), and 
RlEO(n,C) is an arbitrary orthogonal matrix. We then have 

WI (to) =1 
- T T Wa(tO) = RIDR z Wa (to)R 2 DR I 

= R IDR2Wa(tO)[ WI(tO)] -IR 2- ID -IR I-I, 

a = 2, 3 . (4.6) 

Conditions (i) and (ii) allowed us to transform WI (to) into I; 
conditions (iii) and (iv) make it possible to choose R I such 
that 

W2(tO) = A, W3(tO) = 0. , (4.7) 
where A is a diagonal matrix with all eigenvalues distinct, 
and W3(tO) is a matrix corresponding to a connected graph. 
(That is, if we draw a graph with n vertices, labeled 1, ... , n, 
and connect two points, i and k, whenever o.;k = o.k; #0, 
then we obtain a connected graph.) Let us now determine the 
isotropy group of the triplet [ I,A,o.}. The condition 
gIgT = I implies g EO(n,C); gAgT = A implies further that g 
is a diagonal matrix, henceg;k = ± D;k' Finally, the condi

tion go.gT = 0. implies g = ± I. Q. E. D. 
Let us now obtain the superposition formula explicitly, 

i.e., express g(t) in terms of three solutions W;(t), satisfying 

the conditions of Theorem 1. With no loss of generality we 
can choose these solutions to satisfy 

WI(tO) = I, W2(tO) = A, W3(tO) = 0. , (4.8) 

with A and 0. as in (4.7), in particular A = diag (AI"'" An), 
A; #Ak for i#k. 

Let us representg(t ) E SL(n,C) as the product offour ma
trices 

(4.9) 

where R I and R2 are orthogonal, D and E are diagonal, and 
the eigenvalues of E are all equal to ± 1. In view of (4.4) we 
have 

WI(t) = RI(t)D 2(t )RI(t)T, 

so that 

D = diag(~AI(t ), ... , ~An (t)) , 

(4.10) 

(4.11) 

whereA;(t) are the eigenvalues of WI(t), andRI(t) E SO(n,C) 

is a matrix diagonalizing WI (t). The matrixD is made unique 
by choosing an ordering, say ..1. 1>..1.2> ••• >An; RI(t) is made 

unique say by choosing the first nonzero element in each col
umn to be positive for all t. Further, we have 

W2(t)==D -I R rW2(t)RID -I = R2(t)A R2(t)T, (4.12) 

i.e., R 2(t ) E SO(n,C) diagonalizes W2(t ) and is made unique by 
an appropriate choice of signs in each column. Finally we 
have 

W3(t) = RID -I R r W3(t)R ID -IR2 = E o.ET. (4.13) 
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We have E = diag(EI, ... , En),E; = ± 1 and (4. 13) is equi

valent to a set of linear algebraic equations for E;, 

(4.14) 

determining E; uniquely up to an irrevelant overall sign. 

B. SL(2n,C)/Sp(2n,C), m~2 

The equations in this case are again given by (4.3a) but 
the constraints are 

WIt) = - WT(t), det WIt) = 1, TrA (t) = O. 
(4.15) 

The general solution is again given by (4.4) with 

detg(t) = 1, W(to) = - WT(tO)' det W(to) = 1. (4.16) 
Let us first establish the number of solutions needed to deter
mineg(t). 

Theorem 2: A fundamental set of solutions of equations 
(4.3a) with the constraints (4.15) consists of three solutions 
for n>4, four solutions for n = 3, and five solutions for 
n = 2. A sufficient set of conditions on the initial conditions 
for these solutions is the following. 

(i) W;(to) = - Wj(to), det W;(to) = 1 . 

(ii) The matrix WI(tO) has 2n distinct eigenvalues. 
(iii) The matrix W2(tO) W 1- l(tO) is diagonalizable and has 

n distinct eigenvalues, each of multiplicity 2. 
These conditions assure the existence of a matrix go that 
transforms WI (to) and W2(tO) into l8 

K=goWI(to)gJ", AJ =goW2(to)gL 

(4.17) 

J= [~1 ~], A;#Aj' for i#j. 

(iv) In the basis (4.17) further initial conditions are 

o.a =goWa(to)gJ" = [X~k}' det o.a = 1 , (4.18) 

xa. = [0 a;], Xi/ = -X':'k = _ [X~k Y~k], 
II _ a; 0 I I Z~k tfk 

1<.i<k<;;,;n, 

where n + 1 nonsingular entries X~k (i < k) are needed, at 
least three of them linearly independent. For n>4, and 
a = 1, these n + 1 entries can be taken to beXlk (2<.k<.n), 

X ~3' and X ~4 • For n = 3 we need two matrices 0.1 and 0.2; 

the entries can be chosen to beX 12' X13' X ~3' andXi2 . For 
n = 2 we need three matrices 0.1, 0.2, and 0.3; the entries are 
X~2 (a = 1, 2, 3). 

Proof: The condition gKgT = K implies g ESp(2n,C). 
The condition gAJgT = AJ then implies 

(4.19) 

with g;ESp(2,C), i.e., gi Jg{ = J . 
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second solution W2(t) we find Requiring g nag T = na we obtain 

gi Xf,., J =X~k Jgk , (4.20) W2 =D -IS-IW2(Si)- ID -1 =Sz.S3AJ Sf Sf, (4.25) 

and n - 1 of these relations will express g2"'" g .. in terms of 
gl' Two more relations will then fix gl = ± 12 and hence 
g= ±l. Q. E. D. 

In order to reconstruct g(1 ) in (4.4) explicitly we make a 
convenient choice of particular solutions. First let us take 
WI(t) and W2(t) satisfying 

WI(tO) = K, W2(tO) = AJ , (4.21) 

as in (4.17). Let us represent g(t ) eSL(2n,q as 

g(t) = SIDSz.S3 , (4.22) 

where Si KS r = K, i.e., SI eSp(2n,q. We have 

WI(t) = SIDSz.S3 KS f S f DS [ , 

WIK=SI(DK)2S I-I. (4.23) 

Thus, S I is a symplectic matrix that diagonalizes WIK; this is 
always possible since X == WIK satisfies XK = KX T, i.e., X is 
symmetric under the symplectic involution. 18 The ~atrix D 
is 

[

..r=:r; 12 ] 
D= ~ -A2 12 

". ' 

e~ -An 12 

(4.24) 

with ll7 = I A ~ = 1 and det D = 1, where Ai are eigenvalues 
oft WIK) and e = ± 1 is chosen so that det D = 1. Using the 

I 

For n = 2k>6, we put 

o J J 
J 0 0 
J 0 0 

J 0 0-1 
J -q -1 0 
J -1 0 0 
J 0 0 0 

For n = 2k + 1>5, we put 

o J J 
J 0 0 
J 0 0 

W3(tO) = n = 

. . . 

J 0 0 -1 
J -q -1 0 
J -1 0 0 
J 0 0 0 

0 
-1 

. . . 
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. . . 
1 
0 

0 0 
0 J 

-1 0 

J 
0 
0 
1 

1 
0 
0 

where 

S3A J Sf = AJ> i.e., S3e[Sp(2,C))", (4.26) 

and S2 is a matrix that diagona1izes W J(. Any remaining 
ambiguities in S I and S2 can be removed. e.g., by postulating 
that the first nonzero entry in each column be real and posi
tive. So far, we know SI' D, and S2 and have limited S3 to 

S = [gll g22 ] 
3 '..' (4.27) 

g .... 

withgi/eSp(2,q, i.e., gil Jg~ = J. 

Let us first consider the case n>4. We have 

W3(t )=S 2- ID -I S 1- I W
3
(t )(S i)-ID -I(S f)-I 

= S3 W3(tO)S f , (4.28) 

with W3(tO) = W3(tO) since we can choose SI(tO) = D (to) = 1 . 

J 
q 

1 
0 

For n = 4 we put 

J 

1 
W3(tO)=n= [~ ~ 

J -1 0 
J -q -q 

J J 
1 0 
0 0 
0 0 

~. q=[~ !l· 
(4.29) 

(4.30) 
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(we always have n = - nT, det n = 1). 
Equation (4.28) rewritten in terms of 2x2 blocks im

plies 

OV3(t )LkJ = gjinik Jgki/ 

(no summation). Choosing k = 1 we obtain 

gji = - [JV3(t))i\ Jgw i=2, ... ,n, 

(4.32) 

(4.33) 

i.e., express all gji in terms of gil' Two more relations are 
needed to determine gil' One is obtained by taking i = 2, 
k = n - 1 in (4.32) 

J [W3(t)) 211 [W3(t)h,._,J[ W3(t)),._I.IJg11 

+~~=~ ~~ 

the existence of [W3(t )]21 1 is guaranteed, at least locally, for 
small t by the fact that W3(tolu = J is nonsingular. Finally 
take i = 2 and k = a, where a = 4 for n = 4, and a = n - 2 
for n>5. We obtain 

- -I - -J(W3b (W3)2aJ(W3)aIJgII +gIlCTJ = a. (4.35) 

The linear algebraic equations (4.34) and (4.35) determine g II 
(up to an irrelevant sign); (4.33) then determines S3(t), and 
ultimately (4.22) determines g(t) in terms of known quanti
ties, and the superposition formula (4.4) is complete. 

For n = 2 and 3 the procedure up to formula (4.28) is the 
same as above. For n = 3 we use a fourth solution W4(t ), con
struct W4(t) similarly as W3(t), and put 

W4(t) = S 2-ID -I S 1-IW4(t)(S[)-ID -1(Sf}-1 

= S3 W4(tO)S r . (4.36) 

A convenient choice is 

J 

J 

-1 
(4.37) 

We now have two formulas of the type (4.32). They yield for
mula (4.33) expressingg22 andg33 in terms of gil' For gil we 
obtain 

and 

J [W3(t)b11[ W3(t )bJ [W3(t)b IJgII +gllJ = a, 
(4.38) 

(4.39) 

Equations (4.38) and (4.39) determine gil and hence also g22' 
g33' S3' and finally, g(t) completely. 

Finally, for n = 2 we choose 

W3(tO) = n3 = e ~], W4 (tO) = n4 = [~1 ~], 

Ws(to) = [ ~ CT ~]. 
(4.40) 

Using W3(t) we find 

g22 = - [W3(t )bJg11 , (4.41) 
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and W4(t) and Ws(t) yield 

(W4(t))I~(W3(t)bJgII +gllJ = a, 
(4.42) 

(W5(t))I~(W3(t)hIJgII + gllCTJ = a. 

v. LOW DIMENSIONAL EXAMPLES 

The number of equations associated with a transitive 
primitive Lie algebra {L,Lo J is equal to the dimension of the 
homogeneous space GIGo: 

N= dim G -dim Go. 

In the cases considered in this article we have 

N, = dim SL(n,q - dim SO(n,q = n(n + 1)12 - 1, 
(5.1) 

N2 = dim SL(2n,q - dim Sp(2n,q = n(2n - 1) - 1, 
(5.2) 

where N, and N2 are complex dimensions. 
The differential equations corresponding to the two se

ries SL(n,q/SO(n,q and SL(2n,q/Sp(2n,q can be written 
compactly as linear equations (2.9) with a nonlinear con
straint det W = 1 (and W = wr or W = - wr, as the case 
may be). On the other hand, the constraint can be solved to 
yield precisely N unconstrained nonlinear ODE's. This was 
done in general terms in Sec. III. Since low-dimensional 
cases are of particular interest in applications, we shall give 
the nonlinear equations explicitly for N<:,,9. 

A. SL(n,C)/SO(n,C) 

The case n = 2 is of no interest in this context since 
SO(2,q is not a maximal subgroup ofSL(2,q. This is, hence, 
a decomposable case and indeed, we would obtain two un
coupled complex Riccati equations. 

For n = 3 the homogeneous space SL(3,q/SO(3,q has 
complex dimension N = 5. We can obtain the equations 
from (2.9) using Eq. (3.4), i.e., 

[

XII 

six) = X 2I 
X 31 

and putting 

a 

W(x) = S(X)sT(X), 

as in (2.7). The five nonlinear ODE's are 

XII = al1x l1 + a l zX2I + a13x 31 , 

X21 = a21x l1 + a2zX2I + a23x 31 

+ (X22Ix l1 )(alzX22 + a13xd, 

X31 = a31x l1 + a3zX21 + ( - a11 - a22)x31 

+ (x32/xl1)(alzX22 + a,~d + a13/x~lxi2' 

X22 = a2:zX22 + a23x 32 - (X21/x ll )(alzXZZ + a13xd, 

X32 = a3zX22 + ( - a 11 - aZZ )x32 

- (X31/x 11 )(a l:zXZ2 + a,~d 

+ (1/x~lx~2)(a23xl1 - a13x 21 )· 
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We see that the removal of the constraint det W = 1, i.e., 
det s = 1 has introduced rational non polynomial nonlineari
ties and also singularities in the hyperplanes x II = 0 and 
X 22 = O. An equivalent, but different, system of five nonlin
ear equations can be obtained directly from (3.1), using (3.2). 

For n = 4 the homogeneous space has dimension N = 9. 
Taking the section sIx) of SL(4,q/SO(4,q as 

[

XII 

X21 x-+s(x) = 
X 31 

X 41 

X 44 = (XIIX2zX33)-1 

X~2 ~ ~ ] 

X 32 X33 0' 
X 42 X 43 X 44 

(5.6) 

we obtain the following system of nine equations: 

(5.7) 

a l4x31 

XilXi2X~3 

where A = {aij 1 is an element ofthe Lie algebra sl(4,q. 

Again, the nonlinearities are rational, rather than po
lynomial, and singularities occur for X II = 0, X 22 = 0, and 
X33 = O. 
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B. SL(2n,C)/Sp(2n,C) 

Here we restrict ourselves to the case n = 2, i.e., the case 
SL(4,q/Sp(4,q leading to five equations. We use the occa
sion to give an example of the construction described in Sec. 
n B. We take the symplectic metric in the form 

K= [~ ~]. (5.8) 

The subspace LI C sl(4,q of (2.12) in this case is 

R] heC, Rec2X2} . 
-hI' 

Exponentiating B we have 

(5.9) 

[
I 0] sinhA. expB= coshA. +B---, o I A. 

(5.10) 

where 

A. 2 = h 2 + det R. (5.11) 

The ODE's could be written directly in terms of the variable 
hand R = {r;k 1; they take a simpler (polynomial) form in the 
variables 

(5.12) 

The SL(4,q/Sp(4,q equations in these variables are 

2'11 = (A I - A4)z1l - At;Z12 + A:z2'21 - 2A~2 

+ZII( - 2A llz2 -AI5ZI1 +AI~12 +AI~21) 

+Adl +zi -ZI:z2'21)' 

2'12 = -AsZlI + (AI +A4)z12 +A:z2'22 - 2AgZ2 

+ zd - 2A llz2 - AlsZlI + A I4Z12 - A I:z2'22) 

+AI3(1 +zi +zlIzd, 

2'21 =A~II + (-AI -A4)z21 -At;Z22 - 2A~2 

+z2l( - 2A llz2 -AlsZlI +AI~21 -A I:z2'22) 

+AI4(1 +zi +ZIlZ22)' (5.13) 

2'22 =A~12 -AsZ2I + (-AI +A4)z22 - 2AIOZ2 

+zd - 2A llz2 +AI~12 +AI~21 -A I:z2'22) 

+ A15(1 + zi - ZI:z2'21)' 

2'2 = A IOZ II - A~ 12 - Agz21 + A7z22 

+Z2( -AlsZlI +AI~12 +Al~21 -AI:z2'22) 

+ A 11(1 - zi + ZllZ22 - ZI:z2'21)' 

TheA;(t) (i = 1, ... , 15) are arbitrary functions oft, each 
of them corresponding to a specifically chosen one param
eter subalgebra of sl(4,q. Similar equations in different co
ordinates were presented in Ref. 11. 

Equations (5.13) can be transformed into a more concise 
form, making use of the local isomorphisms 
SL(4,q-SO(6,q and Sp(4,q-SO(5,q. Indeed, denoting 

z = (ZIl,z12,Z'z1,z22,z2f, (5.14) 

Del Olmo, Rodrtguez, and Winternitz 22 



                                                                                                                                    

AI-A4 -A6 A2 0 

-As Al +A4 0 A2 
A= A3 0 -AI-A4 -A6 

0 A3 -As -AI +A4 

AlO -A9 -As A7 

we have Aeso(5,q, i.e., AK + KA T = 0 with 

0 0 0 ! 0 

0 0 -! 0 0 
A 

K= 0 -! 0 0 o , (5.16) 

! 0 0 0 0 

0 0 0 0 1 

and E = (Al2.A13.A14.AIS.A11f, we rewrite (15.13) as 

z = Az + (zrKz1s - 2zzrK)E + E. (5.17) 

Ifwe lety = P -IZ, where P rKP = I, we find that (5.16) 
is equivalent to 

y = By + (yTy1s - 2yyTJD + D, (5.18) 

where B is a skew-symmetric 5 X 5 matrix and D is a five
dimensional vector. 

Equation (5.17), or (5.18), is actually a special case of 
"conformal Riccati equations," based on the conformal ac
tion of the group O(n + 2,C) on an n-dimensional complex 
Euclidean plane.6

•
11 The isomorphism SL( 4,C) ISp ( 4,C) 

-SO(6,C)/SO(5,C) does not generalize to other dimen
sions; the SL(2n,C)/Sp(2n,C) equations for n;;;.3 can hence 
not be cast into the form (5.18). 

VI. CONCLUSIONS 

This paper is to be viewed as the first step in the systema
tic study of systems of nonlinear ODE's with superposition 
principles, based on the action of a Lie group G on a homo
geneous space GIGo, where G is a simple Lie group and Go a 
maximal reductive subgroup. In this paper G is taken to be 
SL(n,q, Go was either SO(n,q or Sp(n,q (for n even). In both 
cases the ODE's can either be written as linear matrix equa
tions with a nonlinear constraint, or as unconstrained non
linear equations.The nonlinearities are rational, but in gen
eral not polynomial. Indeed, Riccati type equations, i.e., 
equations with quadratic nonlinearities, are obtained only in 
the case SL(4,q/Sp(4,q. 

We obtained the superposition formulas explicitly. For 
Go = O(n,q the general solution is expressed in terms of 
three particular solutions for any n;;;'3. For Go = Sp(2n,q 
five solutions are needed for n = 2, four solutions for n = 3, 
and only three solutions for n;;;.4. 

Work is in progress on other group-subgroup pairs. The 
emphasis in this article, as well as previous "classification" 
articles, has been on the classical complex Lie algebras. The 
case of real Lie algebras is richer and more complicated and 
will be approached in the near future. 

Finally we mention applications of the constructed sys
tems of nonlinear ODE's with superposition formulas. All of 
these equations are, in some sense, integrable. They have the 
"Painleve property,,,19.20 i.e., their solutions do not have 
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- 2A 7 

- 2As 

- 2A9 , (5.15) 

- 2A1O 
0 

moving singularities other than poles. Such systems of 
ODE's figure prominently in studies of integrability. For 
instance, ODE's with superposition formulas occur as Back
lund transformations for integrable partial differential equa
tions such as those of the umodel.4,2l,22 Furthermore, these 
equations serve as a useful tool in a study of such phenomena 
as nonintegrability and onset of chaos. 23 
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A class of unitary representations of the Lie group Sp(3, JR), its coherent 
states, and Its map to a symplectic realization on sp*(3, JR) 
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Unitary representations from the positive discrete series ofSp(3, R) with lowest weight 
W = {wowowo} are considered. By use of new relations on the enveloping algebra, the generators 
are constructed as dift"erential operators acting on functions of six real variables. Coherent states 
for these representations are constructed with the help of the Iwasawa decomposition and used to 
map the representation space to a symplectic realization on the dual sp*(3, R). 

I. INTRODUCTION 

The group Sp(3, R) and its subgroups GL+(3, R) and 
SL(3, R) have found a great deal of attention in the study of 
collective motion in nuclei. 1-5 

In Refs. 6-8 the present authors started a geometric 
study of this group both for the quantum and classical collec
tive dynamics. In Refs. 6 and 7 we studied in particular the 
representations ofSp(3, R) on the coset U(3)\Sp(3, R). This 
coset was parametrized by a 3 X 3 symmetric complex ma
trix B restricted to the classical symmetric bounded domain 
n~l: I - BB + > O. General results on the harmonic analysis 
in the classical symmetric domains are given in Ref. 9, and 
the quantization in these domains is discussed in Ref. 10. 
Analytic parametrizations and representations for semisim
pIe compact groups are studied in Ref. 11 and references 
given therein. 

The coset U(3)\Sp(3, R) arises in the representations of 
the positive discrete series of the group Sp(3, R) for the low
est weight w = {wowowo}. In Sec. III we prove new relations 
on the enveloping algebra for these representations. In Secs. 
IV and V we use these relations to construct the representa
tions on a Hilbert space of square-integrable functions of six 
real variables. The aim of the present paper is to introduce 
real parameters for the coset U(3)\Sp(3, R). In Sec. II we 
determine these parameters from the Iwasawa decomposi
tion; we use them in Sec. VI in order to define coherent 
states. By use of these coherent states we associate to the 
operators in the representation space functions on an orbit 
on the dual sp*(3, R) with a generalized Poisson bracket. 

The results of the present paper apply to collective mo
tion of nuclei with a closed-shell ground state. The collective 
dynamics in terms of these real parameters is studied in Refs. 
12 and 13 on the classical and quantum level. 

II. THE IWASAWA DECOMPOSITION OF THE 
SYMPLECTIC GROUP Sp(3, R) AND THE COSET 
U(3hSp(3, R) 

The Lie group Sp(3, R) is connected, noncompact, and 
semisimple and therefore possesses a unique I wasawa de
composition (Refs. 14, p. 41, and Ref. 15, p. 104). The first 
factor in this decomposition is the maximal compact sub-

')Permanent address: Institute of Physics, Belgrade, Yugoslavia. 

group U(3), and therefore the Iwasawa decomposition yields 
in particular a parametrization of the cosets U(3)\Sp(3, R). 
By a modification of the Iwasawa decomposition ofSp(3, R), 
we derive a new parametrization of these cosets. 

Definition 2.1: The real Lie algebra sp(3, R): We choose 
the basis B (sp(3, R)) = {Aij, Qij' Pij IQij = Qjl' Pij = Ijl' i,j 
= 1,2,3} with the structure constants given by8 

[Aij, Qrs] = i( - 8jr Q/s - 8js Qlr), 

[Aij,Prs ] =i(8Ir Pjs +8/sPjr ), 

[Aij, Ars] = i(8/sArj - 8rjA 1s ), 

[Qij, Qrs] = 0, 

[Qij, Prs ] = i(8lrAjs + 8/sAjr + 8jrA/s + 8jsA1r ), 

[ P ij' P rs] = O. 

Proposition 2.2: Iwasawa decompositionofL = sp(3, R): 
(a) The maximal compact subalgebra K. of L has the 
basis B (K) = {Cij ICij = !(Qij + Pij) + (i/2)(Aij - tAij)' 
i,j = 1,2,3}. 

(b) The Cartan decomposition L = K + P yields for P 
the basis 

B(P)= {Kij,± IKij,± =l(Qij -Pij)=F(i/4)(Aij +tAij)' 

i,j = 1,2,3}. 

(c) The maximal Abelian subalgebra A ofP has the basis 

B(A) = {Allli= 1,2,3}. 

(d) The Lie algebra N _ with the basis 

B(N_) = {Aij' i>j, i,j = 1,2,3; Qrs' r,s = 1,2,3} 
is nilpotent. 

(e) The algebra A + N _ is solvable. 
(t) The Iwasawa decomposition ofsp(3, R) is 

L=K+A+N_. 

Proof: We follow the prescription given by Hermann 
(Ref. 15, Chap. 7). 

Proposition 2.3: Global Iwasawa decomposition l4
•
15 of 

Sp(3, R): The global Iwasawa decomposition of Sp(3, R) is 
given by 

Sp(3, R) = U(3)AN_, 

where the three subgroups U(3), A, and N _ are generated by 
the Lie algebras K, A, and N_, respectively. 

Definition 2.4: The collective motion group is the semi
direct product group16.17 
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GL+(3, H)N2, 

where GL+(3, H) is the subgroup of GL(3, R) with positive 
determinant and where the invariant subgroup N 2 is generat
ed by 

B (N2) = I Qij' i,j = 1,2,3l· 

Proposition 2.5: The group Sp(3, H) admits the factoriza-
tion 

Sp(3, R) = U(3) C, 

where C is a set of coset representatives from the coset 
SO(3, R)\(GL+(3, R)N 2). 

Proof: The group SL(3, R) has the global Iwasawa de
composition (Ref. 15, p. 42)18 

SL(3, H) = SO(3, R)A IN 1_ , 

where the subgroups are generated by the bases 

B (so(3, H)) = IAij - Ajj Ii <j, i,j = 1,2,3l, 

B(AI) = IA11 -A22,A33 - !(A 11 +AdL 

B(N I
_ = IAijli>j,i,j= 1,2,3l. 

This decomposition may be extended to the nonsemisimple 
group GL+(3, R) since 

GL+(3, R) = A ° SL(3, H), 

with the subgroup A ° generated by 

B(AO) = IA11 +A22 +A33 l· 
Using this factorization for GL+(3, H)N 2 given in Definition 
2.4, one finds 

GL+(3, H)N 2 = SO(3, R) A °A IN 1_ N 2 

= SO(3, H)AN_. 

Hence the group AN _ runs over the different cosets of the 
form SO(3, H)'.(GL+(3, R)N 2). Let C = I c l be an arbitrary 
but fixed set of representatives of this coset. Then there must 
exist a one-to-one mapping between AN _ and C such that 

an=hc, aEA, nEN_, hESO(3,R), CEC. 

Since U(3)h = U(3), the Iwasawa decomposition of Sp(3, R) 
can be modified as 

Sp(3, R) = U(3)AN _ = U(3)C. o 

III. THE REPRESENTATIONS OF WEIGHT {wowowo} OF 
Sp{3, R) 

The unitary irreducible representations of the positive 
discrete series of Sp(3, R) are characterized by a lowest 
weight. We consider representations with degenerate 
weight, and derive relations between operators from the en
veloping algebra. 

Definition 3.1: The complex form ofSp(3, R) is given by 

Sp(3, q n U(3,3) = R Sp(3, R)R -I, 

R _ 1 [1 
..j2 1 

i1 ] 
-i1 . 

We denote by g the complex elements related to the real ones 
g' by g = Rg'R -I. 

Definition 3.2: The 6 X 6 operator-valued matrices T' 
and T (Refs. 6 and 8) are defined as 
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A [A T'= A 

-P 
-2~+] . 
_'C 

Under the adjoint action these matrices transform as 

g'ESp(3,R), g=Rg'R- I, 

T'--(g')-IT'g', T __ g-ITg. 

Definition 3.3: The unitary representations of the posi
tive discrete series ofSp(3, R) are characterized by an extre
mal state II W I W 2w3 l) such that 

A 

Kij,_llwlw2w3l> =0, i,j= 1,2,3, 

Cijllwlw2w3}) =0, kj, i,j= 1,2,3, 

Cu llwlw2w3l> = Ilwlw2w3})w/, 1= 1,2,3, 

and by the Hermitian properties 

(Kij,_)+ = Kij.+ ' (Cij)+ = Cjj . 

By L Wo we denote the special representation space with 
WI = W2 = W3 = W00 NotethatinL Wo the lowest weight state 
is stable under the subgroup U(3) or Sp(3, R). A A 

Proposition 3.4: The operator-valued matrices T' and T 
when restricted to the representation spaceL Wo obey the ma
trix relations 

AA A A 

TT = 4T + wo(Wo - 4)1, 

where I is the 6 X 6 operator-valued matrix with the identity 
operator on diagonal entries and with the zero operator else
where. 

Proof: It was shown 7 that a special form of L Wo is given 
in terms of a complex symmetric 3 X 3 matrix b = I bij l by 

where 

v. =..!.(~+~). 
lJ 2 abij abjj 

The symmetrized derivative is used to simplify the applica
tion of these operators to functions of b. An explicit compu
tation with this special representation yields the result. 0 

IV. THE SUBGROUPS GL+{3, R) AND GL+{3, R)N2 OF 
Sp{3,R) 

In Sec. II we found the correspondence of the cosets 
U(3)\Sp(3, R) and SO(3, R)'.GL+(3, R)N 2. In Sec. III we 
considered the irreducible representationL Wo ofSp(3, R) and 
noted that its lowest weight state is stable under U(3). These 
two observations suggest that the representation L Wo of 
Sp(3, R) could be constructed with the help of the coset 
SO(3, R)'.GL+(3, R)N2. The group Sp(3, R) acts as a trans
formation group on its coset U(3)'.Sp(3, R). This action will 
be considered in Sec. VI, where this coset will be considered 
as a symplectic manifold with a generalized Poisson bracket. 
It will be shown that the six parameters of the coset 
So(3, R)\ GL+(3, R) serve as generalized coordinates of this 
symplectic manifold. In this and the following section we 
construct the representation L Wo on a Hilbert space of 
square-integrable functions of this coset. 
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Definition 4.1: The matrix form of the groups Sp(3, R), 
N2,andGL+(3, R): The 6X6matrixforms of the groups are 
given by 

Sp(3, R) = {g'lg'Ktg' =K, K = [~I ~]} 

N 2 = {gilgi =gi(Z)= [~ ~], tZ=Z}, 

Gl+(3, R) 

= {g~lg~ =g~(k)= [~ tkO_I] -kEGL+(3,R)}. 

The group GL+(3, R) has the invariant measure (Ref. 14, p. 
74) 

3 

X' E GL+(3, R), d,u(x') = (det X,)-3 II dxij. 
i,j= I 

Proposition 4.2: On Y 2(GL+(3, R),,u), the group 
GL+(3, R)N 2 has the unitary representation L: 

(U '(Z)X)(x') = exp( - J.- i ± ZuQu)iX(X'), 
g, 2 /J= I 

(QuX)(x') = Ctl x'/qX'jq )X(X'), 

k= expK. 

This representation was constructed by Rosensteel and 
Rowe 17 in relation with the mass quadrupole collective mod
el, except for the fact that they constructed it only on the 
coset SO(3, R)"GL+(3, R). It arises l7 from the representa
tion of the same group in the many-body Hilbert space. 

v. CONSTRUCTION OF THE REPRESENTATION L w. OF 
Sp(3, R) ON THE COSET GL+(3, R)/SO(3, R) 

As mentioned before, the representation of the sub
groupGL+(3, R)N2 given in Sec. IV was already constructed 
by Rosensteel and Rowe. 17 We.now show that this represen
tation can be extended to the representation L Wo ofSp(3, R). 
The proof will be based essentially on the results of Sec. III, 
Proposition 3.4. 

Written out in detail, Proposition 3.4 yields the two in
dependent matrix conditions 

3 AA 3 AA A 

L AijQjl - L QijAu = - 4iQi/, i,1 = 1,2,3, (5.1) 
j= I j= I 

3 AA 3 AA A 

L AijAjI - L QijPjI = - 4iAi/ - wo(wo - 4)oi/, 
j= I j= I 

i,1 = 1,2,3. (5.2) 

The part of Proposition 3.4 given by Eq. (5.1) will be shown 
to imply a condition on the representations ofGl+(3, R)N 2; 
Equation (5.2) will determine the generators Pj / of Sp(3, R) 
which do not belong to GL+(3, R)N2. 

Proposition 5.1: Extension of the representation L of 
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GL + (3, R)N 2 to L Wo of Sp(3, R) requires that the functions 
xIx') be stable under the right action of SO(3, R), (ThX)(x') 
= X(x'h) = xIx'). A A 

Proof: Using the commutators of A and Q, Eq. (5.1) may 
be rewritten as 

(5.3) 

The action of GL+(3, R) on GL+(3, R) is generated by the 
differential operators 

A R • 3 , a 
A a(3 = - I L Xqa -,- , 

q= I aXq(3 

which are related to the left action generators by 
A 3 A 

Aij = L x$(x'-I)ajA~. 
a,J3=1 

The left-hand side ofEq. (5.3) becomes 

where 
'CPR AR AR 
.z a(3 =Aa(3 -A(3a 

are the three generators of the right action of SO(3, R) on 
GL + (3, R). Equation (5.1) now implies the vanishing of these 
operators when acting in L Woo 0 

Corollary 5.1': Under the conditions of Proposition 5.1 
the vortex spin l vanishes. 19 

Proof: The vortex spin is linearly related to the genera-
tors Y~. 0 

The conditions implied by Proposition 3.4 restrict the 
representations of GL+(3, R)N 2 to those induced by the 
identity representation of SO(3, R). The functions X and the 
measure d,u should therefore be restricted to the coset 
GL+(3, R)/SO(3, R). This coset can be parametrized by the 
matrix Q = (Qi/)' In terms of this matrix we get the follow
ing. 

Proposition 5.2: The generators ofGL+(3, R)N 2 on the 
coset GL+(3, R)/SO(3, R): The generators in terms of Q be
come 

(Ai/X)(Q) = (tl QijXj/ )X(Q), i,1 = 1,2,3, 

(Qi/X)(Q) = Qi/X(Q), i,1 = 1,2,3, 

where X are the differential operators 

(Xj/X)(Q) = - i(~ + ~):r(Q), j,1 = 1,2,3. 
aQj/ aQu 

We tum now to the equation (5.2) related to Proposition 3.4. 
Proposition 5.3: Extension to the representation of 

Sp(3, R): On the coset GL+(3, R)/SO(3, R), the representa
tion ofGL+(3, R)N 2 of Proposition 5.2 can be extended to 
the representation L Wo of Sp(3, R) by including the genera
tors 

A 3 A A A A 

Pi/ = L (Q)kqXikX/q + wo(wo - 4)(Q -I)i/' 
k,q= I 

Proof: Assuming Q to be invertible we can isolate P in 
A A A 

Eq. (5.2), insert the form of A in terms ofQ andXby use of 
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Proposition 5.2, and move the differential operators to the 
right to get the result. 0 

Proposition 5.4: The lowest weight state of L wo: Define 
on GL+(3, R)/SO(3, R) the state 

XWo(Q) = co(det Q t ol2 
exp[ - ~ * Qii]' 

This state is oflowest weight in L Woo 

VI. ORBITS ON THE DUAL sp*(3, R), COHERENT 
STATES, AND THE DEQUANTIZATION MAP OF THE 
REPRESENTATION L Wo 

The symplectic group acts on its Lie algebra sp(3, R) 
through the adjoint representation and on the dual sp*(3, R) 
through the coadjoint representation. As shown by Kos
tant,20 the orbits under the coadjoint action yield symplectic 
manifolds. We shall consider a special class of these orbits 
and construct a set of coherent states in L Wo and a map from 
operators on L Wo to functions on these orbits. 

The semisimple group Sp(3, R) has a nondegenerate 
Killing metric on its Lie algebra sp(3, R). As a consequence, 
the adjoint and coadjoint representations are equivalent. 
Hence we can introduce on sp*(3, R) covariant coordinates, 
i.e., coordinates which transform according to the adjoint 
rather than to the coadjoint representation. Since we are 
dealing with a matrix group, it is convenient to describe these 
parameters of sp*(3, R) by matrices. 

Definition 6.1: For the group Sp(3, R) given in the real 
and complex form of Definition 3.1, introduce as covariant 
parameters of sp*(3, R) the 6 X 6 matrices 

Y' = [_d9 -~d]' 
!Z2 = '!Z2 , '9 = 9, d,!!2, 9 real, 

-2%+] 
-'<{f , 

<{f+ = '<{f, (% +)+ = %_, 

with the adjoint action of Sp(3, R) given by 

g' E Sp(3, R), g = Rg'R -1, 
Y' ---+ (g,)-IY'g', Y ---+g-IYg. 

The matrices Y and Y' were introduced in Refs. 6 and 8. 
With the definitions for 6 X 6 matrices 

q* =: -K'qK, q§ = : Mq+M, M= [~ ~I]' 
the conditions given in Definition 6.1 are equivalent to 

(Y')*= -Y', !?"'=Y', y*= -Y, Y§=Y. 

Note the similarity of the matrices Y', Y to the operator
valued matrices of Definition 3.2. By use of the adjoint ac
tion as given in Definition 6.1, the determination of orbits on 
sp*(3, R) becomes equivalent to the search for standard 
forms of the matrices Y' and Y. It was shown6 that only the 
part with Y: MY>O can arise in a moment map21 from 
many-body phase space to sp*(3, R). For MY> 0 the stan
dard forms of Y' and Y were given as 
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o [<7 Y= o 
0] Cr' _ [0 <7] , .'7 - , 

-CT -CT 0 

CT = (CTA,), CT> O. 

We consider in detail the degenerate case CT = CTo I and de
note the corresponding orbits by (lTD. 

Proposition 6.2: The orbits (lTD on sp*(3, R) character
ized by the standard forms 

Y' = CTO[ ~ I ~], Y = CTO[~ ~ I] 
have the properties (a) Y' and Y have the stability group 
U(3); and (b) the matrices Y', Y belonging to (lTD have the 
property 

Y'Y'= -~I, YY=~I. 

Proof The stability group of Y is easily determined 
from the adjoint action. The second property follows by 
writing, for example, for Y 

Y=g-IYg, Y.Y=g-IYYg=~I. 0 
In Ref. 6, the orbits (lTD were characterized by a complex 
parametrization of the coset U(3)\Sp(3, R). Here we use 
Proposition 2.5, replace the coset U(3)\Sp(3, R) by the coset 
SO(3, R)\GL+(3, R)N 2,andintroduceforthiscosettherep
resentation 

c(s,Z) = g2(S-I)g; (Z), s='s>O, Z='Z 

in the notation of Definition 4.1. The first factor arises by 
factorizing the elements of GI+(3, R) into products of an 
orthogonal and a positive definite symmetric matrix S-I. 

Proposition 6.3: The parameters s and Z provide coordi
nates for the orbit (lTD of sp*(3, R). The matrix Y' on these 
orbits has the blocks 

!Z2 = CTo $1, d = CTo S2Z, 9 = CTo(Z$1Z + S-2), 

The nondegenerate Poisson bracket on (0"0 for functions Y, 
~ is given by 

{y, ~ }(S2, Z) 

=_1 ± [(~+~)Y(~+~)~ 
2CTO I,k= 1 astk aifcl aZ1k aZkl 

-(~+~)Y(~+~)~]. 
aZ1k aZkl astk aS~1 

Here we use derivatives with respect to S2 which for s > 0 is in 
one-to-one correspondence to s. With this Poisson bracket, 
the functions !Z2, d, 9 generate the Poisson action of 
Sp(3, R) and yield a realization of the Lie algebra with struc
ture constants given as in Definition 2.1. 

Proof The block form of Y' follows from the computa
tion of 

Y' = (c(S,Z))-IY,C(S,Z). 

The Poisson bracket can in principle be obtained by restrict
ing a degenerate bracket to the orbit (lTD. In practice it has 
been derived from the dequantization procedure described 
below in Proposition 6.5. 0 

The first-order differential operators given by {!!2, J, 
{d, J, { 9, J generate the action ofSp(3, R) on the orbit (lTD. 

These operators are completely different from the operators 
constructed in Sec. V, Propositions 5.2 and 5.3. 
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We shall now link the representation space L Wo and the 
orbits (Uo• To this purpose we define coherent states accord
ing to the general prescription ofPereiomov22 by acting with 
the unitary operators corresponding to the coset of the sta
bility group U(3) on the lowest weiSht state in L Wo. 

Definition 6.4: The coherent states Is,Z) for the repre
sentation space L Wo of Sp(3, H) are defined as 

Is,Z) = exp [ - i..!... f ZklQlk] 
2 k.t= I 

xexp [ -i..!... f Olk(Akl +Alk)]I{woiuoWol) 
2 k,t= I 

s = exp 0, to = O. 

Each coherent state is normalized and the scalar product is 
given by 

(s',Z 'ls,Z) = (det A) - wo, 

A = H(s')-Is +S'S-I + is'(Z' - Z)s]. 

Given a set of coherent states for a representation space of a 
Lie group, one can map the operators from the enveloping 
algebra to functions on the coset associated with the coher
ent states by taking these functions as expectation values of 
the operators. This map waS studied23 and associated with a 
Poisson bracket such that, for the elements of the Lie alge
bra, the image of the commutator becomes the Poisson 
bracket of the images of these operators. The construction of 
the Poisson bracket was given in Ref. 23 in terms of deriva
tives of the overlap of coherent states with respect to the 
parameters of the coset. This technique can be applied in the 
present case. 

Proposition 6.5: Define a map from operators in the en
veloping algebra of sp(3, H) on the representation space L Wo 

to functions of (s,Z) by the prescription 
A A 

Y --+ ~ = (s,Z I Y Is,Z) = ~(s,Z). 

This map determines functions on (Uo for U o = wo, yields for 
A A 

elements Xa, Xp E sp(3, R) the relations 
A A 

(~a'~ p 1 = - i(s,Z I [Xa,xp] Is,Z), 

and determines the basis ofsp(3, H) in the form given in Pro
position 6.3 for Uo = Woo 

Proof: The expectation values are best obtained by first 
evaluating expectation values of finite transformations and 
using them as generating functions. 0 

Note that in the map from operators to functions one 
selects the discrete set of orbits (Uo such that Uo = Woo We 
call this map a dequantization map since it associates to a 
quantum system with the dynamical group Sp(3, H) a classi-
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cal system on a generalized phase space with a Poisson 
bracket. The time-dependent variational principle shows 
how the classical equations of motion are obtained from the 
quantum equations.23 

The fundamental Poisson brackets in terms ofthe func
tions !!) and Z become 

{!!) y,!!) rs 1 = 0, {Zy,Zrs J = 0, 

{P2 y,Zrs 1 = {)lr{)jS + ();s{)jr, 

in comple~ anal~ to the quantum commutators of the 
operators Q and X constructed in Sec. V, Proposition S.2. 
The coset SO(3, R)\GL+(3, H) parametrized by f!) yields 
the generalized coordinates whereas the matrix Z provides 
the generalized momenta. 
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The Heisenberg-Weyl ring contains the metaplectic group of canonical transforms acting 
unitarily on -? 2(a'). These ring elements are characterized through (i) the integral transform 
kernels, (ii) coset distributions, and (iii) classical functions under any quantization scheme. The 
isomorphism under group composition leads to several new relations involving twisted products 
and quantization of Gaussian classical functions. The Wigner inversion operator is a special 
central group element. It is shown that the only quantization scheme invariant under metaplectic 
transformations is the Weyl scheme. The structure studied here appears to be relevant to the study 
of wave optics with aberration. 

I. INTRODUCTION 

A group ring is the structure composed out of formal 
linear combinations of the group elements. The group multi
plication law induces an operation of multiplication for ring 
elements; the group unit serves as a ring unit but, since no 
inverse under multiplication is assured, the structure is not a 
group, but a ring. The Heisenberg-Weyl algebra wand 
group W were introduced as foundations for quantum me
chanics by Heisenberg! and Weyl, 2 respectively. The former 
lead to the representation of canonically conjugate observa
bles (having the real line for its spectrum) by Schrodinger. 
(The requirement on the spectra of the algebra elements is 
partially circumvented in Weyl's approach.) The Stone-von 
Neumann theorem3 assures us of the existence and unique
ness of the Schrodinger operators representing position and 
momentum. 

The Heisenberg-W eyl group W in N dimensions has 
2N + 1 generators, is nilpotent, is an extension of the group 
of translations of the phase space, and is a non-Abelian 
group with a nontrivial center. Its early association with 
quantum mechanics should not hide the fact that it has been 
most useful recently as a frame to describe wave systems
optical and radar-where a meaningful phase space and geo
metric (i.e., classical) limit exist. 

One of the peculiar features of the Heisenberg-Weyl al
gebra w, is that its isomorphism group is larger than the 
group W of Heisenberg and Weyl. The endomorphism of the 
enveloping algebra w (factorized by (H-1), where H is the 
central generator) of the Heisenberg-Weyl algebra have 
been studied by Dixmier.4 The Heisenberg-Weyl algebra 
can undergo symplectic real linear transformations in the 
position and momentum generators5

; these are the linear ca
nonical transformations in quantum mechanics studied by 

a) In formation (Cuemavaca, Morelos, Mexico). 
b) On sabbatical leave from Instituto de Investigaciones en Matematicas 

Aplicadas y en Sistemas-Universidad Nacional Aut6noma de Mexico, 
Apdo. Postal 20-726, 01000 Mexico DF, Mexico. 

Moshinsky and Quesne,6 who also inquired into the repre
sentation of these on the 2'2(~N) Hilbert space of wave 
functions. On this space, the group has a two-valued repre
sentation that is faithful for the twofold cover of the sym
plectic group [Sp(2N,~) is infinitely connected], i.e., the me
taplectic group Mp(2N,~) (see Ref. 7). The latter is a 

subgroup of the universal covering group Sp(2N,~); 

Sp(2N,~) ~ Sp(2N,~)/ lr. 
For continuous groups the elements of the group ring 

may be characterized by a function over the group, which 
takes the place of generalized linear combination coefficients 
for the group elements. If, besides functions within some 
subspace of 2'2( W) over the group manifold, we allow distri
butions-Dirac 8's and their derivatives up to arbitrarily 
high order, then the group ring rr comes to contain the 
group W itself, its Lie algebra w, and its enveloping algebra 
w. In this context one of us examined8 some time ago the 
question of quantization in physics, using the fact that the 
Heisenberg-Weyl ring rr contained all operators A one 
would wish to quantize, and that these could be described 
either through their group function A (g), gE W, or through 
their integral-kernel representative A *(q,q'), or through a 
classical/unction at/> (q,p) in some quantization scheme ¢>. The 
integral kernels were derivatives of 8's and Hermiticity of the 
operators in 2'2(~) was required. 

Here we wish to use the rich structure of the Heisen
berg-Weyl ring rr to study another object, namely the me
taplectic group Mp(2,~) of linear canonical transforma
tions,9 which lies within the ring. The set of these ring ele
ments is characterized by a set of proper functions over the 
group, by integral transform kernels, and by classical func
tions. These compose under multiplication of ring elements 
as a group. The last two realizations, in particular, are inter
esting even as mathematical relations. For this reason, we 
work in N = 1 dimension. The purpose in physics of these 
will be, in following papers, to treat wave optics with aberra
tion. The Gaussian limit lO of lens optics is served by the 
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results obtained here, which come to describe the results of 
Nazarathy and Shamir, II who used canonical integral trans
forms. The group-theoretical treatment of wave optics with 
aberration l2 will need further structures within the Heisen
berg-Weyl ring, which are under development. 

In Sec. II we formally introduce the characteristics free
ly used above, and Sec. III describes the ring elements in 
terms of the three functions we have mentioned, particularly 
under multiplication. The metaplectic group is treated in 
Sec. IV and shown to contain among its elements the Fourier 
transform, the free-space propagation, the Gaussian lens 
transformation, and the Wigner operator (one of the two 
central elements of the ring). Section Vends showing that 
the only quantization scheme that is invariant under meta
plectic transformations is the Weyl-McCoy rule. 13.14 This 
fact is probably crucial in the process of quantization (or 
waveization) of geometrical optics with aberration. 

II. CAST OF CHARACTERS AND ROLES 

We shall be dealing with the following mathematical 
objects, all named after Heisenberg and Weyl (HW): The 
HW algebra w, the HW universal enveloping algebra W, the 
HW group W, and the HW ring 'lY. Succinct definitions 
follow. 

The HW algebra w: This is a three-dimensional vector 
space generated by Q, P, and lHI, with the commutator Lie 
bracket 

[Q,P]=rH, [Q,lHI] =0, [P,lHI] =0. (2.1) 

It is two-step nilpotent and lHI is the central generator. Due to 
the Stone-von Neumann theorem,3 the generic Hermitian 
representation of w is the usual Schrodinger representation 
on a space of smooth functions: 

(Qf)(q) = q((q), (Pf)(q) = - ht d~~q) , 

(lHIf)(q) = *f(q) , (2.2) 

where7h=~ labels the representation. We write * = A /2rr in 
optics and * = fz in quantum mechanics. 

The HW enveloping algebra w: The generators of ware 
multiplied (noncommutatively) to form monomials 
QmpnlHI\ on which the commutator Lie bracket acts distri
butively through the Leibnitz identity. These monomials 
generate an infinite-dimensional algebra w under the com
mutator. Of course, wCW. 

Within w we also have a symplectic sp (2,~ ) subalgebra, 
generated by 

XI+ I: = p2, X6: = ~(PQ + QP), X~ I: = Q2, (2.3a) 

with the well-known commutation relations 

[X6,X~ I] = ± 2i*X~I' [XI± I ,X~ d = - 4i*X6 . 
(2.3b) 

When writing down the "basic monomials," we may do 
it (1) in standard order, i.e., all Q's to the left of all P's as 
Qmpn; (ii) in antistandard order, i.e., all Q's to the right of all 
P's as pnQm; (iii) in symmetrized order;13 i.e., one-half of (i) 
plus (ii); (iv) in Weyl order, i.e., the sum of all permutations of 
the Q's and P's considered as individual objects, divided by 
their total factorial (the explicit expressions furnished by 
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McCoy 14 will be given in the next section); and (v) any of an 
infinity of orderings, defined by Cohen's 15 ordering function 
,p, which will be given below. 

The HW group w.. The Lie group W generated by w has 
elements w, which may be parametrized8 through 

w(x,y,z): = exp i(xQ + yP + zH) 

= exp(ixQ)exp(iyP)exp(i[z + ¥y]H) 

= exp(iyP)exp(ixQ)exp(i[z - ~y]H), (2.4a) 

and have the composition rule 

w(x I'YI,z 1)w(X2,Y2,z2) 

= W(XI + X2'YI + Y2,ZI + Z2 + HY IX2 - XIY2])' 
(2.4b) 

The group unit is e = w(O,O,O) and the inverse 
w(X,y,z)-I=W(-X,-y,-z); the Haar measure is 
dw = dx dy dz. The space of self-adjoint irreducible repre
sentations of w,w is parametrized by 7h=~, with Plancherel 
measure dw(*) = 1* ItM /4~. 

In the Schrodinger realization, where the algebra gener
ators are (2.2), the unitary group action on functions 
fE.?2 (~) is given by 

[w(x,y,z)!](q) = exp i(qx +* [z + ¥y])f(q +*y) . 
(2.5) 

The inner product in .?2(~) of a functionfl and W!2 yields 
the bilinear functional on W given by 
H ifl,f2;X,y,Z): = ifl,W(X,y,z)!2) 

= J dq fl(q)* [w(X,y,z)!2](q) 

= e'*zjdqfl( q - !*y)*e'QXf2(q + ~*y). 
(2.6) 

This is the cross correlation of fl and f2; * y is the spatial 
correlation parameter between the two functions and x the 
frequency correlation parameter. Whenfl andf2 are allowed 
to run over the elements Ii;, ) of a basis of .?2(~) (denumera
ble or generalized), then D;v(w): = H if/-' ,fv;w) constitute 
the (matrix or integral kernel) representations of W. For the 
generalized eigenfunctions t>(q - qo) of Q, this yields the rep
resentation kernel 

D* ,(w(x,y,z» QQ 
= t>(*y - [q' - q])expi( *z + ¥[q + q']), (2.7) 

which basically one obtains from (2.5). It is unitary and irre
ducible. The generalized eigenfunctions ofP, (2rr)-1/2eiPQI*, 

PE~, may be used to yield [Ref. 8, Eq. (2.24)] D* ,(w). For 
PP 

the harmonic oscillator eigenfunctions of !(P2 + Q2) one ob-
tains [Ref. 8, Eq. (2.43) with the exponent sign correction 
remarked by Dahl, Ref. 16, Eq. (35)] a half-infinite matrix. 

The HW ring 'lY: The elements of Ware taken as the 
formal basis for a linear vector space 'lY, which thus inherits 
the multiplication law, and whose elements are in the (Haar, 
formal) integrals 

A = J/w A (w)w 

= J dx dy dz A (x,y,z)exp i(xQ + yP + zH) , (2.8) 
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with A (w) a distribution over W called8 the group representa
tive of Ae?r. The elements of ?r may be linearly combined 
and multiplied but, since no inverse A -I is assured for every 
A, the structure of ?r is that of a ring. 

III. DESCRIPTION OF THE HW RING ELEMENTS 

When the elements of ?r act on functions in 'y2(&i') 
carrying a definite representation*of W, the third generator 
lHl is simply replaced by the real number *. The integration 
over z in (2.8) may be thus performed defining the coset distri
bution over the space W /Z, Zbeing the one-parameter cen
tral subgroup generated by lHl, as 

A*(x,y): = L dzA (w(x,y,z)ei*z. (3.1) 

We shall henceforth drop * as an index in the quantities 
which bear it. We take *> O. The ring element (2.8) appears 
as 

A = f dx dy A (x,y)exp i(xQ + yP) 
J&1 2 

= f dx dy As (x,y) exp(ixQ)exp(iyP) 
J&1 2 

= f dx dy Aa (x,y)exp(iyP)exp(ixQ) . (3.2a) 
J&1 2 

We have also defined the standard and antistandard coset 
'" '" distributions, As, Aa, over the space W /Z using (2.4a), that is 

As (x,y): = A (x,y)ei*XY/2, Aa (x,y): = A (x,y)e - ihy/z. (3.2b) 

We shall associate the coset distribution A (x,y) with the 
name ofWeyl and write it as Aw(x,y) when convenient. 

The names of "standard," "antistandard," and "Weyl" 
should bring to mind the quantization-scheme and operator
ordering problems. In this paper westart from a ring element 
Ae?r whose action on 'y2(&i') is that of an integral trans
form 

(Af)(q) = f dx dy A (x,y) f dq' D ,(w(x,y,O))f(q') 
J&1 2 J&1 qq 

= :L dq' A (q,q')f(q') , (3.3) 

with an integral kernel A (q,q'), which will be well defined, 
and in terms of which we shall find the coset distributions in 
the following way: 

A (q,q'): = f dx dy A (x,yjD ,(W(X,y,O)) J&1 2 qq 

= _1_ f dx A (x,[q - q']I*)expi(Hq + q']), 
1*1 J&1 

(3.4a) 

A (x,y) = J±1 f dq A (q - ! * y,q + ! * y)e - ixq . (3.4b) 
21T J&1 

We may now speak of (at least) three classical/unctions 
ac(q,p), the Weyl, standard, and antistandard classical func
tions, denoted by the subindices c = W, s, or a, just as their 
corresponding coset distributions. The former are defined as 
the Fourier transforms of the latter: 
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'" Ii Ac(x,y) = -=:2 dq dp ac(q,p)exp( - i[xq + yp]), 
41T &1 2 

(3.5) 

with its well-known inverse (which simply changes the sign 
of the exponent and removes the 1/~ factor). Since we 
choose to regard the integral kernel as that which primarily 
defines the ring element, we write the composition of (3.2b), 
(3,4), and (3.5) to find the three classical functions as 

aw (q,p) = L dr A (q + !r,q - !r)e - ipr/* , (3.6a) 

as (q,p) = e - iqP/*J dq' A (q,q')eiq'p/* , 

aa(q,p) = eiqb/*J dq' A (q',q)e-iq'P/*. 

(3.6b) 

(3.6c) 

We should remind the reader that to quantize in the 
standard (antistandard) scheme means to propose functions 
as (resp. aa) of phase space (q,p) and to replace the monomials 
(in the Taylor expansion, if need be) by the same functions of 
the Schrooinger operators Q and P, all Q's being left (resp. 
right) of all P's. Rather trivially, thus we have a linear map
ping as (resp. aa) between functions a(q,p) of phase space 
and elements Ae?r (which also lie in w), which effect 

as (qmp") = Qmp" , 

aa(qmp") = p"Qm. 

(3.7a) 

(3.7b) 

The Weyl quantization scheme a w is not so trivial, but 
the correspondence 

a w (qmp") = --k- i: (m)Qm - "Jp"Qk 
2 k=O k 

= ~ ± (n)p" _ kQmpk 
2 k=O k 

(3.7c) 

has been given by McCoy,14 as well as the next displayed 
equation. Basically, the Weyl-McCoy scheme permutes all 
operators and divides by the factorial of their number. 

In what appears to be a characterization of all such 
schemes aJ., Cohen 15 introduced an ordering function tP(u), 

",'I' '" 

defining A", (x,y) = Aw (x,y)tP(! * xy) and, through (3.5), a cor-
responding coset distribution to be entered in (3.2) to yield 
the ring element. Written in standard order, this is 

a", (qmp") = m:~~") (~) (:)k! 

x tP d - !i * )kQm - kp" - k , (3.7d) 

tPk:= ± (k)(_2i)/altP(~) I . 
1=0 I au u=O 

(3.7d') 

In terms of Cohen functions, the Weyl quantization scheme 
(3.7d) corresponds to tPw(u) = I, while the standard and an
tistandard schemes come from tPs (u) = eiu and tPa (u) = e - iu. 

The often -used Born-Jordan 17 and symmetrization 13 
schemes correspond to tP( u) = u - 1 sin u and cos u, respec
tively. 

There are restrictions on the Cohen function tP(u), 
though. If one requires the usual quantization for qm to Qm 
andp" to P", as demanded by Dirac l8 and von Neumann, 18,19 

then tP(O) = I (so tPo = I). If one wants qp to have its corre
spondence with !(QP + PQ), as in (2.3), then tP'(O) = 0 (so 
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(JI = 1 also). This last requirement is, of course, violated by 
the s and a schemes, but it is not a great fault; we shall use it 
below. 

The classical monomials q'"pn, under Fourier transfor
mation inverse to (3.6), yields derivatives of Dirac 8's and/or 
powers in q + q' and q - q' for the integral transform ker
nels (so they become differential operators). In this article, 
we are mostly interested in a group of ring elements whose 
kernels are proper functions of q and q'. 

The inner product in g2(8i') allows us to introduce the 
adjoint of a ring element A, as that B = :A t, which satisfies 
(Bf,g) = (f,Ag) for allfand g in a dense subspace of g2(8i'). 
The integral kernel ofB is, from (3.3), B(q,q') = A (q',q)*. The 
coset distributions of these elements relate, from (3.4b), as 
A A 

B (x,y) = A ( - x, - y)*, while, for any Cohen function (J, 
A A 

B?(x,y) = A?( - x, - y)*((J/(J*). From (3.6a), thus, 
b?(q,p) = a? (q,p)* for all classical functions with a real Co
hen function (JH * xy). When the quantization-scheme func
tion is not real, one remains, in general, with a convolution 
integral relation between b?(q,p) and a?(q,p). Between the 
standard and antistandard quantization schemes, for which 
(J., (Ja are not real but ei*xy

/2, e- i*xy
/2, one has 

b. (q,p) = aa (q,p)*. Hence, if a real classical function is to 
quantize to a self-adjoint operator, it is necessary that the 
Cohen function (J be real. 

Quantum mechanics is mostly preoccupied with Hei
senberg-Weyl ring elements which are self-adjoint. In this 
work we shall regard unitary ring elements, i.e., those which 
when multiplied by their adjoint-in either order-yield 
back the identity operator. To detail multiplication we tum 
now to find explicit forms for the three views we have on ring 
elements through their integral kernel, coset distribution, 
and classical function. 

Let C = AB be the ring element that is the product of A 
and B. From (3.3) it follows that the representing integral 
kernels compose simply as 

C (q,q') = L dq" A (q,q")B (q" ,q') . (3.8) 

The corresponding functions over the group follow a convo
lution productS and the coset distributions (3.1) then com
pose, from (3.4), as 

A 1 A A C (x,y) = dx' dy' A (x',!y + y')B (x - x',!y - y') 
!!il 2 

xexp [i! * (xy' - x'y + !Xy)] . (3.9) 

Similarly, from (3.6) and its inversion follows, for the classi
cal function (in the Weyl scheme), 

cw(q,b) 

= 1TII~12L4 dq' dq" dp' dp" aw(q',p')bw(q",p") 

Xexp[2i{q(P' - p") + q'(p" - p) + q"(P - p')}/*] 

co (* 12t( a a a a)m 
= m~o ----;! aq' ap" - aq" ap' 

Xaw(q',p')bw(q",p")lq'=q- =q . (3. lOa) 
p'=p"=P 

For the classical functions which quantize in the standard 
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scheme, one has 

c.(q,p) = 21T~* I L2 dq' dp' a. (q,p')b. (q',p) 

X exp [ - i(q - q')(P - p')/* ] 

co (_ i * t (a a)m , , 
= L , -a'a' a.(q,p)b.(q,pllq'=q, 

m=O m. q 'P p'=p 

(3.10b) 

and for the classical functions in the antistandard scheme, 

Ca (q,p) = 21T~* I L,dq' dp' aa (q,p')ba (q',p) 

Xexp[i(q - q') (p - p')/*] 

co (i*)m (a a)m, , L --,- -;-;--a' aa(q,p)ba(q,p )Iq'=q' 
m=O m. c.iq 'P p'=p 

(3.1Oc) 
These equations between the classical functions define 

so-called twisted products, Twisted products are known 
from the theory of operator symbols20 (pseudodifferential 
operators21

) in mathematical literature and phase-space 
methods in physical literature. 22,23 The second members in 
the last three equations are simplest to apply to polynomials 
(and special rational) functions, the case in which the sum is 
finite. Twisted products have been also applied for calcula
tions in noncommutative algebra by use of computer-algebra 
systems.24

,25 The integral form we offer seems to be most 
appropriate for the cases where the factor functions are ex
ponentials or Gaussians, 

The unit element lE in the ring 'ir is described by an 
integral kernelE (q,q') = 8(q - q') [see (3.3)], a coset distribu-

A 

tion E(x,y) = 8(x)8(y) [see (3,4)], and a classical function 
a?(q,p) = 1 in all quantization schemes (J. This may be used 
to verify the coefficients in (3.10). 

Unitary ring elements are described by unitary integral 
kernels in the usual g2(8i') sense. 

The HW group W is contained in the ring 'ir; the de
scribing distribution over the group [see (2.8)] of a group 
element Go=llJ(xo,yo,zo) is Go(llJ) =8w(llJoll1-l) 
: = 8(x - xo)8(y - yo)8(z -zo); from (3.1), the coset dis
tribution is Go(x,y) = 8(x - x o) t5(y - yo)ei*zo, from 
(3.4a) the integral kernel is Go(q,q') = D ,(llJ(xo,yo,zo»' qq 
The Weyl classical function of Go is 
gow (g,p) = exp i(x~ + YeP + * zo), while any other 
scheme function (J yields a well-defined classical function 
gQ4> (q,p) = gow (q,p)(J(! * xoYo) for this subset of ring ele
ments. Multiplication in W may be followed in the classical 
functions for the s, a, and W cases through the integral or 
twisted product composition expressions (3.10). 

In the next section we shall introduce the set of ring 
elements that constitute a metaplectic group. It should be 
noted that here we have generally afixed ring element (de
fined through its integral kernel or coset distribution) and a 
whole (J range of "classical" functions, the Weyl among 
them. This is different from the usual stance in quantum 
mechanics, where one has a classical function to start with, 
and a (J range of elements of the ring, among which we try to 
choose. 
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IV. CANONICAL TRANSFORMS AS RING ELEMENTS 

We may be sure the HW ring 'IF contains other subsets 
which are groups, besides W itself. The enveloping algebra 
iii, we noted in Sec. II, contains the symplectic algebra 
sp(2,~), explicitly given by (2.3). The embeddings of sp(2,~) 
in iii [and ofsp(2N,~) in the generalization ofiii toN canoni
cal pairs (Qp ... ,QN'PI"",PN) and in its quotient division 
ring] have been systematically studied.26 Moreover, embed
dings (canonical realizations) have been constructed filling 
the gap between minimal and maximal (with respect to the 
number N of canonical pairs) canonical (Schurean, anti-Her
mitian, nonequivalent) realizations.26 

Now, integral transform representations27 of the [uni-

versal cover Sp(2,~) of the] symplectic group Sp(2,~) on 
.2"2(~) are known for some time under the name of canoni
cal transforms.6,9 They are special in that they are generated 
by second-order differential operators. If the generators are 
(2.3a) and the space is .2"2(~), the representation is called 
the oscillator (or metaplectic) representation. It is not irredu
cible, but consists of a direct sum of the lower-bound discrete 
series D jj4 and D jj4 irreducible representations in the nota
tion of Bargmann. 27.28 The integral transform operators CM' 
which act adjointly on w as the linear transformation 

(4.1a) 

(using an obvious vector notation and not changing the cen
tral element), are specified through their integral kernel,6.9 
which depends on the matrix parameters of 

M = e !), ad - be = 1. (4.1b) 

The integral kernels are given by 

eM (q,q') 

b =1=0, 

(4.1c) 

For lower-triangular matrices (b = 0), the integral kernels 
become one of the sequences leading to a Dirac 6, and the 
integral transform becomes a Lie transformation (with mul
tiplier factor). This subgroup is generated by the first-order 
differential operators in (2.3a), ~ generating the scale trans
formations and Xl_I generating the multiplier. 

Through the integral kernel composition (3.8), it follows 
that the ring elements (4.1) have the composition property 

CM1 CM2 = oiMI,M2)CM , M = M IM2, (4.2a) 

where u is a sign given by 

u(M I ,M2 ) 

= exp[itr(sgn b - sgn b l - sgn b2 + sgn _b_)] . 
4 bl b2 

(4.2b) 
J 

This sign is quite fundamental and it may be observable. It 
may be a wave-mechanics counterpart of spin, for here it is 
the symplectic group Sp(2,~), which is doubly covered. To 
uncover its significance, consider the (* = I) harmonic oscil
lator Hamiltonian 1HI = !(P2 + Q2) + !(Xl+ I + X~ 1)' which 
lies in ill and exponentiate it. This yields a line of integral 
transforms 

eiaH = c(c~s a 
sma 

-Sina), 
cos a 

where for a = 11"/2 we have the inverse Fourier transform 
times e + i11"/4. For a = 11" we have the square of this, which is 
ei11"/2 times the inversion operator; a = 311"12 corresponds to 
e3i11"/4 times the Fourier transform, and for a = 211" we have 
the operator - 1, which is the unit (1 = CI ) operator times 
- 1. When CM acts adjointly on w, this yields the transfor

mation (- l)X( - 1)-1 = X, which is an identity transfor-
mation of the algebra, but not for functions in .2"2(~), where 
- 1 acts. It is only when we let a = 411" that we obtain back 

the unit operator in .2"2(~). On .2"2(~) we thus have a 
group of operators that is the double cover of the circle ma
trices 

(c~sa sma 
-sina). 

cos a 

When Bargmann27 described the connectivity proper
ties of the Lorentz group (in three dimensions) SO(2, 1), he 
also introduced a proper parametrization ofthe metaplectic 
group, which for fourth-integer k, D k+ representations are 
faithful. For our purposes here we shall not need the compo
sition formula (4.2a), and it suffices to consider group ele
ments near the identity of the metaplectic group, corre
sponding to elements near the symplectic group identity 
element. In this regard it is helpful to note that CM is a Hil
bert-Schmidt operator when its integral kernel has param
eters a, b, c, d with small imaginary parts such that the inte
gral kernel is a decreasing (rather than increasing) Gaussian, 
i.e., forIm (alb) > O. For real a > Owecanascribetobasmall 
negative imaginary part, so that the limit of real parameters 
a, b, c, d can be approached from b 's in the lower-half com
plex plane. In that case, the argument of positive b is zero and 
that of negative b is - 11". When b vanishes from negative 
values (as when we followed the Fourier circle above), then a 
can be thought to be constrained to the lower-half plane (so 
a < 0 means arg a = - 11"); when b vanishes from positive 
values, a is contrained to the upper-half plane (so a < 0 means 
arga = + 11"). 

In order to investigate the properties of the coset distri
butions and classical functions of the ring elements CM we 
use integral kernels we have defined above. The following 
integrals (regularized for real values of the parameters) are 
useful: 

J(R,S): = L dx exp i(Rx2 + Sx) = ei11"/4..Ji exp (- iS2/4R), 1m R;'O, (4.3a) 
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1 21Ti (.D
2
C+E

2
A -EBD) I (A,B,C,D,E): = dx dy exp i(Ax2 + Bxy + Cy2 + Dx + Ey) = exp - 1 4AC _ B 2 ' 

[if2 ~4AC _ B 2 

ImA;:;.O, Im(C-B2/4A):;;'0, ImC:;;.O, Im(A-B2/4C):;;'0. (4.3b) 

From (3.4b) we find the coset distribution of eM: 
'" CM(x,y) 

21T*~a +d - 2 

X (
'.i - bx

2 + (a - d)xy + Cr) exp 17t' , 
2(a +d- 2) 

b =1=0, 
= (4.4) 

.,fa -----

(. [cay2 1 a + 1 ]) Xexp 1* 2 +---xy , 
2(a - 1) 2 a - 1 

b=O. 

The Weyl, standard, and antistandard classical functions are 
obtained as 

CM,w(q,p) 

2 

~a+d+ 2 

Xexp ( 2i [ _ bp2 + (d _ a)pq + cq2 ]) , 
*(a+d+2) 

(4.5a) 

CM,.(q,p) 

= _1_ exp (_i_[ _ bp2 + 2(1 _ a)pq + Cq2 ]) , 
.,fa 20* 

(4.5b) 

CM,a(q,p) 

= _1_ exp (_1_' [_ bp2 + 2(d _ l)Pq + Cq2 ]). 
-!if 2d* 

(4.5c) 

The Weyl classical function as presented above reproduces 
correctly the results of Combe et al.29 and Burdet and Per
rin30 contained in the metaplectic group. The product com
position is (3.1Oa), (3.1Ob), and (3.1Oc), respectively. 

The Lie algebra corresponding to the integral kernel ac
tion of eM on 'y2(~) yields up-to-second-order differential 
operators, and eM may be written directly as the exponential 
of second-order operators in various alternative forms using 
the product (4.2); similarly, as an integral over exponentials 
of first-order operators we may use (3.2)-(4.4). We thus ob
tain 
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= exp ( - :*p
2
)exp (ilnd. ~ [PQ + QIP)) 

xexp(~*Q2) 

= exp (~"c* Q2)exp ( - iln a.~ [IPQ + QIP)) 

X exp (~:1P2) 

( 
._ar_c;=co=sh~~(a:;;:::+=d~) = exp I. 
*~(a +d)2-4 

X [ bp2 + ~ (a - d )(IPQ + QIP) - CQ2 ]) 

= * r dxdy 
21T~a + d - 2J[if2 

(
. - bx2 + [a - d ]xy + Cy2) 

Xexp I------~--~~--~ 
2(a+d -2) 

X exp i(xQ + yIP) , (4.6) 

as the Weyl, standard, and antistandard quantization of 
(4.5a), (4.5b), and (4.5c), respectively. 

Particularizing, we may obtain several interesting rela
tions. The exponential function of qp in different quantiza
tion schemes, expressed in terms of the anticommutator 
~(IPQ + QP), is 

flw(eiXqpl7t:) 

= 1 exp [2i arctan ~ . .J-!PQ + QP)] , 
~1 - (X/2)2 2 2 

fl. (e lxqbl7t:) 

= 1 exp [i In (1 + x) • "!"(PQ + QIP)] , (4.7) 
~1 +x 2 

fla (eIXqpl7t:) 

= 1 exp [ _ iln (1 - x) • ..!..(IPQ + QIP)] . 
~1-x 2 

The (normalized) Fourier transform operator may be 
written as the ring element 

applied to a smooth function (multiplied by e - 117"/4): 
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= _e__ dq' e - ;qqj(q') -;"./4 i 
fi1i g; 

- i i [i(X +y)2] . = -- dx dy exp e,x:!(q + y) . 
2ff~ g;2 4 

(4.8) 

The correctness of the last result may be verified reducing 
the twofold integral to a single one by means of (4.3a). 

Corresponding to the matrix - lone has one of the 
central elements in the group, 

(-1 0). 
C 0 -1 

This is the Wigner inversion operator studied by Gross
mann/I Huguenin,32 Royer,33 and Dahl. 16 Indeed, follow
ing the one-parameter "harmonic oscillator" subgroup 

(c~s a - sin a), 
sma cos a 

we arrive, for a-+ff-, at the ring element given through (4.7) 
by 

C_ I = i* r dx dy exp(i[xQ + yJP]). 
4ffJg;2 

(4.9) 

This corresponds to a coset distribution constant over the 
manifold, an integral kernel{)(q + q'), and the Weyl quanti
zation of a classical Dirac {) at the origin of phase space. 

In Gaussian geometrical optics,5 the Hamiltonian for
mulation introduces a momentum canonically conjugate to 
the position q of a ray at a plane perpendicular to the optical 
axis z. This momentum is p = n sin e, where n is the refrac
tion index of the medium and e is the angle between the 
optical axis and the light ray. 

For lens systems, II the subsets of Mp(2,9P) that are of 
interest are the parabolic subgroup of upper-triangular ma-
trices 

IF . = C(l 
z· 0 

-zln) (.z 2) 1 = exp - '-;JP , z>O , (4. lOa) 

corresponding to free propagation through a length z in a 
medium with refraction index n, and the group elements 

§p: = C~ ~), p= 2{3(n' - n), (4. lOb) 

which corresponds to the action on optical phase space of a 
refracting surface z = t (q) = {3q2, where light passes from a 
medium n to a medium n'. If standing for a lens, P is the 
Gaussian power. 

From these optical elements we may build as a limit any 
Mp(2,R ) transformation of optical phase space.34 The corre
sponding canonical transform is the Huygens-Fresnel inte
gral cut to the quadratic exponential term. This acts on the 
object phase function to yield the image. 

One further development, which is immediate but not of 
central import to this paper, is the consideration of the semi
direct product between the Heisenberg-Weyl group Wand 
the metaplectic group explored above, WMp(2,9P) 
= W/\Mp(2,9P), with Wa normal ideal. In terms of the 

results of Combe et al., 29 Burdet and Perrin,30 this allows the 
inclusion of the linear potential (free-fall) Hamiltonian. The 
group of translations and inversions of Dahll6 is simply 
(4.9) in semidirect product with W. 
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v. SYMPLECTIC IDEALS AND WEYL QUANTIZATION 

As we stated in the Introduction, our eventual aim is to 
apply the structure of the Heisenberg-Weyl ring 'lr to the 
description of wave optics in aberration. The metaplectic 
group within 'lr describes Gaussian optics, its elements act
ing on the object phase function to yield the image phase 
function. 

The study of geometrical optics of aligned systems with 
third aberration order has been done using the "classical" 
Poisson-bracket Lie algebra of observables quadratic and 
quartic in the phase-space variablesl2,35 modulo higher-or
der terms. Preliminary results suggest that the relevant alge
braic structure is v /\ sp (2,9P), where v is a nilpotent ideal 
under the Gaussian algebra sp(2,9P). This ideal decomposes 
into Nth-order aberration ideals36 under sp (2,9P). Concre
tely (in one dimension), if we denote 

.1m: = pi+ mqi-m, 

m = j,j - 1, ... , - j, 2j = 0,1,2, ... , (5.1) 

then the Poisson bracket ! .,.} between these elements is giv
en by 

!X{..'X~'} = 2(jm' - j'm)xi".+~';;/ . (5.2) 

Now, it is a well-known fact that the quantities (5.1) with 
Lie bracket given by the Poisson bracket form an infinite
dimensional Lie algebra with a grading. If we now consider 
.1m as classical functions to be quantized according to some 
scheme, it is also a well-known fact that the algebra whose 
Lie bracket is the commutator will not be isomorphic to the 
previous one. Classical Poisson brackets and quantum com
mutators do not follow each other, exceptS for (i) up-to-qua
dratic expressions in the basic Heisenberg-Weyl constitu
ents, (ii) classical functions of the formpf(q) + g(q) and their 
corresponding quantum operators, and (iii) classical func
tions qflp) + glp) and their quantized operators. [We have 
not included some finite-dimensional Lie subalgebras of w 
!(l,QJP,Qlcp/,)k, I fixed, k =1=1, k,I<2) and Abelian infinite
dimensional Lie subalgebras (polynomials in one element, 
e.g., QkJP\ k = 0,1,2, ... ), which are also isomorphic to the 
corresponding Lie algebras of their classical functions under 
Poisson bracket.] The algebraic span of any two of the above 
classes is outside the span of each class by itself. 

In Gaussian optics (with prisms) the geometrical and 
wave treatments follow each other since the generating oper
ators all belong to class (i). Optics with aberration lacks this 
isomorphism due to the fact that it uses quantities (5.1) with 
j> 1. 

In following papers we intend to show that a quantiza
tion analog of wave optics out of geometrical optics-in an 
approximation still to be explored-is achieved if we retain 
only the requirement 

f Ii} - 2(' .) i tXm'X m' - m -Jm~ m+m" (5.3a) 

so that the quantized version of this relation, 

[X~,Xim'] = 2i*(m' - jm)Xim + m, , (5.3b) 

holds. We show here that this is possible if and only ifXim is 
the Heisenberg-Weyl ring element corresponding to the 
classical function .1m in the Weyl quantization scheme. What 
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we are asking for is that I Xim }~ = _ j transform under the 
symplectic group in the same way as the classical quantities 
l.rim J~ = _ j do. We shall detail elsewhere the association 
between the multiplet X j and Sp(2,R I-classified aberrations 
of order A = 2j - 1. In the following we prove that (5.3b) 
follows from (5.3a) in (and only in) Weyl quantization. 

We refer to (3.7) for the general-scheme quantization of 
the basic monomial q"'pn, and calculate its commutator with 
Xl_ 1 = Q2, the sp(2,R ) lowering operator in (2.3): 

[Q2,n~(qmpn)] = f(:)(~)k!¢k 

X ( - ~ i * r Qm - k [ Q2,pn - k ] 

= 2i7ln f(m t 1)(n ~ 1)k! 

X{¢k - m: 1 (¢k -¢k-l)} 

X (- 21 i * )kQm + 1 - kpn - 1 - k . 
(5.4) 

If the last member is to be an operator quantized from a 
classical monomial function in the same scheme, the quanti
ty in curly brackets must be again ¢k and independent of m. 
This is possible if and only if ¢k = const. This is the trade
mark of the Weyl scheme. The same derivation applies for 
the commutator between xl = p2 and n~ (qmpn) and thus for 
any sp(2,R ) element and its exponential to the group. The 
Weyl rule is thus invariant under metaplectic transforma
tions. The proof given here is algebraic; a geometric proof 
would be of interest. 
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Auxiliary groups are constructed that make it possible to reduce the multiplicity problem and to 
derive consistent generating relations for the elements of reducing matrices. Three examples are 
worked out to illustrate the general scheme. 

I. INTRODUCTION 

One of the standard problems in representation theory is 
to find a matrix which transforms a given reducible matrix 
representation into a direct sum of its irreducible constitu
ents. In the last years there have been several attempts to 
systematize the calculation of these reducing matrices, espe
cially for those reducible representations that are the tensor 
product of two irreducible ones (Kronecker products, 
Clebsch-Gordan matrices). The various approaches all had 
a common feature: They started from operations (e.g., com
plex conjugation or multiplication with one-dimensional re
presentations) that establish relations between matrix repre
sentations of the same dimension irrespective of whether 
they have been constructed explicitly or not. These relations 
between representations were then used to derive relations 
between the elements of the reducing matrix. Finally these 
relations were exploited to generate the elements of the re
ducing matrix from a certain subset that has to be calculated 
by standard methods. I

--6 To make the generating relations 
simpler and hence more useful the irreducible representa
tions (irreps) are usually chosen or implicitly restricted to be 
of a form especially adapted to the operations one started 
with. 

Several kinds of operations have been considered in 
the literature: multiplication with one-dimensional repre
sentations 7-13 (hereafter denoted as "association"), complex 
conjugation,2,5, 14-20 permutations, 2, 7,14-16,21 automor-
phisms,12,17,20 and transposition of subgroup-irrep la
bels22-24 (when the subgroup in a group-subgroup chain has 
a direct product structure). Each of these operations gives 
some useful results, but usually their separate and indepen
dent application does not completely solve the ambiguities of 
the reducing matrices, while their correlated application 
may considerably help to solve the considered problem. 

For the present paper only three operations, namely as
sociation, automorphisms, and complex conjugation, are of 
relevance. The reasons why we limit our considerations to 
these operations comes from the fact that we want to make 
our approach applicable to the most general situation. The 
general situation is to decompose a reducible representation 
into its irreducible constituents where neither the reducible 
representation nor the occurring irreps are constrained. So 
we neither want to consider now irreps that are adapted to 
group chains nor is the reducible representation assumed to 
have a peculiar structure (e.g., to be a Kronecker product of 
irreps or to be chain adapted). 

In this paper it is shown that the three approaches may 
be combined into one single scheme. The crucial point of the 
present procedure is that the operations belonging to associ
ations, automorphisms, and complex conjugation can be 
closed to form a group. The structure of this auxiliary group, 
hereafter denoted as QREP, turns out to be 

QREP = ASS ex (AUT X CON), (1.1) 

where Q< characterizes a semidirect product and X a direct 
one. The central outcome of this paper is (i) to define opera
tor groups that are associated with Q REP or subgroups there
of that allow us to reduce (resolve) the multiplicity problem 
on group theoretical grounds only and (ii) to define consis
tent generating relations for subsets of the reducing matri
ces. 

Reducing matrices S are defined by 

R(g)S=SI Ell mkDk(g), (1.2) 
k 

where R ( g) is the reducible representation of G that will be 
decomposed into a direct sum of its irreducible constituents. 
The irreps of G are denoted by D k and the multiplicity of D k 

in R is termed by m k • For our purpose it is useful to split the 
square reducing matrix S, where dim S = dim R = nR , into 
rectangular submatrices consisting of n k (= dim D k) co
lumns and n R rows. Accordingly the defining equations (1.2) 
can be rewritten as 

R (g)Sk;m =sk;mDk(g), (1.3) 

where the multiplicity index m ranges from 1 to mk' It is 
worth noting that for given irreps D k, Eqs. (1.3) fix S k;m up to 
arbitrary mk-dimensional unitary transformations. Irre
spective of which solution for the multiplicity problem has 
been chosen, Eqs. (1.3) are necessary and sufficient to fulfill 
Eqs. (1.2) assuming that the S kim are orthonormalized with 
respect to the index m. 

For a given representation R our approach starts with 
finding a subgroup Q of Q REP that leaves R invariant up to 
similarity transformations. Analogously, we can find a sub
group Q k ofQ leavingD k [occurring in (1.2)] invariant up to 
unitary equivalence. Due to our procedure we define opera
tor groups Q k that are associated with Q k and act on the 
multiplicity index m of S k;m only, i.e., 

T(q)Sk;m = I ilm'm(q)sk;m', (1.4) 
m' 

where q denotes elements of Q k. Accordingly the auxiliary 
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operator group Q k defines a mk -dimensional representation 
which, in general, turns out to be a matrix corepresentation 
A owing to the structure of Q REP. If A decomposes into ine
quivalent coirreps only the multiplicity problem is, by defini
tion, resolved. That is the orthogonality of the blocks S k;m 
with respect to m may then be explained in terms of the 
orthogonality relations of the coirreps of Q k. If A contains a 
coirrep at least twice the multiplicity problem is resolved 
only in part and further conventions are necessary to fix the 
multiplicity index. 

Apart from this "partner blocks" sq'k;m are obtained 
from S k;m by means of generating relations of the form 

sq'k;m = U(q,)Sk;m, (1.5) 

where the q' are coset representatives of Q with respect to 
Q I<, q' k is the correspondingly transformed G-irrep label, 
and U(q') a similarity transformation of R. 

Comparing our method with other approaches we may 
infer that our scheme is more systematic as the various oper
ations are closed to form a group. This allows to obtain by 
group theoretical considerations only both a reduction (reso
lution) of the multiplicity problem and a systematic deriva
tion of consistent generating relations for subsets of the re
ducing matrix. However, it must be admitted that one 
drawback of the present approach is that many different 
auxiliary groups have to be constructed. So it might happen 
that for an example at hand a direct method is more efficient 
and quicker (e.g., solution of the multiplicity problem by 
applying Schmidt's procedure or other methods) than our 
scheme. Nevertheless if one is interested in a group theoreti
cal explanation of the multiplicity problem the present 
method is a useful tool to tackle this task. Clearly the more 
generating relations that can be established between the var
ious elements of the reducing matrixS the more this method 
simplifies tabulations of such coefficients. This is the main 
reason for investigating the problem along these lines. 

It is intended to modify the present method for corepre
sentations and to extend it by including further operations 
such as permutations if Kronecker products are considered. 

The rest of the paper is organized as follows: In Sec. II 
we introduce all necessary concepts and develop our scheme. 
In its last subsection the method is summarized suitable to 
its practical application. Section III contains three examples 
that illustrate the general considerations and show the feasi
bility of our approach. 

II. THE GENERAL SCHEME 

A. Preliminaries 

In the following we consider a fixed finite or compact 
continuous group G with elementsg. We denote by REP the 
set of all unitary matrix representations of G. This set de
composes into equivalence classes if the equivalence of two 
representations is defined in the usual way: D)-D2 if, and 
only if, there exists a unitary matrix U such that 
D)(g) = U+D2(g)U forallgE G.Furthermore,D) E REP is 
said to be contained in D E REP, if D-D) eD2 (direct sum) 
for some D2 E REP. Irreducible unitary matrix representa
tions (irreps) are denoted by D I<, k = 1,2, .... Note that the 
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symbol D k represents always one definite irrep, not the 
whole equivalence class. Conventions that can be used to 
interrelate inequiValent standard irreps Will be discussed in 
the next two subsections. 

B. The group (]REP 

Now we introduce an auxiliary group Q consisting of 
bijective mappings of REP. Three kinds of mappings are 
considered: associations, automorphisms, and complex con
jugation. The first oft~ese mappings are in one-tQ-one corre
spondence with the one-dimensional representations of G: 

(OJ D )( g) = D j( g}D ( g), dim D j = 1. (2.1) 

These mappings, called associations, obviously forman Abe
lian group. We denote this group by ASS and use the letter 0 

for its elements. 
The next class of mappings is related to automorphisms 

of G. An automorphism is a bijective mapping 13: G -+ G 
such thatf3(g)~(g2) =f3( g3) ifg) g2 =g3' The inner auto
morphisms g -+ gl gg)-) are not interesting for the applica
tions we have in mind. They are only introduced if they are 
needed to close a set of outer automorphisms into a group. 
Outer automorphisms are mappingsg -+ 13 ( g) that are not of 
theformf3(g) =8) gg)-I. Toeachautomorphismf3k ofGwe 
assign a mapping bk of REP by setting 

(bk D)(g) = D(f3 k I(g)), 13k = automorphism ofG. 

(2.2) 
Like the set of all automorphisms of G the set of the associat
ed mappings of REP forms also a group. This group is de
noted by AUT. 

The last kind of mappings is the complex conjugation. 

Cl {D(g), c/ = Co, 
(c/D)(g)=D(g) = D(g)., c/=c)=c. (2.3) 

Therefore c2 is the identical mapping and the group (co,c J is 
denoted by CON. 

A general element of Q REP is 

q = OJ bkc/ (2.4) 

and its action onto a representation D E REP is defined by 

(qD)( g) = (oi(bk(c/D))) = D i( g}D (13 -I( g))Cl. (2.5) 

It follows from these definitions that Q REP has the structure 

QREP = ASS Q< (AUT X CON), (2.6) 

where ex denotes a semidirect product and X a direct one. 
The group Q REP retains this structure if ASS and/or AUT 
are restricted to subgroups. For a finite group G the sub
groups ASS and AUT are finite and the auxiliary group 
Q REP is therefore a finite group. 

The definition of Q REP entails that each q maps equiv
alence classes onto equivalence classes. This transformation 
is most easily followed by looking at how the characters 
change under a transformation q. The mappings X = trace D 
-+ qX = trace qD clearly show which irreps can be related 
by the operations of the auxiliary group Q REP. We write 

qk = I if qDk_D/. (2.7) 

If G and hence Q REP is finite it is illustrative to construct a 
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table exhibiting how the generating elements of Q REP act 
onto the various irreps k (qk-table). 

Q REP induces an equivalence relation, called Q REP 
equivalence, for equivalence classes of irreps: k -I if I = qk 
from some q e Q REP. The equivalence classes of irreps can 
therefore be partitioned into disjoint sets and standard irreps 
can be defined in the following manner: First we choose one 
member of each Q REP class, say D k, as standard irrep; then 
remaining inequivalent standard irreps D I belonging to the 
same Q REP class as D k are generated from this irrep by ap
plying suitable transformations of Q REP, i.e., D I = qD k for 
some q e Q REP. Since qlD k = q2D k implies q1k = q2k , but 
not vice versa, the generator q has to be fixed for each irrep 
D k by a convention to arrive at a unique and consistent de
finition of standard irreps. 

For the following discussion it is advantageous to intro
duce the subgroup 

Q~P = ASS Q< AUT, (2.8) 

with elements q = aj bk and the corresponding coset decom
position of Q REP: 

QREP = Q~EPU Q~EP, Q~P nQ~EP =0. (2.9) 

c. The groups Q and Qk 

Now we focus onto one single reducible representation 
R e REP and the irreps contained in R: 

R-~ E9 mkDk. (2.10) 

The multiplicities mk can be calculated by means of the 
characters X = trace Rand Xk = trace D k. Both X and the 
mk's depend on the specific representation R, and so do the 
definitions of the various quantities (groups, matrices, etc.) 
introduced later on. We do not indicate this dependence ex
plicitly (e.g., by writing mR;k'XR'''' instead ofmk,x, ... ) since 
this would make the notation too clumsy and the formulas 
less transparent. In fact this dependence has to be kept in 
mind only in case one wants to reduce a few representations 
or a whole class of them. 

The problem we want to solve is to find a unitary matrix 
S that relates the two representations occurring in (2.10). 
This is achieved by a number of steps the first of which con
sists of restricting Q REP to the subgroup Q defined by 

Q= {qeQREPlqR_R J. (2.11) 

If Q REP is finite and the transformations k ~ qk are known 
(e.g., from the table mentioned in Sec. II B), Q is easily de
duced from (2.10). While qR - R by definition, if q e Q, an 
irrep D k contained in R may transform into an inequivalent 
irrep qD k. If the equivalence classes k of the irreps contained 
in R are combined into Q-classes, 

[k] = {qk IqeQ J, (2.12) 

the multiplicity m k is obviously the same for all members of 
such a class: 

m l = mk if Ie [k J. (2.13) 

In the following we also need some subgroups of Q, namely 
one for each Q-class [k]. Let k be the representative of [k] 
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then Q k is defined by 

Qk= {qeQ Iqk = k J (2.14) 

and 

[k] = {q~k)k,q~k)k, ... J, (2.15) 

where the q\k )'s are suitable coset representatives of Q k in Q: 

Q=q~k)Qkuq~k)QkU.... (2.16) 

For the moment we assume that we are allowed to choose the 
set of standard irreps at our convenience. We exploit this 
freedom to set 

D I = q\k)D k, q':) = qo = identical transformation. 

(2.17) 
If a different set of standard irreps is wanted the scheme 
developed in the following has to be supplemented according 
to item (9) of Sec. II O. 

The subsets Q; C Q and Q ~ C Q k to which we refer in 
the sequel are defined analogous to the subsets Q ~ 
C Q REP, Eqs. (2.8) and (2.9): 

Q;=QnQ~EP, Q~=QknQ~EP, i=O,1. (2.18) 

D. The groups Ii and lJk 
If q e Q there exists a unitary matrix U(q) such that 

(qR )( g) = U + (q)R (g)U(q). (2.19) 

Repeated application of transformations q; onto R show that 
the matrix 

U(qd*U(q2)*··· *U(qn) 

= U(ql)(qI U)(q2)'" (qlq2'" qn-I U)(qn) (2.20) 

transforms R into qlq2 ..• qnR ifthe matrices U(q;) satisfy 
(2.19) for q = q;. In Eqs. (2.20) we used the notation 

{
M, for q e Q ~EP, 

qM= 
M*, forqeQ~EP, 

(2.21) 

for the matrices M = U (q). In the literature qM is usually 
written as Mq but we prefer (2.21) since later on we have to 
label the q's with double indices [see, e.g., (2.41)]. We shall 
use notation (2.21) in the following also for other matrices, 
except for matrix representations of G where the meaning of 
qD has already been defined in Eqs. (2.1 )-(2.5). The product 
(2.20) is well known in the theory of corepresentations25

-
27 

whence we refer to this composition law as comultiplication. 
The inverse of U(q) with respect to comultiplication is 

UII(q) = (qU)+(q) = (qU+)(q) (2.22) 

and this matrix can be used to transform R into q-1R: 

U(q-I) = UII(q). 

Now let 

(2.23) 

{qx,qy,'" J = set of generators ofQ, (2.24) 

U (q x), U (qy ), ... be a set of matrices satisfying (2.19) for the 
transformations qx,qy'"'' and the matrices U(qx-

I
), 

U(qy- I), ... be related to the matrices U(qx),U(qy), ... through 
Eqs. (2.22) and (2.23). It is then possible to define a matrix 
cogroup by forming all coproducts of the matrices U (q), 
q e {qx,qy, ... ,qx-I,qy-I, ... j. The matrix cogroup constructed 
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this way will be denoted by Q. Each element of Q is uniquely 
fixed by a unitary matrix U and a label indicating whether 
U * UI is equal to UUI or to UU T (U "unitary" or "antiuni
tary"). Both the matrix and this label may be characterized 
by a word q = qlq2 .•. qn that is composed of letters ql 
E {q"" ... ,q; I, ... j, but ditferent words need not necessarily 
denote dilferent elements of Q. 

It should be noted that there is a great freedom in the 
definition of Q, especially if some of the multiplicities m k in 
(2.10) are greater than 1. The great variety of possible defini
tions ofQ results from the fact that the matrix U (q) in (2.19) is 
not uniquely determined by R and q. In fact if U (q) is a matrix 
satisfying (2.19) and ifCI ,C2 are unitary elements of the com
muting algebras of R and of qR, respectively, i.e., 
CIR = RCI andC2(qR) = (qR )C2forallg E G, C / = C I-I, 
then the matrix CIU(q)C t satisfies also (2.19) and is there
fore equally well-suited to describe the action of q onto R. 
While the factors C1 may be added to U (q) without changing 
the relation between R and qR, they enter essentially into the 
result of a comultiplication if U (q) is one of the factors of the 
product. The structure of the group Q therefore depends 
strongly on the selection of the generating matrices U (q" ), 
U (qy), etc. Though ajudicious choice of generating matrices 
can make the group Q isomorphic to Q in some cases, 
U (ql)* U (q2) will, in general, ditfer from U (q3) by factors C of 
the kind mentioned above even if qlq2 = q3' There is some 
general relation between Q and Q but its discussion is post
poned to Sec. II F since the knowledge of this relation does 
not help much in calculating the reducing matrix S. To this 
end it suffices to see how the group Q can be obtained in a 
constructive manner and the examples provided in Sec. III 
should convince the reader that the matrix cogroups ob
tained in this way need not be monstrous groups. 

All these remarks apply also for the matrix cogroups Q k 

that are generated from the matrices Uk (q) in quite the same 
way as Q is generated from the matrices U (q). Here 
q E {q" ... ,q,-I, ... j, where 

{q"q., ... j = set of generators of Q \ (2.25) 

the matrices Uk (q) satisfy 

(qDk)(g) = Uk+(q)Dk(g)Uk(q), (2.26) 

and 

(2.27) 

for the generating elements q = q"q., ... . In the following 
one such group is needed for each Q-class [k]. 

The partition of these matrix cogroups into unitary and 
antiunitary elements, 

Q= QOUQI, QonQI =0, 
(2.28) 

-k -k -k -k -k 
Q = Q 0 u Q I' Q 0 n Q I = 0, 

follows from their construction and the corresponding parti
tion of the groups Q and Q k: 

U(q) E QI' iff q E Q" 

Uk(q) E Q~, itf q E Q~. 
(2.29) 

In (2.29) the U's are matrices of the form (2.20) and are la-
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beled by a word qlq2 ... qn while the q's are those transfor
mations that are obtained by reducing this word by means of 
the multiplication law of Q. 

E. The groups ii" and the transformation properties of 
the reducing matrix S 

Equation (2.10) means that there exists a unitary matrix 
Ssuch that 

(2.30) 

If we split the square matrix S into rectangular submatrices 
("blocks") S k with nR rows and nk columns, 

nR=dimR, nk=dimD\ (2.31) 

we may rewrite (2.30) as a set of equations of the form 

R(g)Sk=SkDk(g). (2.32) 

From the existence of S we infer that there exist exactly m k 

non vanishing linearly independent blocks S k for each irre
ducible representation D k. If the scalar product of two rec
tangular matrices M, of equal size is defined by 

(MI .M2 ) = trace M t M 2, (2.33) 

they are even orthogonal because S is unitary. Hence if we 
succeed in finding mk blocks skm satisfying (2.32) and 

(skm,skm') = nk~mm" (2.34) 

we obtain a solution for all columns of the unknown matrix S 
that belong to one of the mk irreps D k contained in R. A 
straightforward solution of this problem is offered by the so
called projection method,3,7,28-30 which consists of two steps: 
In the first one Eq. (2.32) is transcribed in such a waythatS ~, 
the first column of S k, is seen to be an eigenvector of a projec
tion matrix of dimension n R' By applying this projection 
matrix onto an arbitrary column vector one obtains mk lin
early independent column vectors that have to be orthonor
malized by a Schmidt process. This yields the first column of 
the mk blocks skm. In the second step the remaining co
lumns are determined from the first ones by multiplying 
them with square matrices ("shift" matrices) that are also 
special linear combinations of the matrices R ( g), g E G. 

According to the philosophy outlined in the Introduc
tion we approach the same goal in a way that relies upon the 
transformation properties of the involved representations. 
To transfer this information from the matrix representations 
to the rectangular blocks S k we assume first that q E Q k and 
again consider the three kinds of transformations separately. 
If a = aj E Q k we multiply both sides of (2.32) with D j( g) 
and employ (2.19) and (2.26). Multiplying the resulting equa
tion with U(a) from the left and Uk+(a) from the right we 
obtain 

R(g)[U(a)SkUk+(a)] = [U(a)SkUk+(a)]Dk(g). 
(2.35) 

If be Q k we substitute P-I( g) for g on both sides of (2.32) 
and use again (2.19) and (2.26). The result analogous to (2.35) 
reads 

R (g)[ U(b )SkUk+(b)] = [U(b )SkUk+(b )]Dk(g). 
(2.36) 
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Similarly if CEQ k we consider the complex conjugate equa
tion of (2.32) and obtain 

R(g)[U(C)Sk*Uk+(C)] = [U(C)Sk*Uk+(C)]Dk(g). 
(2.37) 

Using the convention (2.21) for M = S\ Eqs. (2.35)-(2.37) 
can be combined into one single equation 

R (g)[T(q)Sk] = [T(q)Sk ]Dk(g), forq EQk, (2.38) 

where 

(2.39) 

and the right-hand side of this equation defines the transfor
mation of S k for a general element q E Q k. Comparison of 
Eqs. (2.39) with (2.32) shows that the blocks T(q)S \ q E Q \ 
are equally well suited as constituents of the reducing matrix 
S as the block Sk. We already concluded from the existence 
of S that there exist mk linearly independent blocks S km that 
all satisfy Eq. (2.32). Since this relation is linear in S k any 
complex linear combination of the S km,s is also a solution of 
(2.32). Endowed with the scalar product (2.33) the set ofsolu
tions of (2.32) therefore forms a unitary space of dimension 
mk. In this space the transformation S k _ T (q)S k defines a 
norm-preserving operator that is linear for q E Q ~ and anti
linear for q E Q ~ . 

It should be noted that each operator T (q) is defined by a 
pair of matrices, U (q ) E Q and Uk (q) E Q \ where in both 
cases q has to be identified with a word composed of letters 
qx,qy"" and q"qs"'" respectively. To define T(q) explicitly 
one can start with expressing the generators q"qs"" ofQ k as 
words composed of the generators qx ,qy , ... of Q and compute 
the corresponding matrices U(q,),U(qs)"" E Q. Thesematri
ces, combined with the generators Uk(q,), Uk(qs)' ... ofQk, 
then define the operators T(q,),T(qs ), ... for all generators q" 
q s , ••• of Q k. This set of operators can be closed into a group, if 
the product T(q2)T(ql) is defined as that transformation of 
the blocks S k that is obtained by applying first T (q I) and then 
T(q2)' Because of(2.39) and (2.20) the product T(q2)T(ql) can 
be equally well-defined by means of the coproducts of the 
matrices U(qi) and Uk(q;), respectively. We denote the re
sulting group of unit ary/anti unitary operators by Q k. There 
exists no simple general relation between this group and the 
matrix cogroups Q and Q k as the form of the generating 
matrices U(q,),U(qs)"" depends on those products of qx' 
qy, ... that one chooses to represent the transformations q" 
qs"" . Moreover since U(q) is always combined with Uk(q)in 
the definition of T(q) it is, in general, impossible to recognize 
the multiplication law of Q k or the corresponding subgroups 
of Q from that of Q k. However, similar to the matrix co
groups Q and Q k, it is sufficient to assume that starting from 
well-defined generating elements T(q,),T(qs)"" the group 
Q k may always be obtained in a constructive way as shown 
in the examples of Sec. III. Similar to Q k and Q k the group 
Q k contains a subgroup Q ~ of index 2; it consists of all oper
ators T(q) that are unitary (i.e., norm preserving and linear): 

T (q) E Q ~ iff q E Q ~, i = 0,1. (2.40) 

The space spanned by the blocks Skis invariant under 
the operations of Q k but in general not irreducible. A decom-
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position of this space into irreducible subspaces reduces the 
multiplicity problem since blocks transforming according to 
inequivalent irreducible corepresentations of Q k are orthog
onal. The orthogonality relations of irreducible corepresen
tations31

-
33 also tell us that blocks transforming according to 

different rows of the same representation have to be orthogo
nal. Therefore if the corepresentation of Q k carried by the 
m k -dimensional vector space contains each irreducible core
presentation at most once the multiplicity problem is re
solved by finding blocks S k that transform according to 
these representations. This situation is, however, not the rule 
because, in general, one or more coirreps will occur more 
than once, especially if the multiplicity problem is only re
duced, but not completely solved, and pairwise orthogonal 
blocks transforming according to the same row of the coir
rep have to be found by Schmidt's procedure (see, e.g., exam
ple B of Sec. III). 

Up to now we considered only one irrepD k, which tacit
ly has been assumed to be the representative of the Q-class 
[k ]. If the corresponding blocks Skare known the remaining 
blocks S I belonging to this class are easily generated from 
the blocks S k. To this end we only have to apply the transfor
mations q)kl to Eq. (2.32) in exactly the same way as the 
transformations q E Q k were applied previously, and to con
sider convention (2.17) that relates D I to D k. This yields 

R (gl[ U(q)kl)(q)kISk)] = [U(q)kl)(q)kISk)]DI(g), (2.41) 

which allows us to set 

(2.42) 

This is a convention the explicit form of which depends on 
the coproduct of the matrices U(qx),U(qy), ... that is chosen 
to represent U (qn. 

The pattern along which the reducing matrix S can be 
constructed should now be obvious. However, before it is 
summarized as a list of practical rules, it seems appropriate 
to reflect the mathematical background of the procedure to 
realize the extent offreedom one is left in obeying these rules. 

F.lnterrelations of the various groups 

This subsection contains some material for the math
ematically interested reader and may be dropped by those 
who only want to see how the method proposed here works 
in practice. 

In discussing the relations between the various groups 
introduced in the preceding subsections we start with the 
groups Q and Q. Since Q is a subgroup of Q REP each q E Q is 
defined on all D E REP. On the other hand, if U (q) E Q, then 
thetransformationR _ U + (q)R U(q) transforms only R into 
qR. Repeated application of transformations of this kind al
low us to extend the domain of Q to the set 

orbitofR= (DEQREPID=qR, qEQJ. (2.43) 

It is clear that we can compare Q with Q only if the transfor
mations of the former group are restricted to the orbit of R. 
Technically this can be done in the following way: Let 
N C Q be defined by 

N = (q' E Q Iq'qR = qR, for allq E Q J. (2.44) 
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This subgroup is a normal subgroup of Q and the factor 
group Q IN may be identified with a set of transformations 
q' e Q which act onto the orbit in a nontrivial way, i.e., inter
change at least two members of it. There exists a similar 
normal subgroup of Q, namely, 

N = {U(q') e Q 1U+(q')(qR )U(q') = (qR), for all q e Q j, 

(2.45) 
and 

QINet.QIN. (2.46) 

The isomorphism can be proved by considering q and q' in 
(2.44) and (2.45) as words composed ofletters q"Ay ,'" • It is 
evident from (2.46) that Q and Q will have a different struc
ture if N is not isomorphic to N. But there exists no general 
relation between these two groups for several reasons: First, 
the multiplication law of N not only depends on R or its orbit 
but also on all other representations D e REP because 
N C Q C Q REP. Second, as aiready pointed out in Sec. II D, 
there is some arbitrariness in the definition of Q and hence N, 
since the generating matrices U (qx)' U (qy ), ... are not unique
ly determined by the generators qx ,qy , ... of Q. The structure 
of N, the sole unknown part of Q assuming that Q and N are 
already known, is only restricted by the fact that the matri
ces U (q') e N have to commute with all elements of the orbit 
of R. To what extent this property fixes the multiplication 
law ofN depends on the irreducible constituents of R. If R is 
irreducible the matrices U (q') e N have to be scalar matrices. 
The group No = N n Qo is then Abelian and is either equal to 
N or a normal subgroup of N of index 2. This holds also for a 
representation R that is a direct sum of inequivalent irreps 
(or equivalent to such a direct sum) because the commuting 
algebras of two equivalent representations are isomorphic 
and the index of No inNis always either 1 or 2. HoweverifR 
contains an irrep more than once its commuting algebra is no 
longer commutative. Consequently No need not be Abelian 
so that, after having constructed Q from its generating ele
ments, one may be faced with a normal subgroup No of very 
complicated structure. Of course one would like to exploit 
the freedom one has in choosing the generating matrices 
U (q x), U (qy ), ... to make No as small and as simple as possible. 
But the only constructive method we know that restricts Q to 
a small subset of the commuting algebra and guarantees that 
No is Abelian also in the general case presupposes the knowl
edge of a special reducing matrix S. Let us assume that R has 
already been reduced to a blockform D where the irreps D I 

are combined according to the Q-classes [k]. Since the trans
formations q e Q do not intertwine the submatrices D [k I 

= 1: E& D I, 1 e [k], the generating matrices U D (qx), 
U D (qy ), ... may be chosen in a corresponding blockform (one 
block for each Q-class, repetitions are allowed). With this 
choice N g will be an Abelian group as follows from the pre
vious considerations. Now since R (g) = SD ( g)S + and 

q(SDS +)( g) = (qS )(qD )( g)(qS) +, (2.47) 

we may define Q R in such a way that it is isomorphic to Q D: 

UR(q) =SUD(q)S+, forqe Qo, 
(2.48) 
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This isomorphism maps N g onto the matrix group N ~, 
which is therefore also Abelian. This shows that it is always 
possible to find generating matrices U (q x), U (qy ), ... such that 
N is Abelian. But to find them before knowing the matrix S, 
the object one is primarily interested in, is more an art than a 
science. 

Isomorphisms similar to (2.46) exist for all groups Q k 

and Q k if the normal subgroups N k and N k are defined anal
ogously to Eqs. (2.44) and (2.45). The structure of the groups 
Q k is in general simpler than that of Qbecause all the normal 
subgroups N ~ have to be Abelian. 

The relation of the operator group Q k to the matrix 
cogroups Q and Q k depends even more on the details of its 
definition, i.e., on the choice of its generating elements. Each 
generating operator T (q r) is characterized by a pair of matri
ces, U(qr) e Q, Uk(qr) e Q k, and a label indicating whether 
T(qr) is unitary (qreQ~) or antiunitary (qreQ~). Since 
U(qr) and Uk(qr) appear in (2.39) on different sides of the 
blocksS k the product of two operators T (q) is determined by 
the coproduct of the corresponding matrices U (q) ® Uk (q), 
where M ® N denotes the tensor product of the matrices M 
andN: 

(M ® N)il,jJ = Mij NIJ. (2.49) 

Since the multiplication ofthe matrices U (q) does not affect 
that of the matrices Uk(q) and vice versa, the matrices U(qr) 

® Uk(qr) obviously generate a subgroup ofQxQ k. The 
elements in NxN k form a normal subgroup and the corre
sponding factor group is isomorphic to a subgroup of Q I 
NX Q kiN k. In general this is all that can be said about the 
matrix cogroups in advance. 

It should be noted that Q k cannot be simply identified 
with this matrix cogroup because an operator T (q) related by 
(2.29) to a matrix U (q) ® Uk (q) defines a transformation in 
the space of all blocks of the same size as the blocks S k. In 
this linear space of dimension n R nk the blocks satisfying Eq. 
(2.32) form only a subspace of dimension m k so that in gen
eral Q k will only be a homomorphic image of the matrix 
cogroup considered above. 

G. Summary of the scheme 

We conclude the general discussion by summarizing our 
approach in a set of rules. This should enable the reader to 
construct a reducing matrix in which he is interested, in the 
form proposed here. 

(1) Determine the multiplication law of G and the classes 
of conjugate elements. Use this information to find outer 
automorphisms of G and close them into a group (definition 
of the subgroup AUT). 

(2) Determine the simple characters of G, i.e., the char
acter table if G is finite. This provides you with all one-di
mensional representations of G (definition of ASS). Use ASS, 
AUT, and the complex conjugation (definition of CON) to 
define QREP, Eqs. (2.1H2.5). Determine the action of the 
transformations q e Q REP onto the equivalence classes of the 
G-irreps. If G is finite it is convenient to construct a table 
showing the labels qk, Eq. (2.7), for all irreps k and a set 
{a 1,a2, ... ;b1,b2, ... ;c j of generating elements of Q REP. 
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(3) Consider the reducible representation R; use its char
acter and the simple characters found previously to calculate 
the multiplicities mk #0. Use this information and the trans
formation properties of the irreps D k [the qk-table of item 
(2)] to find Q, the subgroup of Q REP that leaves X = trace R 
invariant [cf. Eq. (2.11)]. Then find a set of generators qx' 
qy , ... of Q, preferable a small one, and construct for each of 
the generators qz a unitary matrix U(qz) that satisfies 
U(qz)(qzR )(g) = R (g)U(qz) [cf. Eq. (2.19)]. 

(4) Combine the irreps contained in R into Q-classes [k] 
according to (2.12). Choose a representative k for each class 
and determine the corresponding group Q \ Eq. (2.19), using 
the facts of item (2). For each group Q k find a set of coset 
representatives with respect to Q, Eq. (2.16). 

(5) Consider the first Q-class, say [k], and fix the stan
dard irrep D k of its representative k. Then determine a rec
tangular matrix Sk that satisfies (2.32). This matrix must 
contain mk free complex parameters (e.g., matrix elements). 
If m k = 1 continue with item (7). 

(6) If mk > 1 find generators q"qs"" of Q k (again small 
sets are preferred). For each qw construct a unitary matrix 
Uk(qw) that satisfies Uk (qw)(qw D k)( g) = D k( g)Uk(qw) [cf. 
Eq. (2.26)]. Then express each generator qw as a product of 
the generators qx ,qy,'" ofQ and calculate the matrices U(qw) 
by forming the corresponding coproducts of the matrices 
U (qx)' U (qy ), ... [Eq. (2.20)]. Next use the matrices U (qw) and 
Uk(qw) to define the operators T(qw) according to Eq. (2.39). 
Close these operators into the group Q k and decompose the 
space spanned by the blocks S k into irreducible subspaces. 
In each of these subspaces construct a basis which is ortho
normalized due to (2.34). This provides you with mk blocks 
Skmwhich (i) intertwineR (g) withD k( g), (ii) are orthogonal 
and properly normalized, and (iii) transform according to 
coirreps of the operator group Q k. 

(7) Express the coset representatives q~k I as products of 
the generators qx,qy"" of Q and calculate the matrices 
U (q~k I) by forming the corresponding coproducts. Use these 
matrices to generate the blocks S 1m from the blocks S km, Eq. 
(2.42). 

(8) Repeat steps (5)-(7) until all Q-classes [k] are exhaust
ed and combine the blocks into the matrix S. 

(9) If you prefer standard irreps D I #D I = q~klD k you 
have at first to find unitary matrices Wi that relate these 
equivalent irreps: 

w'l5 l (g) =DI(g)WI. (2.50) 

The blocks S 1m have then to be multiplied with Wi, 

(2.51) 

to obtain a matrix S which decomposes R into a direct sum of 
irreps D I. 

III. EXAMPLES 

A. The regular representation of the double point group 
1"" 

If R is the regular representation of a compact group G, 
Q coincides with QREP because X( g) = 0 for g#e (unit ele
ment). Moreover, if G is finite and a complete set of standard 
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irreps D k is bown one may setl,34 

Sg,kmi = (skm)g,i = (nk/lG W12Dtm(g)*, (3.1) 

for the elements of the reducing matrix S or its block con
stituents S km, respectively. That this matrix decomposes the 
permutation matrices of the regular representation into a 
direct sum of irreps D k follows from the form of the matrix 
R ( g) representing g E G, 

Rg"g,(g) = 8g"gg" 

the multiplication law of the irreps, 
= D k( gl)D k( g2)' and their unitarity, 
=D~i(g-I). 

(3.2) 

Here we consider the double point group T * as defined 
by Bradley and Cracknell.27 Since a complete set of irreps of 
T* is known35 the reducing matrix is immediately obtained 
from (3.1). Therefore the present example serves only to re
veal relations between the columns of S that are not evident 
from (3.1). For the elements of T* we adopt the shorthand 
notation x, + 1, -1,x, + t, - t, etc. instead of the symbols 
C2x ,C 3t ,C 31 ,C2x ,C 3t ,C 31' etc. used in Ref. 27. The multi
plication law of T * can be extracted from that of the double 
point group 0 * that contains T* as a normal subgroup.36 
Denoting the unit element by E the group T* may also be 
defined by the generating relations 

x 2 = y2 = ( - W = E, 

Ex = xE, Ey = yE, (- I)E = E ( - 1), 
-2 
E =E, 

( - 1)x = Exy( - 1), (- 1)y = Ex( - 1), 

T* has the elements 

E,x,y,z=xy, 

- 1, - 2 = x( - 1), - 3 = Ey( - 1), 

-4=Ez( -1), 

+1=(-1)-\ +2=(-2)-\ 

+3=(-1)-\ +4=(-4)-\ 

(3.3) 

(3.4) 

and twelve more elements g related to the elements (3.4) by 

g=Eg. (3.5) 

These 24 elements decompose into seven classes. Conjuga
tion with the element C2b E 0 * \ T * defines an outer auto
morphism of T * of order 2: 

P(x)=y, P(y)=x, P(-I)=(-1)-I. (3.6) 

The character table of T* (see Ref. 37) shows that this 
group has three one-dimensional irreps that are labeled by 
k = 1,2,3. For associations it is sufficient to consider D 2 

where 

D2(x)=D2(y)=1, D2(_I)=w2, w=e21TiI3. (3.7) 

If we assign the generating association a to D 2 and the (only 
nontrivial)automorphismb toP the group Q = QREPiseasi
ly seen to have the structure 

Q~C3 Q< (C2 XC2 ), QO~C3 Q< C2• (3.8) 

The rows and columns of the matrices R (g) and U(q) are 
labeled in the sequence (3.4), followed by (3.5). The nonvan-
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ishing matrix elements (gl' g2) of the unitary matrices U(a) 
and U (b ) are the following ones: 

U(a): (E,E) = (x,x) = (y,y) = (z,z) = 1, 

(-1, - 1) = (- 2, - 2) = (- 3, - 3) 

= ( - 4, - 4) = CI), 

( + 1, + 1) = ( + 2, + 2) = ( + 3, + 3) 

= ( + 4, + 4) = Cl)2, (3.9) 

(g,g) = (g,g); 

U (b ): (E,E) = (x, y) = (y,x) = (z,z) 

= ( - 1, + 1) = ( - 2, + 2) 

= ( - 3, + 4) = ( - 4, + 3) 

= (+ 1, - 1) = (+ 2, - 2) 

= ( + 3, - 4) = ( + 4, - 3) = 1, 

(gl,g2) = (gl,g2)' (3.10) 

Since R is a real representation, U (e) may be chosen to be the 
antiunitary unit matrix. With this choice 

QSII'Q. (3.11) 

The action of the generating elements a, b, and e onto 
the equivalence classes of irreps shows the following table: 

k 1 2 3 4 5 6 7 

a 2 3 4 7 5 6 

b 1 3 2 4 5 7 6 
(3.12) 

e 3 2 4 5 7 6. 

The Q-classes are therefore 

[1] = {1,2,3 j, [4] = {4j, [5] = (5,6,7j. (3.13) 

The corresponding subgroups Q k that transform the irreps 
D I, D 4

, and D S into equiValent ones and the coset repre
sentatives qik ) are listed below (qo = identical transforma
tion): 

Q I = {qOJb,e,bc j, 

Q S = (qOJb,e,bc j 

..(1) _ a2 
'13 - , 

..(5) _ q ..(5) _ a2 ..(5) - a 
'15 - OJ 'Ii - , '12 - • 

The standard irreps D k for k = 1,4,5 are defined by 

DI(g)= 1, 

44 

D4(X) = diag(1, - 1, - 1), 

D4(y) = diag( - 1,1, -1), 

D4( - 1) = [~ ~ ~], 
100 
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(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

-1] 
o ' 

DS( _ 1) =..!. [1 - i 
2 1 +i 

(3.19) 

-1 +i] 
1 +i ' 

and the coset representatives (3.14) and (3.16) have been cho
sen in such a way that the irrepsD k coincide with those given 
by Bradley and Cracknell.3s 

The block S I multiplied by the normalization factor,fi4 
is the column matrix with elements 

,fi4S!,1 = 1 (3.20) 

[cf. (3.1) and (3.17)]. Because of (3.20) and (3.10), 
U(b)S 1= S 1* = S I. If we choose UI(q) = 1 for all 
q E Q 1 the group Q I consists of the identical transformation 
only. Furthermore, 

S2 = U(a)Sl, S3 = (U(a))2SI, (3.21) 

in accordance with the general theory [cf. Eq. (2.14)]. 
The block S41 has 72 matrix elements. Fourty-eight of 

them vanish; the remaining are listed below, where (g,)l 

stands for .J8(S41) •. J' g E T*, andj = 1,2,3: 

.J8S41
: (E,I) = (x,l) = (- 1,3) = (- 4,3) 

= ( + 1,2) = ( + 2,2) = 1, 

(y,l) = (z,l) = ( - 2,3) = ( - 3,3) 

= ( + 3,2) = ( + 4,3) = - 1, 

(g,)l = (g,)). 

As generators of Q 4 we choose the unitary matrices 

U 4(a) = diag(CI)2,CI),I), 

[
0 1 0] 

U 4(b) = 1 0 0 , 
001 

and the antiunitary matrix 

U 4(e) = diag(I,I,I). 

This makes 

Q4~Q. 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

The generating operators T(q), q = a,b,e, are defined as 

T(a)S4 = U(a)S4U4+(a), 

T(b)S4 = U(b )S4U4+(b), (3.26) 

T(e)S4 = S4*. 

If the blocks S42 and S43 are calculated from the irrep D4 
due to Eqs. (3.1), (3.4), (3.5), and (3.18), one finds 

T(a)S4m = Cl)ms4m, 

T(b )S41 = S42, 

T(b )S42 = S41, 

T(b )S43 = S43, 

T(e)S4m = s4m. 

(3.27) 
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That is, S41 and S42 carry the two-dimensional coirrep 

.1(0) = diag(m,m2), 

ate) = diag(l, 1), (3.28) 

alb) = [~ ~], 
while S43 carries the one-dimensional coirrep 

a(q) = 1, for q = a,b,e. (3.29) 

This shows that in this case the multiplicity problem may be 
completely solved by finding irreducible matrix corepresen
tations of the auxiliary group Q 4, where 

Q4~Q. (3.30) 

The blocks skm, k = 5,6,7, m = 1,2, can be calculated 
by means of (3.1) once the representations D 5, D6 = a2D5, 
andD 7 = aDs are obtained from (3.19), (3.7), and (3.4), and 
(3.5). The irrep D 5 yields the following matrix elements (g,j) 

of the block .,J24 S 51 : 

.,J24S51: (E,l) =-/2, (x,l)=(y,l)=O, (z,l)=i-/2, 

(- 1,1) = (- 2,1) = (+ 3,1) = (+ 4,1) = y, 

(- 3,1) = (- 4,1) = (+ 1,1) = (+ 2,1) = y*, 

(E,2) = (z,2) = 0, (x,2) = i-/2, (y,2) = -/2, 

( - 1,2) = ( + 2,2) = y*, (3.31) 

( - 2,2) = ( + 1,2) = - y*, 

( - 3,2) = ( + 4,2) = - y, 

( - 4,2) = ( + 3,2) = y, 

( g,j) = - ( g,j), y = ei1r14
• 

The blockS s2 is related toS SI by operators T(q) E QS, but in 
order to define this operator group one has to define first the 
generating elements of the matrix cogroup 'Os: 

US(b) = [~ ~*], 

U
5
(e) = [ ~ 1 ~], 

T(b)SS = U(b )SsU5(b), 

T(e)Ss = - S5*U5(e). 

(3.32) 

(3.33) 

The block S 52 can be generated from the block S 51 in several 
ways because 

The remaining blocks can be generated from the blocks SSm, 
m = 1,2, by multiplication with the matrix (3.9): 

s6m = (U(aWssm. s7m = U(a)Ssm. (3.36) 

These relations explain why the multiplicities mk coincide 
for k = 5,6,7. 

B. A 12-dlmensional representation of the double point 
groupO: 

The group Dr can be generated by two elements - 1 
and 2b (again shorthand notations for C ii and C2b ) satisfy
ing the relations 

(- 1)3 = (2b)2 =E, 
-2 
E =E, (3.37) 

(2b )( - 1) = E ( - 1 )2(2b ). 

The twelve elements of the form ( - 1 )"(2b )m decompose into 
six classes of conjugate elements 

n 
( -I)" -1 

( -1)"(2b) 2[ 

Classes: E 

E 
-1. + 1 

-- 1. + 1 
2b,2e,21 

2b.2e.2f 

2 3 

+1 E 

2e 2b 

The automorphism 13 of order 2, 

13(-1)= -1, {3(2b) = 2b, 

4 5 6 
-1 +1 E 

21 2e 2b, 

(3.38) 

(3.39) 

(3.40) 

leaves the first four classes invariant and interchanges the 
last two of them. 

The character table of D r has the following form: 

E E 
1 

2 1 
3 
4 1 

5 2 

6 2 

-1 

-1 

2 

-2 

-1 -1 2b 

-1 

-1 -1 

-1 -1 

1 -1 

-1 -1 

-i 

0 
0 

-i 

i 

o 
O. 

(3.41) 

(3.34) We take the irrep D 3 to define the generating association 
T(e)SSI = _ S52, T(e)S52 =SSI. 

Equations (3.34) show that the blocks S 51 and S S2 transform 
according to the corepresentation (3.32), which is irreducible 
though not in standard form. That ms = 2 may therefore be 
deduced from the existence of the operator group 

- S - s Q ~C2 Q< C4 , Qo ~C2XC2' (3.35) 
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(03 D)(g) = D3(g)D(g). (3.42) 

It follows from (3.40)-(3.42) that 

(3.43) 

How the transformations of this group relate the irreps D k is 
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seen from the table below: 

qk 1 2 3 4 5 6 

a3 3 4 2 I 6 5 
(3.44) 

b 2 4 3 5 6 

e 1 2 4 3 5 6. 

The reducible representation R we consider is the tensor 
product of two representations, 

R (g) =D1T(g) ® D6(g) (3.45) 

[for a definition of D 1T ® D 6 see (2.49)], where D 1T is a six
dimensional permutat~on representation defined by 

D 1T( _ I) = [d ( - 1) 0] 
o d( -1) , 

D 1T(2b ) = [d (~b ) d(2b)] 
o ' 

(3.46) 

d(-ll~[! 
0 

~] , d(2bI~[~ 
0 !] , 0 0 

1 

and D 6 is one of the standard irreps, 

D 6( -1) = [~ 0] 6 [ 0 S s ' D (2b) = _ 1 ~] , (3.47) 

S = ei1T13, S + S s = S 6 = 1. (3.48) 

lfthe character x( g) = X1T( g)X6( g) is calculated from (3.46)
(3.48) and (3.38) it is easily seen from the character table 
(3.41) that 

(3.49) 

It follows from this and the transformation properties of the 
irreps D k, table (3.44), that Q is a proper subgroup of Q REP: 

ASSn Q = {qo,a}, a = a2 = ai, (3.50) 

Q~C2XC2XC2' (3.51) 

The matrices U(a),U(b ),U(e), which transform R into 
aR,bR,eR, may be chosen as direct sums of six two-dimen
sional matrices: 

Uta) = U(b) = 3E6 E9 3( - E 6), Ute) = 6U6(e), (3.52) 

E6 = [~ ~], U
6
(e) = [ ~ 1 1] o . (3.53) 

A~rdingly 

Q~C2XC4' QO~C2XC2' (3.54) 

The irreps contained in R belong to two Q-classes, 
namely 

[31= {3,4}, [61={6}, (3.55) 

Q3 = {qo,ab,ae,bc}, q~1 = qo, rill = a, (3.56) 

Q 6 = Q. (3.57) 

The blocks S 3m are column matrices for which 

(3.58) 

holds true. If this equation is considered for g = - 1 and 
g = 2b and if the correpsonding matrices, given in Eqs. 
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(3.46H3.48) and (3.41), are inserted one finds that S3 is 
uniquely determined by a column matrix a with two ele
ments: 

a 
(-I)a 
(+I)a 

-i(2b)a ' 

- i(21)a 

- i(2e)a 

a = [::1, ga ~ D 6( g)a. (3.59) 

Since dim D 3 = 1 we may set U 3(q) = 1 for all q E Q3. To 
definetheoperators T(q) E Q 3wealsoneedtheQl&tri~ U( q) 
for the generatorsofQ3, i.e., q = ab andq =QC. We choose 

U(ab) = U(a)U(b) = 6E 6 (unit matrix), 
(3.60) 

U(ae) = U(a)U(e) = 3U6(e) E9 3U 6T(e), 

which fixes the action of T(ab) and T(ae): 

T(ab)S3 = U(ab)S3 = S3, 

T(ae)S3 = U(ae)S3*, (3.61) 

(T(ae))2S3 = (U(aeWS 3 = - S3, 
- 3 - 3 Q ~C4' Qo~C2' (3.62) 

There exist no eigenvectors of T(ae) since this operator is 
antilinear and the eigenvalues would have to be ± i because 
of(3.61). Therefore the space ofblocksS 3 satisfying (3.58) has 
to be of even dimension whence the multiplicities 
m3 = m 4 = 2 may be explained by the operator group Q 3. If 
we choose the basis 

S31: a 1=1, a 2=0, 

S32: a 1 = 0, a2 = 1, 

then 

S32 = T(ae)S31 = U(ae)S31* 

(3.63) 

(3.64) 

and T(ae) is represented by the antiunitary matrix U 6T(e), 
the transpose of the matrix U 6(e) as given in (3.53). From the 
columns S 3m the columns S 4m are obtained according to 

s4m = U(a)S3m. (3.65) 

The general form of the blocks S 6 may be derived from 
the defining relations 

R(g)S6=S6D6(g), (3.66) 

in quite the same way as the general form of S 3 has been 
obtained from (3.58): 

a 
(-I)a( + I) 
(+ l)a( - I) 

(2b )a(2b) 

(2f)a(21) 
(2ela(2e) 

gag' ~ D 6( glaD 6( g'). 

DirI9ts/. 

(3.67) 

46 



                                                                                                                                    

The number of free parameters aij coincides with the multi
plicity m6 = 4. The generating matrices of Q 6 are 

U 6(a) = diag( - i,ll, (3.68) 

U 6(b) = diag(l, - 1), (3.69) 

and the matrix U 6(c). Combined with the matrices (3.52) 
these matrices determine the operators T (a), T (b ), and T (c), 
which generate Q 6. One finds 

T(a)S6 = iS6} . 
T(b )S6 = S6 111' a l2 = a 22 = 0, (3.70) 

T(a)S6 = - iS6} . 
T(b)S6 = _ S6 111' all = a 2l = O. (3.71) 

The choice ofthe generating matrices U( q) and U 6(q), Eqs. 
(3.52H3.53), and (3.67), entails 

(3.72) 

Accordingly the antiunitary operator T (c) transforms blocks 
of the form (3.70) into blocks of the form (3.71). But there are 
still two undetermined parameters, e.g., all and a 12, that 
cannot be fixed by the auxiliary group Q6. In other words, 
this group reduces the multiplicity problem but does not 
solve it completely. Two orthogonal blocks both of which 
are eigenvectors of T(a) and T(b) with eigenvalues i and 1, 
respectively, have to be found by a Schmidt process. A rather 
obvious choice is 

S61: all = 1/fj, a l2 = a 2l = a22 = 0, 
(3.73) 

S63: a 2l = 1/fj, all = a l2 = a22 = O. 

From these two blocks the remaining ones can be generated 
by T(c): 

S 62 = T(C)S61.. II f'l3 0 a 22 = VJ , all = a l2 = a 2l = , 
(3.74) 

S64 = T(C)S63: a l2 = - 1/fj, all = a 2l = a22 = O. 

The pairs S61,S62 and S63,S64 each carry the corepresenta
tion 

ala) = diag(i, - i), 

a(b) = diag(l, - 1), 

a(c) = [~ ~], 
which is faithful, irreducible, and in standard form. 

(3.75) 

c. An 18-dlmenslonal representation of the double 
space group (C3 XC3) Q< Cf 

In this example we consider a finite homomorphic im
age of the two-dimensional spacegroupp211 (see Ref. 38) by 
imposing Born-von Karman boundary conditions. We as
sume the corresponding Bravais lattice to be square and 
choose the boundary integer N = 3. The notation we adopt 
for the group elements g E G'" ( = double space group) and 
the G "'-irrep labels is closely related to space groups and 
their representation theory, i.e., differs from the notion we 
introduced in Sec. II. As the finite space group G '" is sym
morphic27.38 it can be defined as a semidirect product group: 

G"'=TCxP"'. (3.76) 
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The symbol T denotes a translation group of order 9 andP '" a 
double point group of order 4: 

T={tER2It=~n/i' n/=o,±l}, (3.77) 

P'" = {E,z,E.z}. (3.78) 

The basis translations i (i = 1,2) are assumed to form the 
basis of a square Bravais lattice where the lattice constant is 
chosen as unit length: 

i . i' = 8/, .. ' (3.79) 

The dot occurring on the left-hand side of (3.79) denotes the 
scalar product ofi with i'. We retain this notation hencefor
ward. Because of (3.77) and (3.78) we infer that 

G'" = (C3 XC3 ) Q< C!. (3.80) 

Usually the group elements of G '" are denoted by 

(pit) E G "', wherep E P'" and t E T. (3.81) 

The multiplication law of G '" is established by 

(plt)(p'lt') = (pp'lt + (p)t'), (3.82) 

where pp' E P '" and t + (p)t' E T. It is worth noting that 
t + (p)t', where(p) is a linear operator acting on R2, has to be 
understood modulo T, i.e., whenever t + (p)t' lies "outside" 
of the T there exists a vector t" E T that is uniquely deter
mined by t + (p)t'. For instance, 1 + 1 has to be identified 
with - 1. We choose, as generating elements of G "', 

(E 11), (E 12); (zIO), 

and the generating relations in the form 

(zIO)(zIO) = (E 10), 

(z)i = (Z)i = - i (i = 1,2). 

(3.83) 

(3.84) 

(3.85) 

A straightforward inspection of(3.82) yields that the 36 
elements of G '" subdivide into 12 classes of conjugate group 
elements. 

Classes of G "': 

!(EIO)} =Kl 

{(E 11), (E 1-1)) =K2 

{(E 12), (E 1- 2)) =K3 
{(E 11 + 2), (E I - 1 - 2)) =K4 
{ (E 11 - 2), (E I - 1 + 2)) =Ks 
{(EIO)) =K6 

(3.86) 
{(E 11), (E I-I)} =K7 
{(EI2), (EI-2)} =Ks 
{ (E 11 + 2), (E I - 1 - 2)} =K9 
{ (E 11 - 2), (E I - 1 + 2)} =KIO 
{(zit), tE T} =Kll 

{(zIt), t E T} =KlZ • 

As regards the derivation of an automorphism group of 
G "', we do not want to go into any details and therefore leave 
this discussion to the reader. The automorphism group turns 
out to be 

(3.87) 
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The generating elements of AUT are chosen as 

p..,... +z..,...ct 

P W ..,...db """Udb' 

(3.88) 

which are in one-to-one correspondence with the point 
group elements C 4~ and Udb' respectively. Again we prefer 
to employ a concise notation instead of the extended one 
used in Bradley and Cracknell.27 A general element of AUT 
reads 

pmp"neAUT, m = 1,2,3,4 and n = 1,2. (3.89) 

Moreover it holds that 

P 4 = P w2 = E (unit element), 

p"pp"-I=P 3 ..,...C4-;· 

Taking into account the transformations 

( + z)l = 2, (+ z)2 = - 1, 

(db )1 = 2, (db )2 = 1, 

~: (3.90) 

(3.91) 

(3.92) 

it is readily verified that the generating elements PJ3" of 
AUT define the following mappings of G *: 

PHE 11)) = (E 12), 

PHE 12)) = (E 1-1), 

PHzIO)) = (zIO); 

P wHE 11)) = (E 12), 

P "HE 12)) = (E 11), 

P " HzIO)) = (zIO). 

(3.93) 

(3.94) 

It is worth noting that the automorphism P 2 can be identi
fied with (zIO) e G *, i.e., it turnS out to be an inner automor
phism. Accor4ingly this is an example where we have to 
close the set of outer automorphism to form a group by tak
ing into account inner automorphisms. 

Proceeding as proposed in our general scheme we have 
to construct the character table of G *. Such a calculation is 
usually done without knowing explicitly irreps of G *. But 
since the G *-irreps are readily determined by means of in
duction,27 we construct at first a complete set of G *-irreps to 
extract from them the character table. 

To construct G *-irreps by means ofinduction one has to 
start from the one-dimensional irreps of T. They are given by 

D ·(t) = e;Y' t, t e T, (3.95) 

where 

v = ~ n;vo v; = 2; i and n; = 0, ± 1. (3.96) 

Hence the Brillouin zone (BZ) ofG * consists of nine vectors. 
The next step is to determine for each v e BZ the correspond
ing little cogroup P *(v): 

P*(v) = {p e P*l(p)v = vI. (3.97) 

One immediately finds 

P*(O) =P*, (3.98) 

P*(v) = {E,E I, for all v¥O. (3.99) 
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Then one has to calculate sets of irreps for each P *(v). But to 
avoid redundancies we have to partition BZ into disjoint 
subsets ("star" of v-vector) and have to take from each star 
one element which requires some conventions. These pecu
liar elements define the so-called "representation domain" 
ABZ of BZ. In our case ABZ consists of the following five 
vectors: 

ABZ = {G,M,N,X,YI, 

G=O, 

M=vl> N=V2' 
(3.100) 

X = VI + V2, Y = VI - V2' 

where the notation G,M,N,X, Y for the various points has no 
deeper meaning. 

SinceP *(O)andP *(v), v e ABZwith v¥O, are Abelian, it 
is sufficient to give the character tables for these two groups: 

P*(O) E z E z 
1 1 1 

2 -1 1 -1 (3.101) 

3 1 -1 -i 
4 -i -1 i , 

P*v E E 
1 (3.102) 

2 -1. 

The last step of the induction procedure consists of in
ducing from the irreps of little groups G *(v) = T Q< P *(v), 
V e ABZ to the full G *-irreps, where G * (v)-irreps are defined 
by 

dYk(plt) = Dk(pjDY(t), peP*(v) and teT. 
(3.103) 

For that purpose it is necessary to establish coset representa
tives of P *(v) in P *. The case (3.98) is trivial and for (3.99) we 
choose E and z as coset representatives. Finally we obtain the 
following G *-irreps: 

O-point: DOk(plt) = Dk(p), k = 1,2,3,4; 

v-point: ve ABZ and v¥O, 

DYk(E It) = [e:· t e-°r..t]' 
DYk(zIO) = [0 Dk(E)], k = 1,2. 

Dk(E) ° 

(3.104) 

(3.105) 

The row and column indices of the two.;dimensional irreps 
(3.105) are indexed by E and z in consecutive order due to the 
choice of the coset representatives. It is worth repeating that 
(3.105) is valid for each v e {M,N,X,YI. Taking into account 
(3.101), (3.102), (3.104), and (3.105) the character table ofG * 
takes the following form: 
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K J K2 K3 K4 Ks K6 K7 Ks K9 KIO KII KJ2 

GI 1 1 1 1 1 1 1 1 1 1 1 1 

G2 1 1 1 1 1 -1 -1 

G3 1 -1 -1 -1 -1 -1 i -i 

G4 -1 -1 -1 -1 -1 -i i 

Ml 2 -1 2 -1 -1 2 -1 2 -1 -1 0 0 

M2 2 -1 2 -1 -1 -2 -2 1 0 0 (3.106) 

Nl 2 2 -1 -1 -1 2 2 -1 -1 -1 0 0 

N2 2 2 -1 -1 -1 -2 -2 1 0 0 

Xl 2 -1 -1 -1 2 2 -1 -1 -1 2 0 0 

X2 2 -1 -1 -1 2 -2 1 1 1 -2 0 0 

YI 2 -1 -1 2 -1 2 -1 -1 2 -1 0 0 

Y2 2 -1 -1 2 -1 -2 1 1 -2 1 0 0 

Now we may easily infer from this character table that ASS is a cyclic group of order 4. We take G3 to define the 
generating association, i.e., a3 ++ G3: 

(aJ) )(plt) = DG3(pltJD (pit). (3.107) 

Combining the three different transformations [cf. (3.87), (3.93), (3.94), (3.107), and the complex conjugation] we have 

Q REP S!! C4 <2< (C4v X C2), (3.108) 

which is a group of order 64. Due to our approach we summarize by means of the table below how the various transformations 
(generating elements only) are acting on the G *-irreps. Thereby we assign b to P and b " to p". We have 

qk GI G2 G3 G4 MI M2 NI N2 

a3 G3 G4 G2 GI M2 MI N2 NI 

b GI G2 G3 G4 NI N2 Ml M2 

b" GI G2 G4 G3 NI N2 MI M2 

C GI G2 G4 G3 MI M2 NI N2 

The reducible representation R we want to decompose, 
and for which we want to resolve the multiplicity problem by 
means of the auxiliary operator groups Q .. k, is defined by the 
tensor product of two representations 

R (pit) = D1T(plt) ® DM2(plt). (3.110) 

For the definition of the tensor product (3.110) once more 
consult (2.49). The permutational representation D 1T occur
ring as first constituent on the right-hand side of (3.110) is 
defined by 

D:;.D(plt) = c5m,t+(p)D' m,D e T. (3.111) 

The representation (3.111) is nine dimensional, so R is 18 
dimensional. The character of R, 

x(plt) = x1T(plt)~2(plt), 

follows immediately from (3.106) and 

X1T(E 10) = X1T(E 10) = 9, 

X1T(E It) = X1T(E It) = 0, for t:;i:O, 

x 1T(zlt) = X1T(E It) = 1. 

This determines the irreducible constituents of R, 

(3.112) 

(3.113) 

R_DG3 e DG4 e W M2 e W N2 e W X2 e 2D Y2. 
(3.114) 

A simple inspection of (3.114) and (3.109) shows that Q is a 
proper subgroup of Q REP: 
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Xl 

X2 

YI 

Xl 

Xl 

X2 Yl Y2 

Xl Y2 YI 

Y2 Xl X2 (3.109) 

X2 YI Y2 

X2 YI Y2. 

(3.115) 

QQI!C2XC4v XC2, QOQl!C2XC4v ' (3.116) 

It is worth noting that a = a~ corresponds to G2. The set of 
generating elements of Q can be chosen as {ajb,b "jC J. To 
construct Q we have to determine the matrices U (q) for 
q = a,b,b " ,C that satisfy (2.19). 

To simplify the following calculations (concerning R ) 
we employ, in part, matrix notation. We write 

(U (q))m,D = U m,D (q) = u(qjm,n), m,D e T, (3.117) 

where the u(qjm,D)'s are two-dimensional square matrices 
which, apart from q, in general depend on m and n. Straight
forward calculations yield 

Um.D(a) = c5m ,D [~ ~ 1] , (3.118) 

[
eIY

•
m 

Um,a (b) = c5m,( + z)a 0 (3.119) 

[ 

-IY'D 

Um.D(b") = c5m,(db)D e 0 _~'D] , (3.120) 

-1] o . (3.121) 

Therefrom it follows that 

QQI!C2X(C4v <2< C4), QO~C2XC4V XC2• (3.122) 
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Step (4) of our general scheme requires us to subdivide 
the G *-irreps occurring in R into Q-classes. This is readily 
achieved by employing table (3.109): 

[G3] = {G3,G4}, [M2] = {M2,N2}, 

[X2] = {X2,Y2}. (3.123) 

Using once more table (3.109) the corresponding groups Q Tk 

turn out to be the following groups: 

QG3 = Q~3 Q< {qo,b "c}, 

Q~3 = {qo,b,b 2,b 3} Q< {qo,ab "I, (3.124) 

q~:) = qo, 431) = c; 

QM2 = Q~2X (qo,c), 

Q~2 = {qo,a} X {qo,b 2,b"b 3}, 

q~f) = qo, q~2) = b"; 

QX2 = Q~2X {qo,c}, 

Q ~2 = {qo,a} X { qo,b 2} X { qo,b " }, 

(3.125) 

(3.126) 

Due to our general approach now we have to determine 
for the various representatives vk e {G3,M2,X2} the general 
solution of the defining equations: 

R (plt)Svk = SVkDVk{plt). (3.127) 

After having done this we try to resolve the multiplicity 
problem by means of the coirreps of the auxiliary groups 
Q Tk. Finally we have to find the "partner" blocks belonging 
to the orbits [vk] by means of the generating relations (2.42). 

At first we discuss the case v k = G 3. Since D G3 is a one
dimensional irrep we make for S G3 the ansatz 

SG3 = [al(m)] meT. 
m a2(m) , , (3.128) 

where again we employed in part matrix notation for the 
components of the column vector SG3. To sketch how we 
proceed to construct SG3 we specify (3.127) to this case by 
using matrix notation. In detail, (3.127) reads 

DM2(plt)S~;-I)(m_t) = S~3DG3{plt). (3.129) 

If we specify (pit) to (E It) a.nd (zIO), respectively, we obtain 
the following set of equations: 

al(m + t) = e,M.tal(m), a2(m + t) = e-,M.ta2(m), 
(3.130) 

(3.131) 

As (3.130) is independent of m we set m = 0 and replace in 
(3.131) m by t. From this follows that al(O) is the sole free 
parameter. Therefore 

al(t) = e,M.tal(O), a2(t) = - ie,M.tal(O). (3.132) 

Finally choosing a I (0) = 1 and normalizing suitably the col
umn S G3 we arrive at the result 

[ 
iM.m] 

..[f8 S ~3 = e . ,M. m ' meT. 
-Ie 

(3.133) 

Clearly because of mG3 = 1 there is no need of investi
gating in detail the operator group Q G3. For obvious reasons 
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we choose U G3(q) = 1 for q = a,b,b ". Since it is easily veri
fied that 

T{q)SG3 = SG3, for q = a,b,b " 

holds, we infer 

QG3~CI (trivial group). 

(3.134) 

(3.135) 

To conclude this part of our example we have to deter
mine S G4 by means of the generating relations (2.42). Due to 
(3.124) we have 

SG4 = U(C)SG3*. (3.136) 

Inserting (3.121) and (3.133) into (3.136) we obtain 

-Ie 
[ 

. -,M.m] 
~S~= e-,M'm ' mET. (3.137) 

The next representative we consider is M2. Since D M2 is 
two dimensional we have to modify the ansatz (3.128) corre
spondingly: 

S M2 _ [au(m) a I2(m)] T. 
m - , me . 

a2J(m) a 22(m) 
(3.138) 

The defining equations (3.127) read 

(3.139) 

Setting the group elements (pit) equal to (E It) and (zIO), re
spectively, we derive the following set of equations for the 
unknown matrix elements of (3.138): 

a l1(m + t) = au(m), adm + t) = e-·M.tadm), 
(3.140) 

a 21 {m + t) = eiM .ta21(m), a 22(m + t) = a 22(m), 

a ll ( - m) = adm), ad - m) = - a 2l(m), 

a21( - m) = - adm), ad - m) = a l1 (m). 
(3.141) 

Since Eqs. (3.140) are independent ofm we arrive at a two
parameter solution 

(3.142) 

where all(O) and adO) are the free parameters. This is in 
accordance with mM2 = 2. Consequently our general solu
tion must be of the form 

M2 [1 Sm =au(O) 0 e-~·m] . 
(3.143) 

This suggests that we take as a normalized basis 

3SM2;I=[1 
m 0 ~] , meT, (3.144) 

3S M2;2 = [ 0 
e-,M.m] 

meT, (3.145) m IM.m o ' -e 

where for clearness we have separated the G *-irrep label M2 
from the multiplicity index m by means of a semicolon. 
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The generating matrices of Q M2 are 

U M2(a) = diag(l, - 1), 

- 1] 
o ' 

U M2(b"b) = diag(l, - 1), 

- 1] o . 

(3.146) 

(3.147) 

(3.148) 

(3.149) 

The matrices (3.146)-(3.149) and U(q), qe (a,b 2,b"b,ej, 
whereU(b 2) = U(b )U(b )andU(b"b) = U(b ")U(b ),define 
the operators T(q). The comatrix representation A, defined 
by 

T(q)SM2;m = L Am',m(q)SM2;m', (3.150) 
m' 

is a two-dimensional matrix corepresentation of Q M2. Em
ploying (3.118)-(3.121), (3.146)-(3.149), and (3.144) and 
(3.145) we arrive at the following matrix corepresentation: 

A(a) = diag(I, - 1), 

- 1] 
o ' 

A(b"b) = diag(I, - 1), 

A(e) = diag(I,I). 

This implies 

(3.151) 

-M2 -M Q ~(C2 ex (C4 Ci< C2))XC2, Qo 2~C2 Ci< (C4 Ci< C2). 

(3.152) 

The remaining problem that has to be solved is to verify 
whether A(q), q e Q M2, is an irreducible corepresentation or 
not. A character test shows that (3.151) is irreducible. This 
implies that the multiplicity problem is entirely resolved by 
the auxiliary group QM2. 

Due to our general approach we obtain the blocks S N2;m, 

m = 1,2 by specifying (2.42) to this case. We define 

sN2;m = U(b ,,)sM2;m, m = 1,2, (3.153) 

which correpsonds to our choice of the coset representative. 
We have to insert (3.120), (3.144), and (3.145) into (3.153) in 
order to get 

[ 
'Y'm 

3S N2;1 = e 
m 0 ~'Y.m]' me T, -e 

(3.154) 

3 SN2;2 = [ 0 
m e-,x.m 

,x.m] 
eo ,meT, (3.155) 

The last representative we have to investigate is X2. As 
the procedure is quite the same as in the foregoing case we 
merely sketch it. At first we have to find a general solution of 
(3.127) where vk = X2. Again we make an ansatz similar to 
that in (3.13 8) and specify the defining equations for (E I t) and 
(zIO), respectively. This leads to identities that are analogous 
to (3.140) and (3,141). This set of equations yields a two
parameter solution of the form 
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a l1(m) = e- iN
'
ma 11(O), adm) = e-'Y'madO), 

(3.156) 
a 21(m) = - e'Y'madO), adm) = e,'N·ma11(o), 

where a 11 (O) and adO) are the free parameters. This agrees 
with mX2 = 2. So our general solution can be written as 

S!2 = a 11(O) [e-o''N·m 0] 
e,'N'm 

+ adO) [ _ ~Y.m e-~·m]. (3.157) 

For obvious reasons we choose as an orthonormalized basis 

3S X2;1= e 
[ 

-,'N'm 

m 0 ~,o ], meT, 
ll ... ·m 

3S X2;2 = [ 0 
m ,Y.m -e 

e-'Y.m] 
o ,meT. 

The generating matrices of Q X2 are 

DX2(a) = U X2(b") = diag(l, - 1), 

- 1] o . 

(3.158) 

(3.159) 

(3.160) 

(3.161) 

Employing the general definition (2.39) of the operators T(q), 
q e {a,b 2,b ",e}, where U (b 2) = U (b )U (b ), we establish by 
means of 

T(q)SX2;m = L Am',m(q)SX2;m' (3.162) 
m' 

a two-dimensional matrix corepresentation of Q X2. A 
straightforward calculation yields 

A(a) = A(b If) = diag(l, - I), (3.163) 

A(b2)=[~ ~I], (3.164) 

A(e) = diag(I,I). (3.165) 

This gives rise to the operator group 
-X2 -X2 
Q ~(C2Ci«C4Ci<C2))XC2' Qo S!!!C2 Ci«C4 Ci<C2)· 

(3.166) 

The remaining task is to investigate whether the matrix core
presentation (3.163)-(3.165) is irreducible or not. Again the 
character test shows that this corepresentation is irreduci
ble. Accordingly the multiplicity problem is entirely re
solved by the auxiliary group Q X2. 

The last task is to generate the blocks belonging to Y2. 
This is achieved by defining 

sY2;m = U(b )Sx2;m, m = 1,2, (3.167) 

where the choice of the coset representative corresponds to 
the last line of(3. 126). Employing (3.119), (3.158), and (3.159) 
we arrive at the final result 

3 SY2;1 = e 
[ 

-,X'm 

m 0 (3.168) 

3 SY2;2 = [ 0 
m -iN.m -e 

'N'm] eo' me T. (3.169) 
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Finally let us briefly summarize our results. The rectan
gular blocks SGJ, SG4; SM2;m, sN2;m with m = 1,2 and 
sX2;m,sY2;m with m = 1,2 compose the IS-dimensional re
ducing matrix S. The crucial point of our approach is that 
the blocks svk are symmetry adapted not only with respect 
to the group G • but also with respect to the auxiliary groups 
Q vk and the "partner" blocks are fixed by generating rela
tions. The freedom inherent in the generating relations has 
always been used to choose them in their simplest form. In 
this example we arrive at a complete resolution of the multi
plicity problem by means of the auxiliary groups Qvk. 
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A vectorial and a tensorial crossing rule are defined in Cartesian coordinate systems. Different 
applications are given. With a particular choice of the standardization coefficient of vectors the 
same expression of dot and vector products in the standard and Cartesian coordinate systems 
results. The crossing rules are thus redefined in a standard coordinate system. Applications are 
obtained in the simplification of some paliticular "3nj" coefficients. 

I. INTRODUCTION 

The use ofthej-summation rule! gives in some cases a systematic procedure to simplify expressions like "3nj" coefficients. 
The coupling oftwo spin-fs gives, for instance, 

and we can thus define the "spin-! crossing rule" 

+>----< 

which reads analytically 

! 
m; 

Applied to "6j" coefficient it gives, for instance, 

{ ~ ! 1}=3...8 -~-)j{.!. .} 
2!j 3 P 6' 22

1
, 

and with a "9j" coefficient it comes out 

1/2 

+ _=1/3 

i4 
1/2 

= (1.1) 

(1.2) 

(1.3) 

(1.4) 

+ 

- 1/2 112 

+ 
+ 

i4 

(1.5) 

! ~2}. 
! 13 

The above rule applies to more complicated diagrams and it is thus tempting to search for analog rules for higher spin. 
In Cartesian coordinates a well-known vectorial crossing rule exists that represents graphically the summation over an 

index of the product of two Levi-Civita tensors. It appears that a suitable choice of transformation coefficients of Cartesian 
coordinates into spherical standard coordinates leads to a vectorial crossing rule and moreover, after some transformations, to 
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a tensorial crossing rule in standard basis. Section III is thus 
devoted to the description of a graphical representation of a 
Cartesian basis and to some applications of the vectorial 
crossing rule in such a coordinate system; Section IV con
cerns the spherical standard coordinate system and the vec
torial and tensorial crossing rules. Different applications in 
the determination of particular "3nj" coefficients are given 
in the last part of this paper. 

II. THE CONFIGURATION SPACE 

We suppose that the configuration space is spanned by 
an abstract vector state Ie), which forms a complete orthog
onal system and thus verifies a closure relation like 

f le)de(el = 1 , (2.1) 

if the Ie) state varies continuously over the spanned space. 
As an example of such a continuous state we usually intro
duce the solid angle state 10) 

f IO)dO(OI = 1 . (2.2) 

We know that a projection of the oribital momentum state 
11m) on the configuration space spanned by 10) states gives 
the spherical harmonic functions 

(Ol/m) = Y1m(O) , (2.3) 

which verify the orthonormalization relations 

f yrm' (O)Ylm (O)dO = f (I'm'IO)dO(Ol/m) 

= (/'m'l/m) = O/l'0mm' . 

III. THE CARTESIAN COORDINATE SYSTEM 

(2.4) 

Let e j (i = 1,2,3 = x, y,z) represent three vectors of unit 
length along the three mutually perpendicular lines Ox, Oy, 
Oz, respectively, that are taken as the positive coordinates 
axes. We introduce Cartesian orthonormal complete states 
IIi) = Ii): 

(ilj) = oij' L Ii) (il = 1 , (3.1) 
j 

with i = x, y,z. The unit e j vectors will be the projection of 
the Ii) states onto the Ie) configuration state: 

ej = (eli) = (elli) . (3.2) 

In a three-dimensional Cartesian system it is not necessary 
to distinguish between covariant and contravariant compo
nents and thus 

(3.3) 

The orthonormalization of the Cartesian unit vectors e j now 
reads as 

Let V be a vector and Vj the projection of V on the coordi
naie axis. Then 

V = L Vjej = L (Vli)(ile) = (Vie) = (eIV) , (3.5) 
i i 

where 

V; = (Vii) = V;= (iIV). (3.6) 

The scalar or dot product is obtained by replacing the Ie) 
configuration vector by an actual vector in (3.5): 

(A IB) = L (A li)(iIB) = LA/B; = A·B. (3.7) 
; j 

We introduce the following graphical representations: 
1i e; =e; = 13 1-1 ----

(3.8) 
1i Vj = V; = 'if 1-1 ----

The usual summation rule over the i-index l leads to the 
graphical, representation of a vector and of a scalar product 
of two vectors: 

V= (eIV) = (Vie) = 'if 1-1 --~I 13, 

(3.9) 

Let us now introduce a graphical representation of the Levi
Civita tensor: 

{

I, 
Eijk = - 1, 

0, 

for an even permutation of x y z indices, 

for an odd permutation of x y z indices, 

otherwise, 
(3.10) 

(3.11) 

We thus get the graphical representation of the vector or 
cross product: 

(A A B) = L (A A B)kek = LA;BjekEijk 
k ijk 

= A~ 1 .e. 

B~ 
(3.12) 

The triple scalar product is obtained by replacing Ie) by an 
actual vector in (3.12): 

(A A B)· C = ~ A; BjCkEijk 
fjt 

(3.13) 

The graphical representations (3.7) and (3.12},.(J.13) allow us 
(3.4) to visualize any multiple product of vectors. We get, for in

stance, 

54 J. Math. Phys .• V~I. 27. NO.1. January 1986 E. Elbaz 54 



                                                                                                                                    

P = ((A A B) A (C A 0)) - E 

A 

= 
+ 

+ o----~::>_-~ E. 

8 

[) 

(3.14) 

Such a product is expressible in seven different ways corre
sponding to the different possible separation of its represen
tative diagram: 

P = ((A A B) A (C A 0)) - E = A - (B A ((C A 0) A E)) 

= (A A B) - ((C A 0) A E) = .... (3.15) 

Let us now define "the vectorial crossing rule" by represent
ing graphically the well-known identity 

(3.16) 

i' 

= 
j' 

_XI i'. 

. j' 
J 

This crossing rule gives an easy simplification of any multiple product of vectors. We get, for instance, with (3.14), 

c 

A~: 
AI IE 

A 

a~: P = D = 

8 81 

= (A - (0 A C))(B - E) - (A - E)(B - (0 A C)), 

or, if we cut it in a different way, 

IE 

c E 11------11 C E 1-1 -----II D 

P = A A~ -A~ 

aTO a/ ,C 

= 
D 

8 

= (E - C)((A - (B A 0)) - (E - O)((A - (B A C)) . 

Let us now consider vectors as rank-l tensors in the Carte
sian coordinate space Ai = (.-4 IIi) = A Ii and introduce a 
"3jm" Cartesian coefficient in the coupling of the tensors2: 

Ckr = [k] ~ C t ~)AIsBlt 

j 
products. 

(i) The scalar or dot product is 

Coo = ~ C t ~) AIsBlt 

(3.17) 

(3.18) 

=[k] Ar1 kr. 

1 1 
=-I8stAIsBlt =-A-B, (3.20) 

.j3 st .j3 
(3.19) 

• 1 
8 

The analytical expression of Cartesian "3jm" coefficients 
has already been given2 and one finds the following three 
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We find in the Cartesian system too, that a pole on a j line 
takes the [F I] value. 

(ii) The vector or cross product is 

C1r =J3L (1 
st S 

1 
t 

Arr + . 

B 

(3.21) 

It appears here that the Levi-Civita tensor is proportional to 
a "3jm" Cartesian coefficient 

r rr 

Erst = + t = .j6 + 1t = .f6 
5 15 

X(l 1 1). 
r s t 

(3.22) 

With Cartesian "3jm" coefficients the vectorial crossing rule 
(3.15) now reads 

A 
A 1-1 -----II B 

(A • B)(C • D) = = E [x2J 
C 1-1 -~---II D X 

c 

which reads analytically 

[ 

1 i 

= 1/6 
1j 

1 i' 

1 j' 

1 1 ) 
j' k' 

= H 8ir 8,U - 8if8jr ] • 

(iii) A tensor product is 

C2r = ~ L (1 1 2) AIsBlt 
.t s t r 

Ar-2r 
C

2r 
=~ + . 

B 1 

Xl 
(3.23) 

(3.24) 

The analytical value of the "3jm" Cartesian coefficient is 
now 

C t ~) = ~ (8rs8tr - + 8,,8., ) . (3.25) 

If we apply the usualj-summation rule to the product of two 
dot products and use the vectorial crossing rule (3.15) we get 
a tensorial crossing rule: 

B 

D 

B A B 

+ 5 (3.26) 

D C D 

(A, B) (C, D) = i(A. C) (B· D) + !(A 1\ C) • (B 1\ D) + T2 (A,C) • T2 (B,D) . 

We use the vectorial crossing rule (3.23) and 

A 

C 

B [A t--I -----il B 
= 1/6 

C .... 1 -----II D 
D 

(A 1\ C) • (B 1\ D) = (A, B)(C • D) - (A, D)(B • C) . 

Bringing this value into (3.25) gives the result 

A t--I -------tl D ], 

C .... 1 -----II B 

T2 (A,C) • T2 (B,D) = ! (A· B)(C' D) + ! (A, D)(C· B) - i(A' C)(B' D) . 

It leads to "the tensorial crossing rule" 
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1 i 1 i ' 

l 
1" 

= 1/10 I 

1 j 1j' 

1 i' 

+ >---=2::..-_< 

1 j 1j' 

+ 

1 j 

1 i 

1i' l' 
1j' 

(3.29) 

~G j ~)G ;. :,)=+a-[t5ir t5if +t5ift5j j' -~ijt5q]. 
A good example of application of the above crossing rule is given with the nuclear tensor force 

1 
Sl2 = 2 T2(SI'S2)· T2(r,r) 

r 

51 

= 5/r 2 

52 ",Xi 51 

[ S'" 
I r I I l = 1/2r2 • • - 2/3 

(3.30) 

82 1 I r 
82 r 

82 

(3.31) 

We thus find the well-known expression of the tensor force in Cartesian coordinates to be 

SI2 = [(SI • r)(S2 • r)/r 2] - !(SI • S2) . (3.32) 

IV. THE STANDARD COORDINATE SYSTEM 

We introduce a standard basis spanned by the I III ) com
plete set of orthonormal states: 

(4.1) 
p 

withll = - 1,0, 1. Projecting these states onto the configu
ration space defines the unit vector in the standard basis, we 
get 

ep = (eI11l) • 9 I ,1 P. 

eP=ep+ =(_)I-Pe_
p 

= 91 .. 1JJ. 
(4.2) 

We have now to distinguish between contravariant and co
variant compounds of a vector: 

A • 1P. 
Vp = (V I III ) = V I • 

(4.3) 

V p = V + = (- )I-PV = V I 1.1/1 p -p 

It is now clear that any vector may be projected onto its 
covariant or contravariant components as 

57 

v= (Vie) = L (VI 11l) (lllle) 
p 

= (eIV) = L (eI11l) (lIlIV) 
p 

= L VPep = e t-I _ .. ,",--1~IV. 
p 
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(4.4) 

I 
and one gets the scalar product of two vectors with 

(A IE ) = L (A I III ) ( III IE ) 
p 

=LApBP =.A.I 18 
p 

= (E IA ) = L (E I III ) (lIlIA ) 
p 

(4.5) 
p 

If we express the summation over Il, we get 

(A IE) = (E IA) =AllBI_ 1 +AI_IBll -AIOBIO' 
(4.6) 

The standardization procedure3 links spherical standard 
and Cartesian unit vectors with the relations 

e lO = C( - iez )' e l ± I = ± (C I~)(iex + ey)' 

and we find, with (4.6), that 

(A IE) = (E IA ) = C 2A· B. 

(4.7) 

(4.8) 

If we compare (4.8) to (3.7) it appears that we must impose 
C 2 = 1 to get an identical definition of the dot product in 
scalar and spherical standard coordinates. 

We thus choose C = 1 in the standardization procedure 
(4.7). 

With Alp and B IP standard components of A and B 
vectors (rank-1 tensors) we may define a tensor product as 
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(4.9) 

A~ =[k] 

B~ 
Ar-kq - , 

B 1 

where the usual Clebsch-Gordan and "3im" coefficients 
have been introduced. One then easily obtains the following 
tensor components: 

(i) 1T()()=(lI~)A·B=C()(), 
(4.10) 

(ii) 1Tlq = (lIv'2)(A /\ B)q = C1q • 

It appears that the dot and the vector product of two vectors 
get the same graphical representation in Cartesian and in 
standard coordinates. In other words, 

(4.11) 

In standard coordinates m1m2m3 = 0 ± 1 and m l + m2 
+ m3 = 0, and in Cartesian coordinates m1m2m3 = x y z. 

We can thus define "the vectorial crossing rule" in any 
coordinate system: 

1m1 1m; X'] • • • 1m1 

• • III 1m2 
1m2 1m2 1m2 

(4.12) 

( 
1 1 1 ) (m3 m; m~) 1 ~ =-[8 .8 .-8 .8 .]. 

~ m
l 

m2 m3 1 1 6 m,m, m,m2 m,m2 m,m, 

We can use (4.12) to determine "3nj" coefficients. We get, for instance, 

{! 
while 

1 

1 
(4.13) 

=Hi2- 2]8j '/3{1 il i2}{1 i2 i4J-Hil- 2 ]8j,j.UI i2 1}UI i3 IJ. (4.14) 

(iii) The rank-2 tensor is obtained with (4.9): 

",. = Ar2q = j5 
• 1 
B 

Ay-2q 
+ . 

B 

(4.15) 

The scalar product (3.28) is easily expressed in standard coordinates: 

A B AX" A B 
AI IB I I 5 + 1/2 . ~ 1/3 
61 11') (4.16) 

C 6 c 0 
6 6 

It leads to "the tensorial crossing rule" 
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[ !~1 1m1 .. 
= 1/10 + 

.... 
1m2 m2 

- 2/3 

(4.17) 

1 

m; 

Such a crossing rule gives analytical expressions of particular "3nj" coefficients. We get, for instance, 

=~ +----(-) {1 2} 3 1 ( Iii) 
j 10 JJ 5 2 3 

1 j}, (4.18) 

while a "9j"gives the analytical value 
1 

[ ;: 
+ r j2 

l} = 1/10 h j4 i3 + 
1 1 

+ 

(4.19) 

r j2 l} j4 1 __ 1_ ·-2 6 . j2 I} {j2 j4 1} h 2 - 10 [12 ] i,i,{h 
1 1 

1 [.- 2]6 ( )j, -j,{ . +10 il i,i. - h j2 I) UI j3 1} - _1_( - y, +j, el 

15 J4 

1 

1 
~2} . 
h 

(4.20) 

Another interesting example consists in expressing the tensor force S 12 as given in (3.30) and (3.32) in a standard basis. In that 
case, 

1P. r 1-1 ---t.,...:.....--

and thus 

201r 
S12= ---

3 

We use the contraction rule of the two spherical harmonics I to get 

SI2 = _ 41T (1 
3 0 o ~) [1 1 2] 

~ 

= _~1T ~ S(I)SI2)y (r)('"" 
3 k I,. Iv U. 1 

,.VA. 

v 2) 
A . 

Such an expression of the tensor force is more suitable to handle with the Wigner-Eckart theorem, for instance. 
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We have thus defined a "spin-! crossing rule" in (1.2) or 
(1.3), a "vectorial crossing rule" in (3.15) or (3.23) or (4.12), 
and a "tensorial crossing rule" in (3.29) or (4.17). One can 
probably extend the procedure to higher spin values by a 
direct summation in Cartesian coordinate systems for in
teger values of the spin, but the interest of such rules lies 
essentially in their simplicity. 
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Relation between the supertableaux of the supergroups OSP(212) and SU( 112) 
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The classification and the interpretation of the Young supertableaux of the orthosymplectic 
group OSP (212) are given. A comparison is made with the supertableaux of the superunitary 
group SU(112) taking advantage of the isomorphism ofthe corresponding superalgebras. 

I. INTRODUCTION 

The simplest orthosymplectic group having both typical 
and atypical finite-dimensional representations is OSP(212). 
A second interest for this supergroup if the isomorphism of 
its superalgebra C(2) with the superalgebra of the superuni
tary group SU(112). 

The purpose of this paper is an analysis of the Young 
supertableaux of OSP(212). We determine the SO(2)X Sp(2) 
content of the supertableaux by using the tensor product 
method. This allows us to connect the supertableaux with 
representations of C(2). As a result we obtain typical repre
sentations and atypical non-fully-reducible representations 
only. Of course all these representations are self-contragra
dient. 

In the last parts we recall a few results concerning the 
supertableaux of SU(112) and we make the comparison 
between the two sets of supertableaux associated to isomor
phic superalgebras. 

II. GENERALITIES 

Let V be a graded four-dimensional vector space and G 
an even bilinear form written in a convenient basis as 

1 0 

G= 0 
o 0 
o 0 

o 0 
o 0 
o 1 

-1 0 
We have two possible graduations for V, £v = ± 1, depend
ing if the grade ga = 0 or 1 modulo 2 of the indices 

£v = + 1, gl = g2 = 0, g3 = g4 = 1, 

£v= -1, gl=g2=1, g3=g4=0. 

The orthosymplectic group OSP(212) is the set of graded 
linear transformations in V leaving invariant the even bilin
ear form G. Its superalgebra is the set of generators super
anti symmetric with respect to G. In Kac's notation this su
peralgebra is C(2) (see Ref. 1). 

The Bose sector ofC(2) is the Lie algebra ofSU(2) ® Sp(2) 
or, by isomorphism, of U( 1) ® SU(2). 

The irreducible representations of C(2) are defined by 
their highest weight, e.g., by two Kac-Dynkin parameters a 1 

and a2: a l is an arbitrary complex number; and a2 is a non
negative integer-it is the Sp(2) Dynkin parameter. We shall 

"I Postal address: LPTHE Universite Pierre et Marie Curie, Tour 16-1« 
Etage, 4 Place lussieu 75230 Paris Cedex 05, France. 

use the notation 

la 1la21 
for an irreducible representation of C(2). 

The hidden SO(2) generator k has eigenvalues related to 
the Kac-Dynkin parameters as follows2

: 

k =a l -a2• 

When the graduation of V is £v = + 1 we have class I 
representations, and when it is £v = - 1 we have class II 
representations. The simple connection existing between 
class I and class II representations allows us to restrict from 
now to class I representations. 3 

Young supertableaux have been defined for the simple 
classical super groups3.4 and in particular for the orthosym
plectic group OSP(212). 

III. METHOD 

The method of investigation of the properties of the 
OSP(212) supertableaux is the tensor product method al
ready extensively discussed in previous publications.s.6 We 
start with the one box supertableau describing the four-di
mensional typical irreducible representation 1110 J, where 
the orthosymplectic group OSP(212) is defined. The 
SO(2) ® Sp(2) components of this representation are 

o Ie "" 1 

Ie "" 0 0, 
Ie -1 

where 1 is the singlet representation of Sp(2). 
The simplest case is the tensor product of one box by 

itself and we have 

4 X 4 = 8 + 7 + 
where 1 is the zero box supertableaux ofOSP(212). 

The dimensions indicated are computed with the deter
minant techniques of Balentekin and Bars.3 

The first supertableau corresponds to a second-rank su
perantisymmetric tensor and it describes the eight-dimen
sional adjoint representation 1211 I. 

The supersymmetric subspace of the tensor product 
V ® V contains the invariant one-dimensional subspace asso
ciated with the conserved form G. However, a direct calcula-
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tion3 shows that this subspace cannot be substracted and the 
same result holds for any orthosymplectic group 
OSP(2pI2p). The supersymmetric subspace is then a non
fully-reducible representation of dimension 8 associated to 
the set of supertableaux ( rn + 1 ). 

This set will be called a generalized supertableau5.6 and we 
use the notation 

OJ· 
IV. INTERPRETATION OF THE SUPERTABLEAUX OF 
OSP(212) 

The supertableaux of OSP(212) have one row and one 
column of arbitrary length. The class I supertableaux are 
conveniently parametrized as indicated on Fig. I (see Ref. 2). 
The highest weight of the supertableau K, v is given by a 
Young tableau ofSp(2) with v boxe!! and the eigenvalue of the 
S0(2) generator k = K. This highest weight will be denoted 
by(v+Klv). 

Besides the zero box supertableau 1, which has the high
est weight (010) and which describes the singlet representa
tion {O I O} of OSP(212), the atypical supertableaux are those 
for which the lengths of the row and the column are related 
by 

K=2+v. 

This relation corresponds, for the Kac-Dynkin parameter a 1 

of the highest weight, to the atypical value 

a l = 2(1 + a2 ). 

The one-column supertableaux K = 1 are all typical and 
they describe the irreducible representation ofOSP(212), 

{v+ Ilv}. 

This representation has, for v;> 1, four SO(2) ® Sp(2) compo
nents distributed in three levels in k, 

k = 1 v, 

~ ________ ...JI v+ 1 
k = 0 

v-I, 

k = -1 v. 

____ K ___ 

\ FIG. 1. Supertableau ofOSP(212). 

v 

) 
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It is a self-contragradient representation of dimension 
4( I + v). The case v = 0 has been considered in Sec. III. 

For the supertableaux K > I we have to take into account 
the reducibility 0(2) => SO(2) (see Ref. 2). Consider first the 
typical cases where K=/=2 + v. The supertableau describes 
the direct sum of two irreducible typical representations of 
OSP(212), 

{v +Klv} e {v+ 2 -Klv}. 

Each of these representations has, for v;> 1, four 
SO(2) ® Sp(2) components distributed in three levels in k and 
the reduction of the supertableau with respect to 
SO(2) ® Sp(2) is the following: 

k = K v, 

k=K-l 
, ________ ---J1 v + I 

v-I 

k=K-2 v, 

k = 2-K v, 

(, ________ ..J1 v + I 
k = l-K 

v-I 

k = -K v. 

The two contragradient irreducible representations 
{v + Klv} and {v + 2 - Klv} have the dimension 4(v + 1) 
and the typical supertableau has the dimension 8(v + I). 

Let us now discuss the atypical case K = 2 + v. Such 
supertableaux are easily obtained in the tensor product of a 
typical supertableau T by the one box supertableau. As a 
result of the tensor product method we observe the produc
tion in pairs (T1,T2 ) of atypical supertableaux with 

T1 =>v+2,v, T2=>v+l, v-l. 

This pair is called a generalized supertableau and it is noted 
as in Fig. 2 (see Refs. 5 and 6). 

____ v + 2 

\ 
v 

/ 

FIG. 2. Generalized super
tableau ofOSP(212). 
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The case v = 0 has been discussed in Sec. III. 
The dimension of the atypical supertableau TI as given 

by the determinant method is3 

8(1 + v) + ( _ )1 + ", 

and for the pair (TI' T2) we get the dimension 8(2v + 1). 
The two supertableaus TI and T2 cannot be separated 

and they are associated to non-fully-reducible representa
tions of OSP(2 12) with four atypical components. 

For v = 0 the generalized supertableau introduced in 
Sec. III, 

describes the self-contragradient non-fully-reducible repre
sentation of dimension 8 ofOSP(212) whose atypical compo
nents are 

{210h + 2(010) 1+ (011)3' 

For v> 1 the generalized supertableaux are associated to 
pairs of contragradient non-fully-reducible representations. 
We now make precise the atypical components of these re
presentations. 

For v = 1 the generalized supertableau 

(EfTI + IT]) => EfTI 
has the dimension 17 + 7 = 24 and the two 12-dimensional 
non-fully-reducible representations are 

[(411)s+2{210h+ (010)1] 

e [(012)s + 2(011)3 + (010) I]' 

For v>2 the atypical components of the supertableaux are 

[{2v+2Iv) +2{2vlv-l) + {2v-2Iv-2)] 

e[{Olv+ 1) +2{0Iv) + {Olv-l)]. 

Resume: The set of the supertableaux ofOSP(212) gener
ated by tensor product from the fundamental representation 
{ 110) of C(2) is conveniently divided into two classes. 

(i) Class A: v + K is even. It is a subset of the supertab
leaux generated by the tensor product from the adjoint re
presentation (211) of C(2). In this set we find typical super
tableaux and generalized supertableaux. 

(ii) Class B: v + K is odd. It is not a subgroup and it 
contains only typical supertableaux. 

Obviously class A is the factor group of the full set of 
supertableaux by Z2' 

V. THE SU(112) SUPERTABLEAUX 

The representations and the supertableaux have been 
extensively studied3 and we only briefly here recall a few 
results for the purpose of comparison. 

The superalgebra of the superunitary group SU(112) is 
denoted A(O, 1) by Kac and its even part is the Lie algebra of 
U( 1) X SU(2). The irreducible representations of A(O, 1) are 
defined by their highest weight and denoted 

A, A2 

® 0, 
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where A I is an arbitrary complex number andA 2 a non-nega
tive integer, i.e., a SU(2) Dynkin parameter. The U( 1) gener
ator Q has eigenvalues given by 

Q=AI - ~A2' 

The two superalgebra C(2) and A(O,I) are isomorphic 
and the correspondence between the Kac-Dynkin param
eters is as follows: 

Al =a/2, A2 = a2, Q = k12. 

The supertableaux of the superunitary group SUI 112) 
are constructed by the tensor product of the two contragra
dient fundamental representations 

o 
®--o and 

o 
®--o 

The corresponding set of involved representations has 
integer algebraic values for A I' 

It is convenient to classify the SU(112) supertableaux in 
two classes. s 

(i) Class flo: naturally typical supertableaux. We have 
here typical supertableaux describing typical irreducible re
presentations ofSU( 112) and generalized supertableaux asso
ciated to non-fully-reducible representations ofSU(112) with 
four atypical components. 

(iO Class t::.): naturally atypical supertableaux. They are 
associated to the atypical irreducible representations of 
SU(112). 

We shall consider in what follows the class I supertab
leaux of SU(112) by grading the three-dimensional space 
V = Vo + VI of the fundamental representation ~_~ as 

dim Vo = 1, dim VI = 2. 

The SUI 112) supertableaux of the CLASS t::.o are charac
terized by one row and two column parameters for two Kac
Dynkin parameters A I and A 2• Therefore we can introduce 
in t::.o a relation of equivalence for supertableaux associated 
to the same representation ofSU(112). e.g., having the same 
dimension and the same U(I) ® SU(2) content. Such a rela
tion holds for typical supertableaux and generalized atypical 
supertableaux. S In the examples used in the next section we 
shall choose the simplest supertableau of the family for illus
tration. 

VI. RELATION BETWEEN THE SUPERTABLEAUX OF 
OSP(212) AND SU(112) 

We first observe that the class B supertableaux of 
OSP(212) are associated to representations with a l odd and 
therefore A I half-integer. Thus they cannot be related to su
pertableaux ofSU(112). 

The class A supertableaux of OSP(212) describe either 
typical representations or non-fully-reducible atypical re
presentations ofOSP(212). Therefore they cannot be related 
to the atypical irreducible supertableaux of class t::.1 of 
SU(112). 

The only possible overlap between the two sets of super
tableaux concerns only the class A supertableaux of 
OSP(212) and the class t::.o supertableaux ofSU(112). 

ForK = I, v = 2N - 1 (N)I)theOSP(212)supertableau 
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of highest weight (2N, 2N - 1) describes the self-contragra
dient irreducible typical representation of A (0,1), 

For K> 1, v + K = 2N typical (N)2, N::I= 1 + v) the 
OSP(212) supertableau of highest weight (2N I v) describes the 
direct sum of two contragradient irreducible typical repre
sentations of A (0,1), 

N 2N-l 

8 a 
and it is associated to a one-parameter family of equivalent 
irreducible typical mixed supertableaux of SUI 112). Let us 
give the two examples N = 1 and N = 2: 

1 1 
8-0 => 

N v v+ 1- N v 
8---0 8---0 

=> ; ---~, => ttl 
and it is associated to a one-parameter family of equivalent 
pairs of irreducible typical supertableaux of SUI 112). Let us 
give the two examples for N = 2: 

=> 

=> 

2 a 
8-0 

2 2 
8--0 

- 1 a r--....----, 

ED 8-0 => ... I_ ........ _..J 

1 2 
8-0 

For K = V + 2 the pair T, and T2 of atypical supertableaux of OSP(212) with highest weights (2v + 2Iv), (2vlv - 1) is a 
generalized atypical supertableau and it describes for v> 1 the direct sum of two contragradient non-fully-reducible represen
tations of A(O, 1) with four atypical components. This generalized atypical supertableau ofOSP(212) is then associated to a one
parameter family of equivalent pairs of generalized atypical supertableaux ofSU( 112). Let us give three examples for v = 0, 1, 
2. 

For v = a we have the eight-dimensional self-contragradient non-fully-reducible representation of A(O, 1) 

rn => . I . II I I· 
8 8 

For v = 1 we have two 12-dimensional non-fully-reducible representations of A(O,I) 

=> .1 ~ 1 ED 1·1·1 I· 

24 12 12 

For v = 2 we have two 20-dimensional non-fully-reducible representations of A(O, 1) 
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40 20 20 

For the description of the generalized atypical supertableaux of SUI 112) see Ref. 5. 

VII. CONCLUDING REMARKS 

The classification of the Young supertableaux of the 
orthosymplectic group OSP(212) has been made by using two 
different criteria: (i) the size of the supertableau defined by 
the value of the parameter K, 

K=O, K= I, K> I, 

and (ii) the structure of the full set of supertableau with the 
parity of v + K, the center of the orthosymplectic group 
OSP(212) being isomorphic to Z2. 

These two types of considerations can be extended to the 
orthosymplectic groups OSP(212p) and the results will be 
given in a later pUblication. 

The isomorphism of the superalgebra C(2) and A(O,l) 
allows us to control our results by making a comparison with 
those obtained for the supertableaux of the superunitary 
group SU(112). The analogies and the differences between 
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the two sets of supertableaux have been explained and ex
plicit examples of correspondences have been given. 
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Secular terms occur in many perturbative solutions of nonlinear equation systems. In this work, 
an investigation is made of which cases they may occur in as the result of the application of the 
linear Carleman embedding to a system of nonlinear equations. The solution for the embedded 
system is written in a form that makes it convenient to see how these terms originate. Their 
occurrence for the general case is discussed and the results are exemplified by working out the 
Henon-Hei1es system. 

I. INTRODUCTION 

Secular terms appear very often in connection with per
turbative expansions of the solution of a system of nonlinear 
equations. These terms should be avoided when we look for 
approximate solutions over several revolutions of the sys
tem. Otherwise they will cause steadily growing amplitudes 
with time, in disagreement with the observed motion in the 
majority of cases. The anharmonic oscillator is a simple sys
tem where secular terms do appear if conventional straight
forward perturbation expansion is performed. 

The concepts of Carleman embedding (CE) and secular 
terms have been put together in a review article on the CE by 
Montroll and HeIleman. 1 They employ the CE to recover the 
known exact solution ofthe logistic equation, and show how 
it can be used to develop a perturbation theory without secu
lar terms. This last point is illustrated by the analysis of the 
anharmonic oscillator. Since this work, some attempts have 
been made to apply the CE to more complex systems. Steeb 
and Wilhelm,2 have treated the two-dimensional Lotka
Volterra system in a first-order approximation, with results 
in agreement with the first term of an expansion of the limit 
cycle. In the context of the Lorenz model, Andrade and 
Rauh3 show that any finite-order approximation given by 
the CE breaks down at the turbulent threshold. 

The present work has been motivated by an analysis of 
the Henon-Heiles system.4

•
5 We wished to investigate how 

the CE would work near the transition to chaos in this mod
el. Unlike the case of the Lorenz model, this transition is not 
associated with a stable fixed point that becomes unstable at 
a well-defined threshold value of a control parameter. In the 
Henon-Heiles model, we have a large region of values of the 
energy where there are two kinds of coexisting trajectories, 
namely, those lying on the surface of the two-dimensional 
tori, and those which are chaotic. We have found that the 
approximate solutions are always similar, for all values of 
the energy, without any recognizable structural difference 
between a chaotic and a regular regime. Moreover, secular 
terms are present in the approximate solutions of order larg
er than 1. This behavior, of course, contrasts with the pro
posals of Montroll and Helleman,1 who emphasize the ab
sence of secular terms within the framework of the CEo A 
critical reading of the paper of Montroll and HeIleman, how
ever, reveals that the absence of secular terms is not due to 
the CE itself, but rather to a subtle expansion of the oscilla
tion frequency which is carried out by the authors together 

with the embedding. Similar expansions of the frequency 
may be performed without any connection with the CE, and 
are related to the evaluation of the so-called Poincare recur
rence time.6•7 

The main purpose of this work is to clear up these 
points. Also, we present a detailed discussion of the occur
rence of secular terms when a given nonlinear system is 
treated by the CE only, without any extra approximations as 
in the paper of Montroll and Heileman. We think it is impor
tant to discuss the occurrence of the secular terms even if we 
wish to avoid them. This discussion provides a deeper insight 
of the method itself, and allows some comparisons between 
the CE and other methods which show the same kind of 
problem. In this paper we formally consider an autonomous 
system of P equations with quadratic nonlinearities and sup
pose, for the sake of simplicity, that it is written in a coordi
nate basis with a diagonal linear part. Section II is devoted to 
developing the formal CE solution of the system into a form 
which is particularly useful for the discussion of the occur
rence of secular terms. This will be accomplished in Sec. III, 
where we show which terms may appear in each block of the 
infinite CE time evolution operator. In Sec. IV we illustrate 
the discussion of the preceding sections by the presentation 
of some results for the Henon-Heiles system. Finally, we 
make some concluding remarks in Sec. V. 

II. THE SOLUTION 

We consider a P-dimensional system described by the 
vector x(t), whose equations of motion may be written as 

dx _ =Ax+BxI2 ] 

dt ' 
(1) 

where A and B are constant matrices of order P xP and 
P X P 2, moreover A is. supposed to be diagonal, and 
x[2l =x®xisaP2-dimensionalvector,where ® denotes the 
Kronecker product.2,8 After proceeding with the embedding 
of the original system, we are led t02

,8 

o 
o ::: )(=;::). 

BN xlN ] (2) 

66 J. Math. Phys. 27 (1), January 1986 0022-2488/86/010066-05$02.50 @ 1985 American InstiMe of Physics 66 



                                                                                                                                    

or, in shorthand notation 

!!.-X=MX. 
dt 

(2') 

In (2) we have 

x lN ] = X IN - I ] ®x, xII] = x, 

AN=A'®IN-'+I'®AN-', A'=A, (3) 

B N = B I ® I N - I + I I ® B N - I, B I = B, 

where I N indicates the pH X pH identity matrix. Our inten
tion is to write the solution of (2') as 

X(t) = exp(Mt)X(O) = Texp(Mt)T-IX(O), (4) 

where T is the matrix which transforms M into its diagonal 
form M. We will write T in terms of its block components 
denoted by capital indices TL,K' The dimension of such a 
block T £OK is pL X pK . Due to the structure of M and to the 
fact that theA I (and hence allAN) are diagonal matrices we 
have 

TL,l( = 0, L >K, TK,K = I K. (5) 

The blocks of the inverse matrix T -I = U will be denoted by 
U L,K of order pL X pK , and may be easily expressed in terms 
of the TL,K by 

UL,K = (-I)L+KDet(T')K,L' (6) 

where (T')K,L is the matrix obtained from T by elimination 
of the K th block line and the L th block column. Now, 
Det(T')K,L indicates a matrix ofdimensionpL xpK which is 
obtained by performing matrix multiplications and sums 
among the blocks of (T ')K,L in the same way we calculate the 
determinant of a matrix. As a matter of fact, (6) is the block 
equivalent to the well-known expression for the elements of 
the inverse matrix. In the evaluation oft 6) we must pay atten
tion that the order ofthe factors TL,K in each term must be 
such that the several matrix multiplications are possible, but 
the product of an identity block by another identity block (or 
by a nonsquare block) does not afford them to be compatible 
in the sense of usual matrix multiplication. For instance, we 
have 

UL,L = I L, UL,L + I = - TL,L + I' 

(7) 

UL,L+2 = TL,L+ I TL+ I,L+2 - TL,L+2' 

The results above do indicate how we can bring (6) to the 
simpler form 

J+K-I 
~ UL,MTM,L+K' 

M=J 
(8) 

The blocks TL K and U L K are to be determined from the 
condition M = UMT, and ~ we have ML,K = AL 8L,K we 
get 

K K-I 

A L8L,K = ~ UL,MA MTM,K + ~ UL,MBMTM+ I,K' 
M=L M=J 
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(9) , 

When L = K, the above equation becomes an identity; when 
L =l=K, it gives the relations which determine the TL,K' Mak
ing use of (8) we can reduce (9) to 

-TM,KAK +BMTM+"Kl =0. (10) 

Since (10) must be valid for any K, the T M,K will have to 
satisfy 

AMTM,K-TM,KA K = -BMTM+I,K' (11) 

At this point we shall introduce a new notation for the blocks 
of T and U, which takes into account better the fact that the 
solution of (11) is dependent of the diagonal the block be
longs to. So let 

TL,K = TL,L+K' UL,K = UL,L+K' (12) 

With this notation it becomes clearer that (11) gives a solu
tion for the blocks oftheK th diagonal in terms of those of the 
(K - 1 )th diagonal. The components of this block are ex
pressed as 

BL .TL+ I,K-I 
TL.K _ ~ mJ J,n 

m," - ~ A L + K _ A L 
J" m 

(13) 

Now if we successively explicit the ]L,K - I in terms of the 
]L,K - 2 , ]L,K - 3 , and so on, we get the general result 

(14) 

The next task is to determine the U t;t, starting from (8). We 
will not deduce it here, but we can easily see that if we insert 
the expression 

(15) 

together with (14) into (8) we come to an identity. 
Now we can finally write down the evolution operator 

exp(Mt). Since we are interested in the evolution of the first 
block component XII] = x of X, we concentrate on the eva
luation of the block components (~t kK' 

(16) 

If we define (~t) I,K = (~t kK + I , and make use of the nota
tion introduced in (12) we get 

K 

(~t)I,K = ~ ~ TI.M.(efM+lt).U~,K-M. (17) 
m,n ~ ~ m,J 'J J,n 

M=O j 

Now we insert expressions (14) and (15) into (17) to get the 
explicit form of the (~t H~fK 
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We proceed one step further and bring (18) to a more conven
ient form for the analysis we will undertake in Sec. III, 

K-I 

(~t)I.K - ) II B N + I 
I .. IK - I .... ~_I N= I ,IN' IN + I 

(19) 

where we consider that 

1
. 1-8N.M 
1m = 1. 

M_N A MI + I _ A f" + I 
M N 

(20) 

III. DISCUSSION OF THE SECULAR TERMS 

In this section we will discuss the conditions necessary 
for the secular terms to occur. Ifwe consider (19) we see that 
it is much like the expansion coming from perturbation the
ory for the eigenvalues of a perturbed Hamiltonian 
H = Ho + J.,H' in terms of the eigenvalues of Ho. It is well 
known that this expansion breaks down whenever you have 
degenerated states. A similar fact happens in (19) when we 
have 

AMI +1 =Af"+I. (21) 
M N 

In such a case the denominator in (19) goes to zero. However, 
due to the presence of the sum in M, we have two (or more) 
terms in (19) with the same denominator which will cancel 
each other, leading to an indetermination of the type 0/0 
which is responsible for the secular terms. In order to see 
when (21) may occur, we have to consider that the eigenval
ues A ~ of A M may be expressed in terms of the eigenvalues 
A! of A I as4•S 

p p 

A ~ = L cnA!, O<cn eN, L cn =M. (22) 
n=1 n=1 

So (22) indicates that (21) will be satisfied for large enough 
values of M and N provided 

A~/A!=plq, p,qeZ, (23) 

for at least one pair of eigenvalues of A I. 

Before we start performing a detailed analysis of the 
occurrence of secular terms, we make simplifying changes in 
the notation and consider only the part oft 19) that is relevant 
for the secular terms. So, for a given value for the set (Iv I in 
(19) we consider the subset S g with q + 1 elements of the set 
{A ~ + I} such that 

(24) 

We may consider, without loss of generality, that these ele
ments are theA ~ + I, M = 0, 1, ... ,q, and will write henceforth 

M 

a -AM+I 
m - 1M • (25) 

Then the occurrence of secular terms for that particular 
choice of the {I k I will depend upon 

(26) 

In (26) it is sufficient to take the sum until m = q, since the 
terms with m = q + 1,q + 2, ... ,K do not contribute to the 
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secular terms associated with the set S g . 
The evaluation of the Q g is performed by the usual limit 

procedures, e.g., by writing an = ao (1 + rn), n = 1,2, ... ,q, 
and then taking the limit as r n -0. As a result of the limit 
procedure we arrive at the expression 

Qg =ea"t f 1 ± ~ 
n=q+1 ao-an .=0 sl 

q-. 1 
X L II . 

nl~ ... ,nq_s=q+la=1 ana -ao 
(27) 

We verify easily that (27) holds for low values of q. and for 
larger values we may proceed by induction to show that it is 
valid overall. This proof. though simple. is too lengthy to 
justify discussing the details here. 

Now we recall the most important features, which indi
cate the number and the order of the secular terms that ap
pear in any block (~t )I.K • This time-evolution block is given 
by (19). in which several sums are to be taken over the set of 
indices {/o,/I, ...• iK }. For each set of values that these indices 
may assume. we ought to perform another sum over M 
= 0,1 •... ,K. We determine, for that particular choice ofthe 

{lK I. the subsets SgO,sT' •... ,s~t of the set (A ~+ I, M 
= 0,1 , ... ,K I, such that all q n + 1 eigenvalues belonging to a 

givenS :'are equal. Now in the sum over M we group togeth
er all those terms corresponding to the' values of M for which 

the A ~ + I belong to the same set S :., and call this group of 

terms Q :'. Each of the Q:' will contain secular terms of 

maximal order t q., whose general expression is given by (27). 
Now the highest-order secular term appearing in (19) for that 
particular choice of the (I K I is proportional to t t, where 

q = max { qo.q\> ... ,qt I. (28) 

The number of secular terms in (~t) I.K increases mono
tonically with the value of K. This block will contain all 
secular terms which had already appeared for lower K's and 
also new terms. These are due either to new eigenvalues that 
become equal, leading to secular terms associated with a new 
frequency, or to a larger number of equal eigenValues already 
present in former blocks, which lead to a higher-order term 
associated with that frequency. 

IV. EXAMPLE 

We have undertaken an analysis ofthe Henon-Heiles4
•
s 

model along the lines described in Sec. II and III. Several 
approximations for the trajectories have been evaluated, by 
considering different cutoffs of the matrix M. For each cut
offwe determined the blocks (~t )I.K, and then approximate 
the solution. The model we worked with is described by the 
following Hamiltonian: 

H(ql,q2,PI,P2) = !(p~ + p~ + q~ + q~) + q~q2 - qU3. 
(29) 

This model is nonintegrable and the trajectories in the phase 
space are qualitatively different, depending upon the energy 
E of the system. In what follows we restrict the discussion to 
the cases where E < 1. For energies far lower than 1. the tra
jectories are confined to tori in the phase space. Increasing 

A. S. C. Esperidilo and A. F. S. Andrade 68 



                                                                                                                                    

the energy until E = ! makes the trajectories leave the invar
iant tori and meander chaotically in the space among those 
most stable tori, which do exist until E =!. Despite the dif
ference in the character of the trajectories for different values 
of E, all of them remain bounded in this range of energy. 

If we write the equations of motion for the system de
scribed by (29), it turns out that the matrix A I, which gives 
the linear part of the system is not diagonal, as the previous 
discussion affords it to be. We change then to a new coordi
nate basis in order that the matrix A I becomes a diagonal. In 
this new coordinate basis we have 

Qj = 2 -1I2(qj _ ipj)' Pj = 2 -1I2(qj + ipj). (30) 

The eigenvalues of A I are ± i, each one double degener
ate. This indicates, according to (22), that the eigenvalues of 
AM will be of the form 

i(M - 2m), m = 0,1, ... ,M. (31) 
The nonlinear part is described by the matrices BN

, as indi
cated in (2). It is originated by the cubic terms in the Hamil
tonian. 

Now we consider several approximations. An sth-order 
approximation takes into account the first s + 1 blocks AM 
and s blocks BM. The zeroth-order approximation is that 
which considers no informations of the nonlinear part. The 
trajectories are the same as for the harmonic oscillator, and 
expressed by trigonometric funtions of t. 

The first-order trajectories are still limit cycles, but now 
they contain harmonic contributions. There is still no secu
lar term at this order, for there is no degeneracy between the 
eigenvalues of A I and those of A 2. We write below the time 
evolution for ql at this approximation 

q~I)(t) = ci?)(t) + H q?q~ + ~p? p~)cos t 
- i( p? q~ + p~ q? )sin t + !(q? q~ - p? p~ )cos 2t 

+ 11 0 0 + 0 0)' 2 I 0 0 0 0) 'l,PI q2 ql P2 slO t - ,qlq2 + PI P2 , (32) 

where superscript 0 indicates the values of the coordinates at 
t = O. In terms of the accuracy, this approximation is equiva
lent to that presented by Steeb2 for the Lotka-Volterra mod
el. 

The second-order approximation gives trajectories 
which do contain secular terms of the type t sin t and t cos t. 
Hence they are not limit cycles, but open orbits which revo
lute with increasing amplitUde. The presence of these terms 
is due to the occurrence of the cases A L = A ~2 = ± i in the 
sums of expression (19). The approximation also includes 
higher harmonic contributions, as becomes clear in the 
expression below for the ql(t) when q~ = p~ = 0: 

69 

ciI2)(t) = cill)(t ) + iP,(q?3 - 3q? p?2)COS 3t 

+ ~(q?3 + 4q? p?2)COS 2t 

+ Th (29q?3 - 55q? p?2)COS t 

- q?3/3 + 'f,Jq?3 + q? p?2)t sin t 

+ iP,(3P? q?2 - p?3)sin 3t 

+ M2P?3 - p? q?2)sin 2t 

+ Th(5p?3 + 65P? q?2)sin t 

- -fi(P?3 + p? q?2)t cos t. 
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(33) 

The next approximation would consider four diagonal 
blocks. We have not worked out this case explicitly, but we 
are in a position to indicate which terms it will contain, based 
on the results of the previous sections. In the case of four 
blocks, besides those terms already present in (33), there 
would appear two more terms, which are linked with the 
cases A 1, = A t = 0, ± 2i in (19). Such analysis may be ex
tended to higher-order approximations with the following 
general result: the blocks (eMt)I.K will contain secular terms 
of maximal order L, when K = 2L or K = 2L + 1. 

We should consider two points about the presence of 
secular terms in the approximate solutions of the Henon
Heiles system. The first has already been partially referred to 
in the Introduction; they indicate a growing amplitude, 
whereas the orbits are bounded for values of E < !. 

The second is connected to other general aspects of the 
trajectories of the system. They are not limit cycles, and the 
time interval between two successive intersections with a 
plane in the phase space oscillates around 21T. If there were 
no secular terms, the approximate trajectories would be limit 
cycles with period 21T at any order considered, since all 
eigenvalues of M are of the form given by (31). That would 
not agree even qualitatively with the observed picture. So the 
presence of secular terms seems to be necessary and is, per
haps, the only way this method can display non periodicity 
and other nonlinear features of the solution of the system. 
An infinite number of such terms will certainly sum up to 
give the right solution, but as long as we are faced with a 
finite number of terms, the problems discussed above for the 
solution (33) will appear. 

v. CONCLUSIONS 

We have discussed the occurrence of the secular terms 
in the solution of a system of nonlinear equations using the 
method of the Carleman embedding without any concomi
tant perturbation expansion. We have obtained the formal 
CE solution of the system under consideration and brought 
it to a form particularly useful for the analysis of the occur
rence of secular terms. If we concentrate on the blocks of the 
type (eMt )I.K, which are responsible for the description of the 
trajectories, we show that these terms will occur whenever 
we have two (or more) equal eigenvalues which belong to 
different diagonal blocksAL and AN of the matrixM, with 
L,N<.K. 

The occurrence of secular terms in the blocks (~t) I.K is 
cumulative, since these blocks, for a given K, will contain all 
secular terms already present in the blocks with lower K, in 
addition to new terms. These new terms are due to the fact 
that either new eigenvalues become equal or the number of 
equal eigenvalues already present for lower K have in
creased. Since there is a well-known recurrence relations for 
the eigenvalues of AN in terms of the eigenvalues of the block 
A I, it turns out that it is quite simple to see which terms will 
appear in a given order of approximation of the solution. 

We have illustrated the use of the general results ob
tained in this paper by presenting our early expressions for 
the approximate solution of the Henon-Heiles system. The 
occurrence of secular terms has been explicitly shown for a 
second-order cutoff, and a general discussion of the presence 
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of other secular terms for higher-order truncations has been 
presented. 
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Let A be a (random) self-adjoint operator with fixed orthonormal eigenvectors, but with 
independently distributed random eigenvalues. [Typically, for the eigenvalue distributions, A is 
considered to have a dense point spectrum almost surely (a.s.).] A class of perturbations {B } is 
exhibited such that A + B has only point spectrum a.s. Examples are also constructed, including a 
rank-one perturbation B, such that A + f.tB has no eigenvalues (for f.t #0) a.s., despite A having 
dense point spectrum a.s. 

I. INTRODUCTION 

In this paper we wish to make a few remarks about per
turbations that preserve the pure point (p. p.) spectrum of 
self-adjoint operators. Such questions are often of interest in 
physical problems where one wishes to know, at least qual
itatively, what happens to the eigenvalues of some given op
erator under a weak perturbation. Here, however, we con
sider the problem from a purely functional analytic point of 
view. The setting we consider is probabilistic: Let A be a 
(random) self-adjoint operator with fixed orthonormal ei
genvectors, but with independently distributed random 
eigenvalues. [Typically, for the eigenvalue distributions we 
consider, A has dense point spectrum almost surely (a.s.).] 
We exhibit a class of perturbations {B } such that A + B has 
only point spectrum a.s. We also construct examples, includ
ing a rank-one perturbation B such that A + f.tB has no 
eigenvalues (for f.t#0) a.s., despite A having dense point 
spectrum a.s. Aronszajn 1 and Donaghue2 have constructed 
self-adjoint operators A with p. p. spectrum and self-adjoint 
rank-one perturbationsB such that A + f.tB has no eigenval
ues for f.t #0. Our second result extends their theorem to a 
probabilistic setting and shows that their examples are "typi
cal" rather than exceptional. 

Our first theorem (Theorem 2.1) is a result concerning 
the stability of point spectrum. It can be regarded as an ab
stract operator version of deeper theorems on the stability of 
p. p. spectrum in classical and quantum mechanics. Perhaps 
the most renowned theorem of this type is the Kolmogorov
Arnol'd-Moser (KAM) theorem.3

-
s Suppose one is given a 

smooth, integrable, classical mechanical system with Hamil
tonian Ho. There exist "action-angle" variables6 such that 
the trajectories of the system are just translations T~ on an 
N-dimensional torus T Nby the vector {J)t, where t is the time, 
for some (J) ERN. Provided (J) satisfies certain "nonreson
ance" conditions (almost every (J) E RN satisfies these condi
tions), then for sufficiently small, smooth V, there will be 
trajectories of the system with Hamiltonian Ho + V which 
lie on some smooth N-dimensional manifold M. Further
more, if S, is the flow on M given by solving Hamilton's 
equations, there is a canonical transformation C: M-..T N 

such that S, = C -I T~C. To see the connection of these re
sults with the preservation of point spectrum, recall that 

Koopman's lemma implies there are unitary maps U: from 
L 2(M,d...t ) into itself and U '{ from L 2( T N,d ...t ) into itself (...t is 
the Liouville measure) given by (UV")(x) =/(S,(X)) and 
(U '{/)(x) = /(x + (J)t). Furthermore one can calculate the 
spectrum of U ,{, which consists of the eigenvalues 
{ei'Vo>l } 'VE ZN' On the other hand, we can define a unitary map 
VC:L 2(M,d...t) -..L 2(TN,d...t )by(Vc/)(x) = (/0 C)(x). (The 
unitarity of V C follows from the measure-preserving proper
ty of canonical transformations.) A little calculation gives 
VCU: = U,{Vc, so U:has the same eigenvalues as U'{ and 
in particular it has p.p. spectrum. 

The next examples of the p.p. spectrum are random 
Schrodinger operators. 7

•
8 In these examples one considers a 

space of operators 0 and defines a probability measure m on 
O. One also assumes that there is some transformation T 
acting on 0 such that m is invariant with respect to T. Typi
cally, an element in 0 is of the form - A + V, where A is the 
one-dimensional Laplacian, or its discrete approximation, 
and Vis an element of L ""(R) or I OO(Z). The measure m is a 
probability measure on one of these two spaces, and T is 
taken to be the translation operator. A more general situa
tion is considered in Ref. 8. One then proves that any H E 0, 
almost surely (with respect to m) has p.p. spectrum. The 
existence of the transformation T and the invariance of m 
with respect to T play an important role in the proof. 

The final examples of the p. p. spectrum are Schrodinger 
operators with limit periodic potentials.9-12 One considers 
the operator H = - f.tA + V, with f.t a small coupling con
stant, A the discrete Laplacian, and Va limit periodic func
tion on ZN, N> 1. Limit periodic potentials V were construct
ed such that H had pure point spectrum. The most common 
examples consist of fixing a function Vobeying certain nOIk 
resonance conditions, and then finding some function V 
such that H = - f.tA + V has spectrum V. A more difficult 
question is to determine whether or not H = - f.tA + V has 
p. p. spectrum for some given V. A few examples are known 
where this question may be answered affirmatively. The 
method of proof used in the first three of the above studies is 
to construct a sequence of unitary operators, { Un }, such that 
U;;- IHUn becomes successively closer and closer to diag
onal. The technique is closely related to the methods used to 
prove the KAM theorem. 
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Our second theorem (Theorem 3.1) .on "the nonconser
vation of spectral type," should be contrasted with the 
theorem of von Neumann and Weyl: LetA be an operator on 
a separable Hilbert space. Then for any E> ° there is a 
BE B2(H)( = Hilbert-Schmidt class) with liB 112 E Esuch that 
A + B has p. p. spectrum. This result was sharpened by Kur
oda 13 who showed that the Hilbert-Schmidt norm could be 
replaced by any unitarily equivalent cross norm, weaker 
than the trace norm. 

We conclude with a remark concerning Theorem 3.1, 
which provides examples of rank-one perturbations B such 
that A + B has a continuous spectrum while A has it p.p. 
spectrum. The continuous part of A + B must be singular 
continuous by the theorem of Kato and Rosenblum. 14.1S 
This result should be contrasted with the theorem of Carey 
and Pincus16 who showed that given any self-adjoint opera
tor A with no absolutely continuous spectrum and E> 0, 
there is BE B l (H) with liB 111 < E such that A + B has p.p. 
spectrum. 

II. STABILITY OF POINT SPECTRUM 

Let tfJl,tfJ2"'" be a fixed orthonormal basis for a Hilbert 
spaceKandletA l (0)).A.2(0))"'" be a sequence of independent, 
identically distributed random variables with continuous 
distributions. (Here 0) denotes a sample space point.) We de
fine the random self-adjoint operator acting on K by 

00 

A (0)) = L A"(O))P,,, (2.1) 
,,=1 

where P" is the projection onto the one-dimensional sub
space corresponding to tfJ". 

Let B be a bounded self-adjoint operator acting on K, 
and having the decomposition 

co 

B= L B", (2.2) 
,,=1 

where the B,,'s are self-adjoint, act invariantly on the sub
spaceE" = span( tfJ .. tfJ2, ... ,tfJ,,}, and are equal to zero on the 
orthogonal complement of E,.. 

TJaeorem 2.1: Suppose that there exists a positive se-
quence 81,82"", satisfying 

(i) ~:= I n sup", Prob(IAi - xl<8,,) < 00, 

(ii) 8" _ I < 8D - 2 liB,. II, n = 1,2, ... , 

(iii) ~: = 1 nllB" 11/8" < 00. 

(Here II . II denotes the operator norm.) Then the random 
operator A + B almost surely has pure point spectrum,i.e., 
A + B has no continuous part, a.s. 

Example 2.2: If the eigenvalues {Ai} are uniformly dis
tributed on the unit interval, the hypotheses can be sastisfied 
if liB" II <cln4

+£, for anyc,E>O. 
Proof: To fix the notation we set Ao(O)) =A (0)), A,,(O)) 

=A (0)) + ~:= IBm. EachA,,(O)) obviously has a pure point 
spectrum. The idea of the proof is to turn on the B" 's succes
sively while controlling the shift in the eigenvalUes and the 
change in the eigenvectors. 

Define, inductively, a set of eigenvectors {tfJ~(O))} and 
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eigenvalues..t,;'(O)) for A" (0)). Let tfJ~ = tfJr be the origipal basis 
and let A~(O))=A:i' Assuming that the {tfJ~-I(O))l and 
(A ~ - I(O))} have been defined, we consider the one-param
eter family A,,(O),E) =A,,_1 (0)) + EB", O<E<1. For i>n we 
take tfJ~(O)) = tfJ~ - 1(0))( = tfJ~) and A ~(O)) = A ~ - 1(0)) = A ~(O)) 
(recall that B" tfJ~ = ° for i > n). For i';»n, and thinking for the 
moment of the eigenfunction tfJi - 1(0)) and eigenvalue 
A ~ - 1(0)) as functions of E, we have that A ~ - I(O),E) [with 
A i - 1(0),0) = A i-I]· satisfies the differential equation 
(Feynman-Hellman formula) 

(2.3) 

with tfJi - I(O),E) an eigenfunction of A" _ I (O),E) corresponding 
tOA i - I (O),E). Thus we take A ~(O)) = A i - 1(0),1) and note that 

(2.4) 

even in the case where degeneracy among the first n eigen
values occurs. Note that this estimate, together with hypoth
eses (ii) and (iii) of Theorem 2.1, imply that A i converges as 
n -+ 00. We take tfJ~ = tfJi - I(O),E = 1) to be the correspond
ing eigenfunction. (We will regularly suppress the depen
dence of tfJi and A i on 0) from now on.) 

LetS" = (0)1IA~-A~+11>8,.,foralll<i<n}. 
Lemma 2.3: For almost all 0), 3 N(O)) < 00 such that 

0) EnS". 
,,;>N(w) 

Proof: The proof is a Borel-Cantelli argument. We have 
that 

00 00 " L Prob(S~)< L L Prob(IA~-A~+11<8,,) 
,,=1 ,,=1 i=1 

00 

< L n sup ProbOx - A ~ + I 1<8,,) < 00, 
n= 1 x 

(2.5) 

so that 0) E S" for all sufficiently large n, a.s. 
Henceforth, 0) is fixed, corresponding to a finite N(O)). 

We now attack the question of convergence for the eigen
functions. It is convenient to SCit 'TJj = IIBjll/8j . We first es
tablish an estimate for the projections P ~ corresponding to 
tfJi, i>N(O)). 

Lemma 2.4: For i>N(O)) andN(O))<n <m, 

m 

IIP~-P7'II<2 L 'TJj' 
J>max(~" + I) 

(2.6) 

Proof: We first argue, by induction on n, that for 
n>N(O)), IAj-Ajl>8" for i<j with l<i<n, 
N(O)) < j <n + 1. This is clearly the case for n = N(O)). As
suming this to be the case for arbitrary n, we have for n + 1 
that IA i+ 1 - A j+ 11 >8" - 2 liB" + III >8,,+ 1 by the Feyn
man-Hellman formula and (ii) of Theorem 2.1 for i < j, 
l<i<n, N(O)) < j <n + 1. For l<i<n + 1, j = n + 2 the re
sult holds since 0) E S" + I' which completes the induction 
step. Since B" + I is the zero operator on span { ;~ + 2' 
tfJ~+3""}' we have, for N(O))<i<n + 1, 
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(2~J ( 1 1) --- dz 
An -z An+l-z 

Iz - A. 71 = 6,.12 

<21]n+ I' 

For i> n + 1, of course, P 7 + 1 = P 7 and the lemma follows. 
We proceed to the convergence of the eigenvectors rfJ7 

for all i. 

Lemma 2.5: There exists a subsequence {rfJ7pj, 
p = 1,2, ... of complete orthonormal eigenvectors corre
sponding to {An 1 such that 

P 

lim rfJ7p = rfJ'!, i = 1,2, ... , (2.8) 

exists for all i. The {rfJ'! 1 form a complete set of eigenvectors 
for A +B. 

Prool: We first consider the question of convergence of 
the eigenvectors beginning with the case i = 1 ,2, ... ,N (eu). De
fine 

pn= L P7. 
;>N(..,) 

Then by Lemma 2.4, for n < m, 
m 00 

IIpn-pmll<2 Lj1]j <2 Lj1]j' 
j>n n>j 

implying that P n is Cauchy in the norm topology by (iii) of 
Theorem 2.1 and hence convergent to a projection P 00. Let 
Q n = ][ _ P n, Q 00 = ][ _ P 00. [The uniform convergence of 
Q n implies that Q 00 is N (eu) dimensional.] Set 1/1/ = Q 00 rfJ7. 
Then the 1/1/ have norms approaching 1, and are asymptoti
cally orthogonal as n _ 00. It follows that since Q 00 K is 

finite dimensional, we can select a subsequence of f/!t 's and 
hence rfJ7 's such that they, along with their eigenvalues A 7, 
are convergent, i = 1, ... ,N(eu). 

Lemma 2.4 implies that for i> N (eu), 

00 

1 - 1 ( rfJ7, rfJ;"W<2 L 1]j , (2.9) 
j >n 

so that if the phase of rfJ;" is chosen appropriately 

( 
m )112 ( m ) IIrfJ7 - rfJ;"1I 2

<2 - 2 1 - 2 .L 1]j = 0 .L 1]j . 
J>n 'l>n 

(2.10) 

It follows that we can select a subsequence of the { rfJ71 (pos
sibly taking the n values from among the np- values used for 
the first N (eu) eigenvectors) such that (redefining the subse
quence) (2.8) follows for all i. 

The orthogonality of the { rfJ'! 1 is immediate. LetA'! be 
the limit ofthe eigenvalues A 7. Then for 1m z#O 
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(2.7) 

'lim (Anp - z)-lrfJ7p = (A + B - Z)-lrfJ'! = (A '! - Z)-lrfJ'!, 
np_ 00 

(2.11) 
implying that rfJ'! is an eigenvector of A + B. (Here we have 
passed to resolvents, since A may be unbounded.) 

It remains to show the completeness of the {rfJ'! 1. To do 
this it suffices to show that for any element f/! E K with 

11f/!11 = 1 the f2-valued sequence anp 
defined by a7p 

= ( rfJ7p,f/!) 
converges in the /2-norm. Now for any i>N(eu), and 
m~N(eu), 

la;"1 2 = ( f/!,P;" f/!) = ( f/!,P'/ f/!) + ( f/!,( - P,/ + P;")f/!) 
00 

<la'/1
2 + 2 L 1]j = Cit (2.12) 

j>1 

witha,! = (rfJ'!, f/!)satisfyingasimilarestimate.Fori<N(eu) 
let C; = 1. Then the c;'s are summable, since 

00 00 00 00 

L L 1]j = L (j - N(eu))1]j < L j1]j < 00, 
i>N(..,) j>; j >N(..,) j = 1 

(2.13) 
by hypothesis (iii) of Theorem 2.1. Consequently 

lim lIanp-aooll72 = lim L la7p-a'!1 2=O, (2.14) 
p--oo p-oo j 

by the dominated convergence theorem with dominating se
quence {4c; 1. This completes the proof of the lemma and 
hence the theorem. 

III. INSTABILITY OF POINT SPECTRUM 

In this section we prove a theorem and provide some 
examples concerning instability of point spectrum. The op
erator A = A (eu) is the same as in Sec. II; the eigenvalues 
however need not be independent nor continuously distrib
uted. We do require that Prob(A; =Aj ) = 0 for i#j, i.e., 
that the eigenvalues are almost surely not equal. 

Theorem 3.1: Let 0 < t) < 1 and let {En 1 and {Mn 1 be 
positive real- and integer-valued sequences, respectively, 
withEn - OandMn - 00, with theMn'sstrictly monotone. 
Suppose that for some bounded subset I C R (R is the set of 
real numbers), 

00 

(i) L E; 1 sup Prob(lA; - XI~En' 
n=l xeI . 

for all i, Mn_ 1 <i<Mn) < 00, 

00 

(ii) LEn-2M n-
I

- 6 = 00. 

n=1 
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Then there exists a fixed rank-one perturbation B such that 
A + Jl-B has no eigenvalue in I for all JI-:I= 0, a.s. 

Remark 3.2: The perturbation B can be taken to be of 
the form Bt/! = (X, t/!) X with X having Fourier coefficients X n 

= (t/J",X) = n -(I +8)/2. 

Corollary 3.3: Suppose that 1= Um 1m is a countable 
union of bounded sets {1m} for each of which the hypotheses 
of Theorem 3.1 are satisfied. (In particular, 8 and the respec
tive sequences { En } and {Mn } need not be the same for each 
1m') Then there exists a fixed rank-one perturbation such 
that A + Jl-B has no eigenValues in 1. 

We postpone the proof of the theorem and omit the 
proof of the corollary. We first consider the examples. 

Example 3.4: Assume that the eigenvalues are indepen
dent and uniformly distributed in [0,1]. Let 1= [0,1], En 

= e-", M" = exp(2n/(1 + 8)). Then 
sup Prob(IA; -xl>E", for all i, M"_I d<M,,) 
xeI 

(1 )Mn-Mn_, 
= -E" 

-exp( - (1 - e - 2/(1 +8))e,,(I-8)/(1 +8)), (3.1) 

for large n, which is clearly summable against E,,-I so that 
hypotheses (i) and (ii) of Theorem 3.1 are readily seen to be 
satisfied. The conclusion is that there exists a B such that 
A + Jl-B has no eigenvalue in [0,1] a.s. By the remark, B may 
be taken to be ofthe form Bt/! = (X,t/!)X with X" = (X,t/Jn) 
= n -(I +8)12. If B is decomposed B = ~kBk with Bkt/! 
= ~'X"Xm (t/J",t/!)t/Jn' where the sum extends over nand 

m <k and n or m = k, then liB k II = 0 (n - (I + 8)/2). This decay 
estimate on B k should be compared with that in example 2.2. 
Since A and A + Jl-B have the same essential spectrum, it 
follows that A + Jl-B has continuous spectrum in [0,1] and 
only isolated eigenvalues outside (0,1]. 

Example 3.5: Assume that the eigenvalues are indepen
dently distributed with distributions absolutely continuous 
with respect to Lebesgue measure. Assum.e (primarily for 
reasons of simplicity) that the density fIx) is symmetric 
about the origin and decreases monotonically, o<x- 00. 

(For example, the eigenvalues may be normally distributed.) 
Then there is a perturbation B such that A + Jl-B has no 
eigenValUes, a.s. Here, we take 1m = [ - m,m] and the E" 's 
and M" 's as in the previous example, the same for each m, 
and apply the corollary. The probability estimate needed for 
hypothesis (i) of theorem 3.1 now takes the form 

«1 - f(m)E,,)Mn-Mn-, 

-exp( - f(m)(1 - e- 2I(1 +8))en(l-8)/(1 +8)), (3.2) 

for n large. Since R = umIm the result follows. 

and 

Proof of Theorem 3.1: for x e I, set 

A" (x) = {CiJIIA; -xl<E", foralli,M,,_1 d<M,,} 

(3.3) 

A" = {CiJlforsomexeIIA/-xl>2E", 

for alli, M"_I <i<M"_I}' (3.4) 

Then, since I is a bounded set, there exists a constant c, inde-
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pendent of n, such that 

(3.5) 

for some suitably chosen set of points XI.", x 2,,, , ... , xp",,, e I 
withp" <clE". By hypothesis (i) of Theorem 3.1, 

00 00 

L Prob(A,,)< L Prob(uA"(x/,,,)) 
,,= I ,,= I 

00 

<c L E,,-I sup Prob(A,,(x)) < 00, (3.6) 
n= 1 oX 

so that by Borel-Cantelli, almost surely there is an N (CiJ) < 00 

such that for all x e I there is an i, M" _ I < i<M" with 
IAI-xl <2E" for each n>N(CiJ). 

Let B be the perturbation defined in Remark 3.2, and 
suppose to the contrary that there is an eigenvector tf(CiJ) 
satisfying (A .(CiJ) + Jl-B)t/! = xt/!. If Bt/! = 0, then 

(3.7) 

" " 
with the sum extending over two or more terms, and with the 
corresponding t/J" 's having An = x. By assumption, the 
eigenvalues A" are nondegenerate a.s. so this cannot happen. 
Hence Bt/!:I=0. For this case, t/! = JI-(x,t/!)(x - A )-lX, ~hich 
is also impossible since thre is some i, M" _ I < i<M", with 
IA; - xl < 2En and so 

Illx -A )-lxI1 2 = L lAm -xl-2m -1-8 

m 

> L 4€;;2M n-
I

-
8 = 00. (3.8) 

,,;;.N( ... ) 

Thus A + Jl-B has no eigenvector with eigenvalue in I, a.s. 
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It is shown that the classical Infeld-Hull factorization method can be extended to coupled 
systems of second-order equations. A complete solution of the factorization equations in two 
dimensions is given and a partial enumeration of factorizable systems is made. 

I. INTRODUCTION 

As is well known, the classical factorization method of 
Infeld and Hull l plays liD outstanding role in the theory2.3 

and applications4 of the special functions of mathematical 
physics. The essence of the method is the reduction of 

y" + r(x,m)y +..iy = 0, (1.1) 

for some values of the parameter m, into first-order equa
tions. Solutions for other values of m can be found then by 
successive applications of the raising and lowering opera
tors. 

In view of the effectiveness of this method, it is not sur
prising that several authors attempted to generalize and ex
tend the method in various contexts.5

-8 Our objective in this 
paper is, therefore, to show that this classical method can be 
extended to coupled systems of second-order equations. Al
though the application of this extension to specific physical 
systems will not be considered here, we wish to point out that 
the coupled systems ofSchrodinger equations appear in var
ious physical contexts9.10 and several authors sought to de
couple such systems by means of Darboux transforma
tions. I1

•
12 The factorization method, however, provides a 

different approach and new classes of coupled systems that 
are amenable to analytic treatment. 

The plan of the paper is as follows: In Sec. II we discuss 
the factorization method for coupled systems in R n and de
rive the basic equations. In Sec. III we restrict ourselves to 
two-dimensional systems and solve in full generality the fac
torization equations. In Sec. IV we demonstrate that there 
exist factorizable systems whose factorization kernel has no 
one-dimensional analog. Finally, in Sec. V we present a par
tiallist of factorizable equations in R 2. 

It should be remarked, however, that some of the "alge
bra" in this paper was carried out by using MACSYMA. 

II. FACTORIZATION OF SYSTEMS 

Following the classical factorization technique, we say 
that a system of second-order differential equations 

)!." +R(x,m~+..i.,E=O, .,EERn, R(x,m)EM(n) 

(2.1) 
can be factored if it is possible to replace it by both of the 
following systems 

H; + IH ~ .,E(..i,m) = [..i - L (m + 1)]I.,E(A-,m), (2.2) 

H ~ _ I H ; .,E(..i,m) = [..i - L (m)]I.,E(..i,m), L (m) E R, 
(2.3) 

where 

d 
H~ =K(x,m+ 1)--1, 

dx 

H; =K(x,m)+~I, 
dx 

(2.4) 

(2.5) 

K (x,m) is a n X n matrix, and I is the n X n identity matrix. 
To find out for which R (x,m) the system (2.1) can be 

factored we carry out explicitly the multiplications of H + 

and H - in (2.2) and (2.3) using (2.1). We obtain 

K 2(x,m+ 1)+K'(x,m+ 1)+L(m+ 1)1= -R(x,m), 

K 2(x,m) - K '(x,m) + L (m)l = - R (x,m), 

and hence 

K 2(x,m + 1) -K2(x,m) +K'(x,m + 1) +K'(x,m) 

(2.6) 

(2.7) 

= [L (m) - L (m + 1)]1. (2.8) 

To determine those matrices K (x,m) that satisfy this equa
tion, we examine three possible forms for the dependence of 
this matrix on m. 

A. K(x,m) = Ko(x) + mK1(x) 

From (2.8) this ansatz leads to 

(m + W(Ki +Ki)+(m + I)(KoKl +KIKo+2Ko) 

- m2(K i + K i) - m(KoKl + KIKo + 2K 0) 

= (L (m) - L (m + 1))1. (2.9) 

Following the same argument as in Ref. 1, we conclude 
from (2.9) that 

and 

Ki +Ki = -a2I, 

2K' K Y K K _ {-Cal, a,t:O, 
0+ 0''''1+ 10- bI -0 , a- , 

L (m) = {m
2
a

2 + ca, a,t:O, 
-bm, a=O. 

(2.10) 

(2.11) 

(2.12) 

In Sec. III we shall consider some explicit solutions of 
the system (2.10) and (2.11) in the two dimensions. 

B. K(A;m) = Ko(x) + mK1(x) + (1/m)Ka(x) 

Substituting this form of K(x,m) in (2.8) we obtain 

[(m + W(Ki + K;) + (m + 1)(2K 0 + KIKo + KoKl) 

+ [1I(m + 1)](K2 +K~o + KoK2) +KV(m + 1)2] 

- [same terms with m] = (L (m) - L (m + 1))1. 
(2.13) 

Hence we infer that 
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K~ =rII, 

K ~ + K~o + KoK2 = r2 I, 

2Ko +KIKo+KoKl =r3 I , 

(2.14) 

(2.15) 

(2.16) 

K; +Ki = _a21. (2.17) 

Obviously, this system reduces to (2.10) and (2.11) if we set 
K2 = 0, however, we observe that nontrivial solutions with 
K 2 #0 are also possible if we letK2 be a matrix with constant 
entries, Ko = 0, while KI satisfies Eq. (2.17). Furthermore, 
since (2.17) and (2.10) are the same it follows, then, that the 
two-dimensional solutions for K I' which will be derived in 
Sec. III, essentially provide a solution for the form of K (x,m) 
under consideration. 

C. K(x,m) = Ko(x) + mK1(x) + rnZK2(x) 

Substitution of this form of Kin (2.8) leads, after some 
simple algebraic manipulations, to the following system; 

Ki =rI I , 

2K~ +3{KI ,K21 =r2I, 

K; + {KO,K21 + Ki = r3 I, 

2Ko - HKI ,K21 + {Ko,Kd = r4 I , 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

where {A,B I = AB + BA and ri' i = 1, ... ,4 are constants. 
We observe that in contrast to the scalar case l one can not 
deduce from these equations that K 2 #0 leads to a trivial 
system of coupled equations, viz. R (x,m) is a matrix with 
constant entries. In fact, we shall show in Sec. IV that con
trary to the negative results in one dimension, the systems 
(2.14)-(2.17) and (2.18)-(2.21) admit solutions with Ko#O 
and K2#const, respectively, in two dimensions. Conse
quently, these kernels and their corresponding factorizable 
systems have no analog in one dimension. 

III. FACTORIZATION OF SYSTEMS IN TWO 
DIMENSIONS 

Although we derived the factorization equations (2.10) 
and (2.11) in R n the number of coupled scalar equations 
which have to be solved to compute the entries of Ko,K I 
increases rapidly with n. Due to this, we shall restrict our
selves in this section (and the rest ofthis paper) to systems in 
two dimensions. Our objective in this section is, therefore, to 
show that a complete closed form solution for Ko, K I is avail
able when n = 2. The solutions we find will depend on sever
al arbitrary parameters, which demonstrates that in princi
ple the factorization method is applicable to a large class of 
systems. From a practical point of view, however, these gen
eral expressions are rather cumbersome and one must set 
several of these parameters to zero in order to bring them to a 
more manageable (and presentable) form. This task will be 
carried, however, in Sec. IV where a partial enumeration of 
factorizable systems in two dimensions will be given. 

A. Calculation of K1 

Letting 
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(3.1) 

and using (2.10) we obtain the following system of equations 

a' + a 2 + f3r = - a2
, (3.2) 

6' + 62 + f3r = - a2
, (3.3) 

f3' + f3 (a + 6) = 0, (3.4) 

r' + ria + 6) = O. 

Subtracting (3.3) from (3.2) and introducing 

J-l = a - 6, v = a + 6, 

we obtain 

J-l' + VJ-l = O. 

(3.5) 

(3.6) 

(3.7) 

From (3.4), (3.5), and (3.7) we see thatf3, r, andJ-l satisfy the 
same first-order differential equation and we have 

(3.8) 

where 

J = exp ( - f v(X)dx). 

To compute v we add Eqs. (3.2) and (3.3) and use (3.8) to 
obtain 

v' + ~ +p exp ( - 2 f v(X)dX) = - 2a2
, (3.9) 

where p = ci /2 + 2C2C3' We now show that Eq. (3.9) can be 
solved in full generality. To this end, we first substitute (as
sumingp#O) 

w = exp (~ f V(X)dX) (3.10) 

to obtain 

2w" = -...!!.....- (a2w2 - P- w- 2). (3.11) 
dw 2 

Multiplying (3.11) by w' and using the chain rule, we obtain 
after integration 

w' = [( p/2)w- 2 - a2w2 + c4F12, (3.12) 

where C4 is an integration constant. Finally, we introduce 
z = w2

, which yields 

x=cs+~f dz , 
2 (p/2 - a2z2 + C4Z)1/2 

(3.13) 

where the last integral can be evaluated explicitly in terms of 
elementary functions. 13 After some algebra this yields 

{ 

2ah cos 2a(x - cs) 

h sin 2a(x - cs) + C4 ' 

V = C
4 
exp[2a2(~~ cs)] + 202 ' 

h #0, P#O, (3.14) 

h = 0, p#O, (3.15) 

where h = ~2a2p + d. When p = 0, Eq. (3.9) reduces to a 
Ricatti equation (equivalent to the equation obtained for KI 
in Ref. 1 for one differential equation) whose solutions are 

vI(x) = 20 cot(ax + <p), v2(x) = 2ia, a#O, (3.16) 

(3.17) 

The expressions for J (x) which correspond to these v(x) are 
not hard to obtain and will be omitted for brevity. (Some of 
these will be computed, whenever necessary, in Sec. IV.) 
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B. Calculation of Ko 

Letting 

whereL (x) = exp((k/2)SJ(x) dx). 
The backward transformation from these functions to 

the original s, p, r, and q is given by 

(3.18) r = [(k - c1)Y + (k + C1)X + 4T]/4k 2, 

and using (2.11), (3.1), and (3.8) we obtain the following sys
tem of equations: 

21 + 2ar+ J(c2p + c~) = - ca, (3.19) 

2s' + (a + 8)s + C2 J(r + q) = 0, (3.20) 

2p' + (a + 8) p + C3 J (r + q) = 0, 

2q' + 28q + J(c2p + C3S) = - ca. 

(3.21) 

(3.22) 

(When a = 0, - ca is replaced in these equations by h.) 
Although Eqs. (3.19)-(3.22) represent a coupled system 

of equations we now show that they always can be solved 
analytically and the solution can be expressed explicitly in 
terms of J and its integrals. To verify this assertion we have 
to consider, however, several cases. 

1. c, ~O, C2C3~0, and p~O (the "general case'J 

To begin with we multiply (3.20) and (3.21) by C3 and c2, 

respectively, and add and subtract the resulting equations. 
This yields 

2N' + (a + 8)N + 2c2c3 JS = 0, (3.23) 

2M' + (a + 8)M = 0, (3.24) 

where 

M=C~-C2P, N=C~+C2P, S=r+q. (3.25) 

Adding and subtracting (3.19) and (3.22) we obtain 

2A' + (a + 8)A + CI JS = 0, (3.26) 

2S' + (a + 8)S +J(C1 A + 2N) = - 2ca. (3.27) 

MUltiplying (3.23) by C 1 and (3.26) by 2c2c3 and subtracting, 
leads to 

2T' + (a + 8)T = 0, (3.28) 

where T = 2c2c3 A - clN. Multiplying (3.26) by C 1 and (3.23) 
by 2 and adding yields 

2H' + (a + 8)H + 2pJS = 0, (3.29) 

where H = C1 A + 2N. Finally, introducing W = (2p)1/2S 
= kS in Eqs. (3.27) and (3.29) and adding and subtracting 
the resulting equations we obtain 

2X' + (a + 8 + kJ)X = - 2cak, (3.30) 

2Y' + (a + 8 - kJ)Y= - 2cak, (3.31) 

where X = H + W, Y = W - H. Equations (3.24), (3.28), 
(3.30), and (3.31) form a decoupled system of equations 
which is equivalent to the original system. The explicit solu
tion of the new system is given by 

78 

M = Cg J 1/2(X), T = C9 J 1/2(X), (3.32a) 

X = J 1/2(x)L -l(X) [c lO - 2cak f J -1/2(x)L (x) dX] , 

(3.32b) 

Y = J 1/2(x)L (x) [c ll - 2cak f J -1/2(x)L -l(X) dX] , 

(3.32c) 
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q = [(k + c1)Y + (k - c1)x - 4T]!4k2, 

S = - [C2C3(Y -X) + c1T- k2M]/2c3k 2, 

p = - [C2C3(Y -X) + CIT + k 2M]/2c2k
2

• 

When any of the constants c1, C2C3' or p is equal to zero the 
solution of the system (3.19)-(3.22) is easier to obtain than in 
the general case. We discuss now briefly each of these situa
tions. 

2. C2 C3 = 0 ( p,c, arbitrary) 

If (let us say) C2 = 0, Eq. (3.20) can be solved for s and 
(since c2 = 0) Eqs. (3.19) and (3.22) can then be solved for r 
andq. Equation (3.21) can be solved, then, forpsincerandq 
are known 

3. c, = 0, C2C3~0 (p~O) 

We proceed as in case 1 uptoEqs. (3.26) and (3.27). Since 
C1 = 0, Eq. (3.26) can be solved for A. The remaining two 
equations, (3.23) and (3.27), can then be solved by introduc
ing W = kS and adding and subtracting these equations. 

4. P = 0, c, ~O, C2C3~0 
In this instance we can proceed as in case 1 up to Eq. 

(3.28). Since T is proportional to H, Eq. (3.27) can then be 
solved for S, and using this result we can solve Eq. (3.23). 

IV. SOME SPECIAL FACTORIZATIONS IN TWO 
DIMENSIONS 

In this section we discuss solutions to the systems (2.14)
(2.17) and (2.18)-(2.21) in two dimensions. Our primary ob
jective is to show that there exist solutions to these systems 
with Ko=l=O and K 2=1=O (respectively) which lead to new 
classes offactorizable systems of equations in contrast to the 
one-dimensional case. However, for the sake of brevity we 
shall omit the proofs of our statements, but will provide 
them in a separate publication elsewhere. 

We divide our discussion into two cases. In the first part 
we consider the aforementioned systems with r 1 =1= 0, while in 
the second we let r 1 = O. 

A. r1=1=O 

Theorem 1: (1) In two dimensions, if r I =1=0, then the only 
solution to the system (2.18)-(2.21) is the trivial solution 
where Ko, K 1, and K2 are matrices with constant entries. 

(2) Similarly, if r1 =1=0 and r2 =1=0, then the only solution 
to the system (2.14)-(2.17) is the trivial solution. 

Theorem 2: In two dimensions, if r1 =1=0, r2 = 0, and 
r 3 = 0, then there exist nontrivial solutions to (2.14)-(2.17) 
with Ko =1= o. 

One particular class of nontrivial solutions which satis
fies the conditions of Theorem 2 is given by 

K = J 112 (0 d2) K = (q1 0) 
o d

3 
0' 2 a ' -ql 

(4.1) 
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and KI is the general solution of (2.17) (which was discussed 
in Sec. III) subject to the condition C2d3 + c3d2 = 0. 

B. r1 = 0 

The general form of K2 in this case is 

(4.2) 

However, to simplify the following discussion, we consider 
only the forms 

(4.3) 

K2 = b (x) ( ~ 1 ~) = b (x)B. 

For each of these forms of K2 there exist nontrivial solutions 
for the systems (2.14)-(2.17) and (2.18)-(2.21). 

Theorem 3: The system (2.14)-(2.17) in two dimensions 
admits nontrivial solutions with YI = Y2 = 0, K2 = b (xlA or 
b (x)B, and Ko=l-O. 

The general form of the solution for the second case 
[K2 = b (x)B] is given by 

(4.4) 

where a, p, r, s, and b must satisfy the equations 

b ' + 2rb = 0, P' + 2ap = 0, a' + a 2 + P 2 = - a2, 
(4.5) 

s' + as +pr= 0, 2r' + 2ar + 2{3s = Y3' 

Theorem 4: The system (2.18)-(2.21) in two dimensions 
has nontrivial solutions with (1) rl = Y2 = 0, K2 = b (xlA, 
and (2) YI = Y2 = Y4 = 0, K2 = b(x)B. 

The general form of the solution for the second case of 
this theorem is given by 

where a, p, r, s, and b satisfy 

b ' + 3ab = 0, p + 2aP = 0, 

a' + a 2 + P 2 + 2b (r - s) = r 3' 

2r' + 2ar = ab, 2s' + 2as = abo 

V. PARTIAL ENUMERATION OF FACTORIZABLE 
SYSTEMS IN TWO DIMENSIONS 

(4.6) 

(4.7) 

In Sec. IV we saw that the analytic expressions for the 
entries of Ko and K I contain several parameters and thereby 
lead to a large class offactorizable kernels R (x,m). From a 
practical point of view one must set, therefore, some of these 
parameters to zero in order to obtain tractable expressions. 
We shall, therefore, assume in the following that either 
K=Ko+ mKI orK= mKI +K2/mwithc I =C2 =C3 =0, 
and give a complete enumeration of factorizable systems in 
two dimensions under these assumptions. (The resulting six 
classes are the two-dimensional analogs of those in Ref. 1.) 
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Furthermore, as final examples we shall present two special 
classes of factorizable systems which are related to those 
discussed in Sec. IV. 

Using Eqs. (3.1)-(3.8) and (3.19)-(3.22) we see immedi
ately that the entries of Ko and Klare given by the following 
expressions: 

a =b = v/2, p= Y= 0, 

r=J
1/2 [d l - c; f J- 1/2 dX] , 

q = J 112 [d2 - c; J J - 112 dX] , 

(5.1) 

(5.2) 

(5.3) 

s = d3 J 1/2, P = d4 J 1/2. (5.4) 

(When a = 0, one has to replace - ca by b.) 
Evaluating these expressions explicitly for each of the 

possible forms of v(x) as given by (3.16) and (3.17), and letting 

R( ) _~ll R12) x,m - R' 
21 22 

(5.5) 

we obtain the following formulas. [In (a), (b), (c), and (d) we 
assume that K = Ko + mKI' while in (e) and (f) we let 
K = mKI + (lIm)K2'] 

(a) v = 2a cot(ax + ¢». 

L (m) = ma(ma + c), 

K I = a cot(ax + ¢>)I, 

1 
K o=-----:-:-

2 sin(ax + ¢» 

(
c cos(ax + ¢» + 2d1 2d3 ) 

X 2d4 c cos(ax + ¢» + 2d2 ' 

Rll = - . 2 1 [c2 cos2(ax + ¢» 
4sm (ax + ¢» 

+ 4d1 [a(2m + 1) + c) cos(ax + ¢» 

+ 4am[a(m + 1) + c) + 2ac + 4(di + d3d4)j, 

d4 R21 = - -;;---'--~ 
sin2(ax + ¢» 

X [[a(2m + 1) + c) cos(ax + ¢» + d l + d2J, 

d3 R 12 = - -::---"---
sin2(ax + ¢» 

X [[a(2m + 1) + c] cos(ax + ¢» + d l + d2j, 

1 
• 2 [c2 cos2(ax + ¢» 

4 sm (ax + ¢» 

+ 4d2[a(2m + 1) + c] cos(ax + ¢» 

+ 4am[a(m + 1) + c) + 2ac + 4(di + d3d4)j. 

(b) v = 2/(x + C7)' 

1 
L(m)= -bmI, KI=--I, 

1 
Ko=--

x+c7 

x+c7 
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Due to the length of the expressions we present R only when 
C7=0: 

RIl = _ [b 2X
2 + (m + dl)(m + d l + 1) + d3d4 

16 x2 

+ : (U1 - 2m - 1)] , 

R21 = - d4 (~ + dl + d2; 2m + 1) , 
Rl2 = - d3 (~ +, dl + d2; 2m + 1), 
R22 = _ [b 2X

2 + (m + d2)(m + d2 + 1) + d3d4 
16 x 2 

+ : (2d2 - 2m - 1)] . 
(c)v=O. 

L(m)= -bmI, 

(
bx/2 + dl d3 ) 

Ko = d4 bx/2 + d2 ' KI = 0, 

R Il = - (bx + U\)2/4 + b (m +!) - d3d4, 

R21 = - d3(dl + dz + bx), 

RI2 = - d4(d l + d2 + bx), 

R22 = - (bx + U 2f/4 + b(m +!) - d3d4. 

(d) v = 2ia. Following Ref. 1 we replace ia by a, c by 
- ic, and add - a2c21 toL (m). We obtain 

K\=aI, 

(

UI _ceax 

K -ax 2 o=e 
d4 

RIl = c(2a + 1)[4ma + (20 - l)c] 

+ 4d\e- ax [c - a(2m + 1)] - 4e- 2ax(d3d4 + di), 

R21 = - e - 2axd4{ eax[a(2m + 1) - c) + d l + d2}, 

R12 = e- 2axd3{eax [a(2m + 1) - c) + d l + d21, 
R22 = c(2a + 1)[ 4ma + (20 - 1)c] 

+ 4d2e- ax [c - aIm + 1)] - 4e- 2ax(d3d4 + di). 

As to the next two factorizations, where 

K=mKI +m- IK2, 

it follows immediately from (2.14) and the assumption that 
K2 is a matrix with constant entries that 

(e) v = 2a cot(ax + <p). 

L(m)=m2a2- r;, 
m 

KI = a cot(ax + <p)I, Ko = 0, 

[
a

2
m(m + 1) ] RIl = - . 2 + 2aql cot(ax + <p) , 

sm (ax + <p) 
R21 = - 2aq3 cot(ax + <p), 

RI2 = - 2aq2 cot(ax + <p), 

[
a2

m(m + 1) ] R22 = - . 2 - 2aql cot(ax + <p) . 
sm (ax + <p) 

(f) v = 2/(x + C7)' 

L (m) = - rllm2, 

1 
kl=--I, Ko=O, 

x+c7 

RIl = _ 2q1(X +C7) +m(m + 1) , 
(x+c7f 

RI2=-~' 
x+c7 

R _ 2q1(x+c7)-m(m+ 1) 
22 - (x + C

7
)1 ' 

R 21 = -~. 
X+C7 

SF-A: This class of special factorizable (SF) systems cor
responds to those described by Theorem 2. To satisfy the 
condition c1d3 + c3d1 = 0 we let C1 = C3 = O. Furthermore 
we set a = 8. The form of the matrices Ko and K2 is given by 
Eq (4.1) andKI = alwhere 

(5.6) 

[We replace here, and in the following example, - a2 by a1 

in (2.17).] Using the special solution a = a for a we find then 
that 

and 

L (m) = - (rllm + m2a2) 

RIl = - (e-2aXlm)[m(2aql~ax + d1d3) 

+ (d2q3 + d3q2)ea:J<] , 

R\2 = - ae-ax[2q2eax + d2(2m + 1)], 

R21 = - ae-ax[2q3eax + d3(2m + 1)], 

R22 = (e - 2ax 1m) [m(2aql~ax - dzd3) 

- (d2q3 + d3q2)eax ] . 

SF-B: These factorizable systems correspond to those 
obtained from Theorem 3 with K2 = b (x)A and 
s = p = r + q = r3 = 0, a = 8. Under these conditions one 
infers that the general form for L (m) and the matrices Ko' K Ii 
andK2 is 

L (m) = - a2m1
, 

Ko = (~ ~ ,), KI = (~ !), K1 = bA, 

and qi + q2q3 = rl' Using this relationship and Eqs. (2.11) wherebisaconstant. Theditferential equations fora,p, and 
and (2.13) we obtain the following. rare 
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i.e., 

a' + a 2 = a2
, /3' + 2a/3 = 0, 

r' +ar=O, 

/3=c2 J, r=d I J 1
/
2

• 

Using a = a as a solution for a we obtain for R (x,m) 

Rl1 = - e- 2ax{d l [(2m + l)aeax + dd + bc21, 

RI2 = - 2m(m + l)ac2e- 2ax, 

R21 = - 2ab, 

R22 = e- 2ax {d l [(2m + l)aeax - dd - bC21· 

To solve these factorizable systems of equations we have to 
consider them at the top (or bottom) of the ladder in m where 
A = L (m + 1) and, therefore, ,E(A,m) must satisfy 

H;: ,E(A,m) = (K(X,m + 1)- ! I),E(A,m) =0. (5.7) 

(We note that the proof that H + and H - are raising and 
lowering operators follows exactly as in the scalar case. I) 
Equation (5.6) represents a coupled system of first-order 
equations which can be reduced by elimination to two un
coupled second-order equations for each of the components 
of y (and then solved by standard techniques). The explicit 
fOrln of these solutions and the investigation of their proper
ties will be deferred, however, to another publication. 

VI. CONCLUSIONS 

In this paper we generalized the classical factorization 
method to systems of coupled second-order equations and 
enumerated in Sec. IV some of these systems in two dimen
sions. In view of the close relationship between the special 
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functions of mathematical physics and the factorization 
method it is perhaps appropriate to consider the solutions of 
factorizable systems in n dimensions as "generalized special 
functions." The properties and Lie algebraic contents of 
such factorizable systems deserve further investigation. 

From a physical point of view these factorizable systems 
might be useful as exactly solvable models for physical sys
tems which are represented by coupled Schrodinger equa
tions. The exact solution of these factorizable equations 
could then lead to a better insight and understanding of the 
more realistic models for these physical systems. 
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The best conditions for the application of the predictor jump (PI) method in the solution of the 
Laplace equation are discussed and some practical considerations for applying this new iterative 
technique are presented. The PI method was remarked on in a previous article entitled "A new 
way for solving Laplace's problem (the predictor jump method)" [1. M. Vega-Fernandez, 1. F. 
Duque-Carrillo, and 1. 1. Peiia-Bernal, 1. Math. Phys. 26,416 (1985)]. 

I. INTRODUCTION 

In our previous article, l we described a new method 
with substantial advantages over any other iterative tech
nique for solving Laplace's problem and problems of this 
type. The predictor jump (PI) method, which converges fas
ter than any other, gets its name from the jump made over 
the iterations required by other methods when a certain con
dition is satisfjed. This condition is that a parameter, which 
we denote as EQ (k (the ratio between the errors of iterations 
k and k - I), satisfies 

/EQ(k _ EQ(k-l/ <e'. (I) 

If € is chosen small enough, then the parameter can be taken 
as roughly constant. 

If m is the first iteration for which condition (I) is satis
fied,andifonetakes 

EQ(m = EQ(m+ 1= '" = a = const, (2) 

thep. 

t/J~co =t/J~m+1 + [t/J~m+l-t/J~m]la/(I-a)]. (3) 

This expression gives the value of the solution of V2t/J = 0 at 
each point i as a function of the values of t/Ji for two succes
sive iterations, m and m + I. 

II. CONDITION FOR USING THE PJ METHOD 

Equation (I) is a necessary, and generally sufficient, con
dition for the successful application of the PI method. Nev
ertheless, later on we will look at circumstances when the 
method may not work correctly despite condition (1) being 
satisfied. 

In a given problem, the point at which condition (I) is 
reached depends only upon the value of tiJ, the overrelaxa
tion factor. In general, the conventional method that sup
plies the best convergence to the solutions of Laplace's prob
lems is the successive overrelaxation (SOR) method.2 In the 
algorithm for its resolution, a factor of overrelaxation called 
tiJ is introduced, so that 

t/J\k+ 1 = t/J~k + ~[bi - iii aij . t/Jt+ 1_ faij . t/Jjk] , 
ali }=I }=1 

(4) 

where the terms aij and bi are the elements of the matrices of 
coefficients and the independent terms, respectively. These 
elements appear as a result of using the Laplace equation in a 
central finite dift'erence. 

In Fig. 1, EQ (k is plotted against the number of itera
tions for different values of tiJ. The instability of the param
eter EQ (k is seen to increase with greater values of tiJ until, as 
in Fig. I(d), the solution is arrived at before condition (1) is 
fulfilled, and the PI method is not used. 

It is also clear from the figures that the parameter EQ (k 

reaches a stable value more quickly when tiJ is around unity, 
and that this value is closer to I for larger tiJ. 

III. BEST CONDITIONS FOR THE APPLICATION OF THE 
PJMETHOD 

Equation (3) gives the exact solution, if the parameter 
EQ (k remains exactly constant from the mth iteration. In 
practice, the parameter is not constant but is treated as if it 
were so, as long as Eq. (1) is satisfied. So, it is reasonable to 
expect that the smaller the value set for E', the closer t/J~ co , 
given by the PI method, will be to the exact value. 

This expected behavior is indeed seen, as shown in Figs. 
2 and 3 where log E (k is plotted against the number of itera
tions for tiJ = 1.5. 

If E' is set at a small value, more iterations are needed for 
Eq. (1) to be satisfied, and although the PI method gives 
values very close to the final solution, the number of jumps 
(predictions) made in the process of iteration will be smaller 
than if € had been set at a higher value. It is therefore impos
sible to say beforehand whether the smallest number ofitera
tions needed to solve the problem will result from a smaller 
or larger choice of e' . 

The accuracy of a prediction is sensitive to the value of a 
inEq. (3). With a fixed e', and errorBof 10-3 in the value ofa 
gives rise to an maximum error in the a/(I - a) term (in 
absolute value) of 0.01606 if a = 0.75, and of 2.6315 if 
a =0.98. 

Therefore, as can be seen in Fig. I, small values of It) 

(close to unity) have the advantage of stabilizing the paramo 
eter EQ(k rapidly, however, this same stable value has the 
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plotted against the number of 
iterations for different values 
ofli}. 

Duque-Carrillo et al. 83 



                                                                                                                                    

log E(k 
1.11=1.5 

£=10-3 

£':;4'10-5 

k 

-3 - - - - -----.. -'-- --- --

FIG, 2. The log Elk plotted against the nUmber of iterations for llJ = 1.5. 

The iterative process finishes when Elk<;€. 

disadvantage of being close to unity. On the other hand, larg
er values of (J) have the inconvenience of a slower stabiliza
tion of EQ (k, but the advantage of the resulting stable value 
being further from unity, 

There are no values of (J) that will give the ideal situation 
(a stable value of EQ (k far from unity and a rapid approach to 
this value) for applying the PJ method, 

Experience has taught us to adopt a compromise solu
tion, in the sense that, instead of fixing E' before beginning to 
resolve the problem, the value of E' is a function of EQ (k. 

Thus, for a value of EQ (k close to 1, E' should be smaller than 
if EQ (k were farther from 1 for the same degree of accuracy 
in the predictions. 

We get an expression for E' in the following way: As we 
observed above, Eq. (3) gives us the solution at every point if 
the parameter EQ (k becomes constant and equal to a for all 
iterations starting with the mth. As this value of a is un
known in practice, the value of EQ (k is taken for a and used 
in Eq. (3), giving 

log E(k 
1.11=1.5 

£=10-3 

£':;3'10- 7 

.... 

o --- -
k 

". 
". ". 

-3 - - - - - - - - - -

FIG. 3. The log Elk plotted against the number of iterations for llJ = 1.5. 

84 J. Math. Phys., Vol. 27, No.1, January 1986 

TABLE I. Extension to two and three dimensions. 

One-dimensional Two-dimensional Three-dimensional 
System 01 points 01 • 02 points 01 • 02 • 0 3 points 

Vector dimension Matrix dimension Matrix dimension 
Memory °1 ° 1 , 02 ° 1 '°2'°3 

requirement and one scratch and one scratch and one scratch 
(words) variable vector of 01 matrix dimension 

words 01 '02 

¢~""(PJ) =¢Im+ 1 + [¢Im+ 1_ ¢lm][EQ(m/(I_EQ(m)]. 

(5) 

If ~ is the error in taking EQ (m instead of the true value, then 

a =EQ(m +~. (6) 

Substracting Eq. (5) from Eq. (3) term by term for each of the 
N points of the problem gives 

[
a EQ(m] 

J.l = A· 1 _ a-I _ EQ {m ' (7) 

where 
N 

J.l = L I¢I"" - ¢~"(PJ)I 
;=1 

and 
N 

A = L I¢\m+ 1 _ ¢\ml. 
;=1 

Equations (6) and (7) give, on substitution, 

~ = /j.l/A)(1 - EQ(m)2 . (8) 
1 + /j.l/ A )( 1 - EQ (m) 

This is an expression for ~ given a certain prediction error J.l. 
One is interested in knowing the value of E', and it appears 
reasonable to take as an approximation 

(9) 

We have assigned empirically the value 0.02 to o. It does not 
matter if Eq, (9) is not totally correct, since the only effect 

log E(k 

...... 
" " . 

o 

..... 

.... 

. .... 

1.11=1.5 

£=10-3 

£ ' :;10-2 

k 

-3 --- -- -- - -~---

FIG. 4. Some incorrect predictor jumps appear when log Elk is plotted 
against the number of iterations. 
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-3 - -------------

FIG. S. Some incorrect predictor jumps appear when log Elk is plotted 
against the number of iterations. 

will be to give an error of prediction that does not coincide 
with the set value p, but is nevertheless close to it. 

IV. THE PJ METHOD IN PRACTICE 

In this section we shall discuss some practical consider
ations for applying the PI method that we remarked on in 
the previous article. 

There are two apparently negative aspects of the PI 
method over other iterative methods. First, to make a pre
diction using Eq. (3) one needs the values tPi from two con
secutive iterations. This appears equivalent to having to 
open up two matrices of unknowns in order to store the val
ues of the function for iterations m and m + 1, respectively. 
Second, the computation time for one iteration is greater 
than for any other method, since at the end of an iteration it 
appears necessary to transfer the contents of one matrix to 
the other in case Eq. (1) is satisfied on the next iteration and 
Eq. (3) will have to be used. This is, however, obviated easily 
in the following way. At the end of iteration k, Eq. (1) is 
checked and if it is satisfied, the matrix transfer is made. 
After the next iteration, k + 1, Eq. (3) is applied, using 
EQ(k + I) for a, which is better than EQ(k anyway, because 
the stability of this parameter increases with each iteration. 
In this way, the average time per iteration is practically the 
same as that for other methods. 

Let us now return to the first point and see how it is 

log E(k 

W=1. 3 

or----,,·-··-·,,-"-··-,,·-.. -"-.. ·-.. -·,,-.. -··-.. ·-"-.. ·-,,-.. -.. ·-.. -... -.. -.. -... -.. ~ ... = .. ~ .. ~ ... ~ 
k 

FIG. 6. Arbitrary initial value conditions give rise to this behavior onog Elk 

versus number of iterations. 
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FIG. 7. An erroneous predictor jump. 

possible to use only one of the two matrices, even though 
later on we will look at the advantages of using two matrices. 

For simplicity, let us consider the Laplace equation in 
one direction. First, the value tP~k is calculated at each point i 
using 

tP~k = (tPt I + tP~k+-II)/2. 
Then one checks to see if Eq. (1) is satisfied. If m is the first 
iteration for which this condition is fulfilled, then one calcu
lates not only tP~m + I at each point i, but tP\ co from Eq. (3). The 
value of tP~ ao is transferred to the matrix of variables after 
having calculated tP~"'-+-t I, so that the forecast value tP\ ao is 
stored in a scratch variable location until tPl"'-+-t I has been 
calculated for the next point i + 1. 

This argument is extendable to two or three dimensions 
as shown in Table I. However, although one is able to get 
away with using just one matrix in this way, let us look now 
at the reason the use of two matrices is preferable as long as 
the available computer memory allows it. There are cases 
when the prediction may be incorrect in the sense that the 

log E(k 
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...... 
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£ 1:;10-2 
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FIG. 8. The erroneous predictor of Fig. 7 is rejected. 
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log E(k 

..... r'" .: .... '. 
••••.•••• Cl=O···.::: Cl=BO k 

". " . 
.... 'O .. CI=40 

FIG. 9. The SOR method for different values of the initial condition with overrelaxation factor fI) = 1.5. 

output error of the PJ method is greater than the input error. 
In Figs. 4 and 5, where log E (k is plotted against the number 
of iterations, there appear some incorrect predictor jumps. 

Examples of possible causes of these problems may be 
seen in the case where Ci) is chosen high enough to impede the 
stabilization of EQ(k [Fig, l(d)) and where, accidentally, 
there are consecutive iterations that satisfy Eq. (1), or, in the 
case of arbitrary initial conditions that give rise to a behavior 
of log E (k versus number iterations like those seen in Fig. 6, 
where entry into the PJ method is likely to occur in the re
gion marked. 

With two matrices of variables, one is able to reject any 
incorrect predictor jump and let the system evolve normally 
as if nothing had happened. Given that the values t/Jlm + I are 

w=l.B 

:: .. ,w=1.7 
.. 

o 20 40 60 80 CI 

FIG. 10. The relation between the initial error Ell and the initial condition 
for different values of fI). 
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stored in the matrix of variables, and the values t/Jlm in the 
other matrix (which we could call the auxiliary matrix) at the 
moment of calculating a prediction using Eq. (3), it is enough 
to store in a scratch location the value t/Jlm when t/J\." is going 
to be calculated, and store t/Jlm + I in the auxiliary matrix. On 
the following iteration m + 2, which is carried out using the 
predicted values that have been stored in the primary matrix, 
the error E 1m + 2 is compared with E (m + I • If the output error 
E (m + 2 is less than the input error E (m + I, the prediction was 
correct and the system continues its evolution. Otherwise 
the values t/Jlm + I, stored in the auxiliary matrix, are trans
ferred to the primary matrix of unknowns and iteration 
m + 2 is carried out using these values, thus rejecting the 
incorrect prediction. 

An erroneous predictor jump is shown in Fig. 7, repre
senting log E (k versus number of iterations. Figure 8 is the 
same case with the erroneous prediction rejected. 

In short, when two matrices are used, it is possible to 
reject the incorrect predictions so that the PJ method can be 
applied without any type of precautions. 

V. INFLUENCE OF THE INITIAL CONDITIONS 

Figure 9 has been obtained by applying the SOR method 
for different values of the initial condition with the same 
value ofthe overrelaxation factor (Ci) = 1.5). 

This figure states first that the parameter EQ (k, which 
coincides with the slope of the straight lines, is independent 
of the initial condition values. Second, it can be observed that 
knowing the initial condition that originates the smallest val· 
ue of the initial error, E(1 is an advantage, because in such a 
way the solution is reached sooner. Nevertheless this best 
value for the initial condition is difficult to obtain. Figure 10 
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shows the relation between the initial error E (\ and the initial 
condition for different values of liJ. 

The way we have chosen to try to obtain this best value is 
as follows. For two very high values of the initial condition, 
the equation of one of the straight lines is calculated; this 
calculation is repeated for the other two very small values 
and another equation is obtained. The intersection of both 
straight lines is approximately the initial condition that ori
ginates the minimum value of the initial error. 
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A combinatorial method is used to construct solutions of the Hamilton-Jacobi equation. An exact 
expression for Hamilton's principal function S is obtained for classical systems of finitely many 
particles interacting via a certain class of time -dependent potentials. Ifx,p, and t are the position, 
momentum, and time variables for N point particles of mass m, it is shown that Hamiltonians of 
the formH (x,p,t ) = (1I2m)p2 + v(x,t ) have complete integralsS that are analytic functions of the 
inverse mass parameter m -I in a punctured disk about the origin. If v(x,t } is bounded, C ... in the x 
variable, and has controlled x-derivative growth, then the coefficients of the Laurent expansion of 
S about m - 1 = 0 may be expressed in terms of gradient structures associated with tree graphs. 
This series expansion for S (x,t; y,to) converges absolutely, and uniformly for all x, y for time 
displacements It - tol < T=2K -1(mleU}1/2, whereKand Uarebounds associated with the space 
derivatives of the potential. For It - tol < T, the classical path (from any initial space-time 
configuration y,to to any final configuration x,t ) induced by S is unique, passes through no 
conjugate points, and furnishes the action functional with a strong minimum. The local solutionS 
given above may be used to obtain the classical trajectories for arbitrarily large times. 

I. INTRODUCTION 

In this paper we construct an explicit solution to the 
Hamilton-Jacobi equation. Consider a nonrelativistic classi
cal system composed of N point particles each having mass 
m and interacting via smooth bounded pair potentials. The 
Hamiltonian for such a system has the general form 

H (x,p,t ) = (1I2m)p2 + v(x,t ), (1.1) 

where teR is the time variable. The vectorsx,peRd denote the 
positions and momenta of all N particles. For particles mov
ing in three dimensions, d = 3N. The function v(x,t} is the 
total potential energy of the system at time t associated with 
configurationx. GivenH (x,p,t ) the related Hamilton-Jacobi 
equation is 

!... S (x,t;y,to) + _1_ IV x S (x,t;y,toW + v(x,t) = 0, (1.2) 
at 2m 

where y,to represents d + 1 independent free parameters. 
The Hamilton-Jacobi equation is a nonlinear partial 

differential equation in d + 1 dimensions, so obtaining solu
tions is a nontrivial task. This is particularly true in the gen
eral problem considered here where one cannot expect that 
v(x,t } will have symmetry properties that would permit the 
study of(1.2) by the method of separation of variables. We 
investigate (1.2) by considering solutions that take the form 

. _ m (X_y}2 . 
S(x,t;y,to) - - - ~(x,t;y,to), (1.3) 

2 t - to 

where ~ is a bounded real-valued function that admits a 
series representation in the variable m - 1, 

... 
~(x,t;y,to) = L m -"A,,(x,t;y,to), (1.4) 

,,=0 

for some coefficients A". The function ~ will be found to 

-, Permanent address. 

depend on v and have the property that ~ vanishes if v = o. 
In this latter case, (1.3) becomes the solution of the Hamil
ton-Jacobi equation that describes free particle motion (with 
constant velocity) from initial configurationy,to to final con
figurationx,/. It will turn out that All assumes the form ofa 
parametric integral in n + I dimensions whose integrand 
has a structure determined by the sum of all labeled tree 
graphs that can be formed on the vertex set { 1,2, ... ,n + l}. It 
will be shown that the series (1.4) is uniformly and absolutely 
convergent for all x,y and for t - to restricted to some finite 
time interval containing the origin. Furthermore, we prove 
that S (x,t;y,/o) is the action (Hamilton's principal function) 
for the trajectory of H (x,p,t) that travels from y,/o to x,t. 

Motivation for the study of S (x,t;y,to) and some initial 
technical insight is provided by the WKB 1.2 approximation 
for the kernel of the time-evolution operator in quantum 
mechanics. To avoid unnecessary complications in this dis
cussion assume temporarily that v is a static potential 
v(x,t} = v(x} and choose the initial time to = O. Let us denote 

""' by H the quantum Hamiltonian operator associated with 
(1. I}. Then H is the self-adjoint extension in L 2(Rd} of the 
quadratic elliptic differential operator 

H(x) = - q !:.x + v(x}, (1.5) 

where !:.X is the Laplacian in Rd. In terms of Planck's con
stant ~ q is the quantum scale factor (f12m. For an appro
priately smooth potential, let U (x,yjit Iii) be the fundamental 
solution of SchrOdinger's equation3 

. a it it 
Iii at U(x,y;"j"} = H(x) U(x,yj"j") 

that satisfies the delta-function initial condition 

U (x,yjit Iii) -+ «5(x - y} as t -0, 

where U is the coordinate space kernel of exp(itH Iii). The 
standard form of the WKB approximation, to lowest order 
in ~ is the approximation 
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U (x,y;it Iii)::::: (21Tili) - d 12 

xI Idet[ -~Sk(X't;y,O)] 1112 
k ax; aYj 

xexp(;{! Sk(X,t;y,O) - ; Mk} l (1.6) 

Here the sum extends over classical paths q k from Y to x 
taking time t, and Sk is the action defined by the path qk: 

Sdx,t;y,O) = f dT[; I qdTW - v( qk(T))]. (1.7) 

The integer Mk is the Morse index of the path qk that is 
determined by how many caustics the path qk transverses 
and their orders. 1 If the space-time coordinate end pointsy,O 
and x,t are close enough together then typically there is only 
one path joining them and the right-hand side of (1.6) re
duces to a single term. Clearly the actions Sk(X,t;y,to) playa 
key role in determining the behavior of the WKB approxi
mation. For this reason it is of interest to solve the Hamil
ton-Jacobi equation and to obtain an explicit expression for 
the action. 

A semiclassical approximation that differs from the 
WKB approach is the Wigner-Kirkwood4

•
5 approximation 

for the coordinate space kernel of the operator e - PH, /3 > 0. 
If /3 is the inverse temperature of a system, e - PH is the un
normalized canonical density operator. Let U (x,y; /3) be the 
coordinate space kernel of e - PH. The Wigner-Kirkwood 
semiclassical approximation results from a q -+ ° uniform 
(in x,y) asymptotic expansion of U (x,y; /3) (see Refs. 6 and 7). 
In particular, the general study6 of the Wigner-Kirkwood 
approximation shows it is related to a linked graph descrip
tion of U (x,y; /3 ). In this representation the kernel admits the 
factorization 

The factor preceding F is the free diffusion kernel associated 
with e - PHo, whereHo = - q!::t.x • HereFis a smooth bound
ed function that is unity if v = ° and for v#O approaches 
unity as /3 -+ 0. 

The graphical representation of interest provides an ex
pansion of log F (x,y; /3), and is in fact a coupling constant 
expansion. Replace v(x) by AV(X) in ( 1. 5) (where A is real); then 
one has 

co 

log F(x,y; /3) = I A nLn (x,y; /3, q). (1.9) 
n=1 

The formula (determined in Ref. 6) for Ln is 

Ln(x,y;/3, q) = I I (- l)n 2' /3n+~~.qP+' i dns 
f§. P = 0 np. 1" 

n 1 /.. ...... ... 
X ij lij! (bij) "(cn )pv(StlV(S2) ... v(Sn)' (1.10) 

The notation used in (1.10) is as follows.The bij and Cn are 
differential operators, 

n 

bij =r/J(SoSj)D; .Dj, Cn = I (l-s;)s;D; .D;, 
;=1 

where D; denotes a gradient operator in Rd that acts only 
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upon the potential function whose argument contains the 
index i, as follows: for iE[ 1,2, ... ,n), 

-+ -+ -+ -+ -+ 
D;V(SI)'" v(Sn)=v(Stl··· (Vv)(S;) ... v(Sn)' 

The coefficient function r/J is the one-dimensional Green's 
function, 

r/J(SoSj) = min(s;'Sj)[ 1 - max(SoSj)]' 

The symbol~; is the linear path in Rd from y to x: 

~; = y + s;(x - y), S;E[O,I] 1. 

Further, the d ns integration is the multiple integral 

i dns= t dS1 t ds2'" (I dsn. 
1" Jo Jo Jo 

The sum indicated by f1 n is the sum over all distinct con
nected graphs on n labeled vertices. For a given connected 
graph, if vertices i and j are linked ([ i, j) is a member of the 
edge set) then I ij is summed from 1 to 00. If i and j are not 
linked,lij = 0. Finally 

n 

s= I lij' 
;>j>1 

In order to compare the forms of (1.8) and the WKB 
representation (1.6), set/3 = it Iii, q = 1i2/2m. Then formally 
one has (after restoring A to 1) 

u(x,y; ~) = (21Tilit~m)dI2 exp{ ~ ~ Ix - yl2 

co ( it ~)} + I Ln x,y;-,- . 
n=1 Ii 2m 

Using (LlO) and collecting powers of Ii, t, and m yields 

Ln(x,y;it lli,~/2m) 

co (ili)P + '+ - I t 2n +'+ + P - I i 
= ~ ~ ( ... ), (Lll) 
;:P~o n~! 2Pm n +.++ p - l 1" 

where the integral is the same as in (LlO) and 
s+ = s - (n - 1»0 is the increment ofs above its minimum 
value of n - 1 for a connected graph. All the Ii dependence of 
Ln appears in the factor Ii P +'+ - I. With (1.11) the sum over 
n of Ln can be reorganized to read 

I Ln (x,y;it Iii, ..!f.) = I (iii)" - 1<1> n (x,t;y,O), 
n=1 2m n=O 

where the <l>n are independent of Ii. Here <1>0 is the contribu
tion to the exponential factor of U (x,y;it Iii) that is propor
tional to Ii-I. Equation (Lll) requires that all the contribu
tions to <1>0 must haves+ = p = 0. This means the graphs in 
f1 n contributing to <1>0 must have n - 1 links and so are tree 
graphs.8 In fact, 

co t
2n - 1 1 i <l>o(x,t;y,O) = I ~ - ') ( ... ). 

n= 1 m n! f§$ees 1" 
(1.12) 

Thus the graph representation of the time evolution kernel 
takes the form 

U(x,y;it Iii) = (21Tilit 1m) - d 12 

xexp{ ~ [~IX - yl2 - <1>0] + <1>1 + o (Ii)}. 
(1.13) 

If(Ll3) and the WKB approximation (1.6) are to be consis-
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tent in the limit Ii -- O. then. 11.3 ) should follow with cP = CPo. 
The graphical analysis leading to the derivation of (1.9) and 
( 1.12) is formal and the nature of the convergence properties 
of these series is not yet known. Nevertheless this heuristic 
line of reasoning provides us with an explicit series expres
sion for cP that through Eq.I1.3) yields a candidate solution 
of the Hamilton-Jacobi equation in the autonomous case. 
The generalization of this .series to include the effects of a 
time-dependent potential is straightforward and will be giv
en in the next section. 

One merit of our tree graph constructive representation 
of the complete integral of the Hamilton-Jacobi equation is 
that many detailed dynamical properties of the Hamiltonian 
system (1.1) can be established with elementary analytical 
methods. That such a graphical expansion of the solution to 
the Hamilton-Jacobi equation should exist has been noted 
by Marinov9 and Voros. tO The assumption of a common 
mass m for all particles is made purely for notational conven
ience. The general kinetic energy operator for an N-body sys
tem with distinct massesm i , ie 1-N. can always be brought 
into the Hamiltonian form 11.1) by a scale transformation of 
the particle coordinates. 

The plan of this paper is as follows. Section II studies the 
series expansion 11.4). Explicit expressions for An are deter
mined from a recurrence relation and the convergence prop
erties of the series are determined. The fact that (1.3) and 
(1.4) constitute a complete integral ofthe Hamilton-Jacobi 
equation is established in Sec. III. The final section charac
terizes the dynamical behavior of the system and analyzes 
the behavior ofthe fixed-end-point variational problem. For 
t - to in a fixed time interval (O.T) it is proved that all classi
cal paths are free of conjugate points. and that the variational 
problem defined by the action functional has only a strong 
minimum. The Appendix contains the tree graph proof of 
the explicit form the coefficients A n take. 

II. THE INVERSE MASS EXPANSION 

This section investigates the natural recurrence rela
tions associated with the inverse mass power series expan
sion of a solution to the Hamilton-Jacobi equation. It is es
tablished that the coefficient functions An have a multiple 
integral representation with an integrand determined by tree 
graphs. Finally we conjecture an explicit solution of the form 
(1.3) and (1.4) and determine its convergence properties. 

First we characterize the class of potentials v(x.t ) to be 
employed. Basically these allowed potentials are real valued. 
Coo in x.C tin t. and have bounded derivatives of controlled 
growth. Let N denote the positive and W the non-negative 
integers. If aeWd is a multi-index and leW. then we use the 
notation 

(va a IV)(X.t) = V~ (:JV(x.t). 

Definition 1: Let r ~ R be an open (possibly infinite) in
terval and let LeW. A continuous potential v: RdX rr-+R is 
said to be in the class d(r ,L) if the following hold. 

(i) Each partial derivative of v that contains at most L 
derivations with respect to the time argument exists and is 
continuous on Rdx r. 
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(ii) v is bounded. 

Ilvll=sup{lv(x.t)ll(x.t)elRdXr} < 00. 

(iii) There exist finite non-negative constants U. B. and K 
(dependingonv)suchthatwheneveraeWd.1e{0.1 .... ,L} and 
lal + 1>0 one has 

II va a Ivll"; UB I (K / .Jd)lal. 
The class d(r,L) is a real vector space. If L<.L' then 

d(r ,L ) ~ d(r ,L '). It is simple to verify that if VEd(r,L ) 
and ter is fixed. then v( • • t ) is a real-analytic function on Rd. 
Throughout the remainder of the paper it is assumed that 
ved(r.L) with L> 1 and this hypothesis will n.ot always be 
written out. 

Suppose a solution S(x.t;y.to) of (1.2) admits the m- t 

series expansion given by (1.3) and (1.4). Now if we formally 
substitute (1.3) and (1.4) into 11.2) we find thatthecoefticimts 
of powers of m must satisfy the recurrence relation 

12.1) 

where 

(t _ t )2n+ t 
An (x.t;y.to) = 0 an + tlx.t;y.to). 12.2) 

(n + I)! 
Here Vi is the gradient with respect to the ith vector 

argument of ak' The sum on the right of (2.1) is absent if 
n = 1. The factor (i:) is the binomial coefficient and 6n,1 the 
Kronecker delta. 

In formula (1.10) (for the static case au = 0) the parame-
-+ 

trized linear path S from y to x played a key role. For time-
dependent potentials we extend the idea of linear path to 
include the time variable. Specifically. the path in RdX r 
from (y.to) to (x.t) is denoted 

t = (y + six - y). to + s (t - toll 

= It. to + sIt - toll. se 1=[0.1]. 

Sinc~ Rd X r is convex. it always contains t. 
Our first observation is that the recurrence relation 12.1) 

has an integral equivalent. 
Lemma 1: Let neN and {a k } i: = t be a sequence of con

tinuously differentiable functions ak : IRdx r)2 r-+ R. Then 
{ak } ~ satisfies 12.1) if and only if {ak } ~ satisfies the recursive 
integral identity 

at(x.t;y.to) = i dsv(t) (n = 1). 

(n>2). (2.3) 

Proof: Suppose (2.1) is satisfied and n>2. Replace (x.t) 
with t in (2.1) and notice that 
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Integrating over SE I we obtain (2.3). A similar argument 
applies if n = 1. 

Conversely, let (2.3) be satisfied. Replace (x,t) through
out by 1 where AE I, and mUltiply by A 2n - I. Change the 
integration variable to r = As, differentiate with respect to 
A, and setA = 1. 0 

Our next step is to introduce a formula for an(x,t;y,to) 
suggested by expansion (1.12). In order to do so it is helpful 
to review the notation used to describe tree graphs. A labeled 
tree Ton nEN vertices is the ordered pair T= (V(T),E(T)); 
V (T) is the vertex set of T, and consists of n distinct natural 
numbers, the vertex labels; andE (T) is the edge set over V (T) 
of T, and consists of n - 1 unordered pairs of distinct ele
ments of V (T), unless n = 1 where E (T) = 0. Each element 
iEV(T) must appear in at least one pairinE (T). The elements 
of E (T) are called links. 

If we fix a vertex set V, then the symbol :TV will denote 
the set of all labeled trees on V. According to Cayley's 
theorem,S if V has n elements there are nn - 2 trees in :TV. If 
f :TV --A, where A is a vector space, then the notation 

means to sum over all trees in :TV. 
If {3E E (T), then the notation {3 = {i p' j p j 

[i p,j pEV(Tl] will be understood consistently to imply 
i p < j p.Forexample,ifi = i p,j = j p in the formula for bij 
it is helpful to think of b ij as a function ofthe link {i p' j p j . 
Specifically 

b ,,=""11:. ,I:.)D . . D .. 
,., 'I'~lfl ':JJfl 'fl Jfl 

Here (as in Sec. I) the Di is a differential operator that only 
acts on the potential v whose argument contains the index i. 
Thus Di is the gradient with respect to the position variable 
'ii of the appropriate potential v. 

We often encounter vertex sets which consist of the first 
n natural numbers, so it is convenient to introduce the abbre
viation 

Vn =l-n=={ 1,2, ... ,nj. 

Definition 2: For nEN define the functions an : 
(Rdx r)2t-+R by the following "tree sums": 

al(x,t;y,to)== i ds v(t), (2.4) 

an(X,t;y,to)=i dns ')' [ II b p] IT v(tp ), (2.5) 
In T.ft?Vn f/EE(T) p= I 

for (n > 1). 
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The following examples will be helpful in understanding 
these formulas. For n = 1, (2.4) is a special case of (2.5) if we 
take the empty product to be unity. 

For n = 2, there is one tree T on two vertices. It is 
T = (V2' { 1,2 j ) and may be identified with the planar graph 

T = (!)---® . 
Hence, 

a2(x,t;y,to) = f dSI f dS2 ¢(5I,S2)(VV)!tI) • (VV)(t2)' 

For n = 3, there are three different trees; each associat
ed with a different planar graph, i.e., 

T 1 = @---@---0 , T 2 = 0---G)----@ , 

T3 = <D--<Y---<D . 
The tree TI contributes a term in the ~T of 

i 
d3S ¢(SI,S2)¢(S2,S3)(DI . D2)(D2· D3)v!tIlv(t2)v(t3)' 

1 3 

A change oflabels in fact shows that the contributions of T I , 

T2, and T3 to a3(x,t;y,to) are identical. So the value of a3 is 
three times the above integral. 

For n;;;.4, not all trees have the same topological struc
ture and so a complete reduction of the sum to a single multi
ple integral will not occur. It should be evident now how all 
the an are determined, and that they are once continuously 
differentiable. 

The main result of this section is the following. 
Proposition 1: The functions an : (Rd X r)2t-+R defined by 

(2.4) and (2.5) satisfy the recurrence relation (2.1) for all n;;;'1. 
Proof: Because of its substantial length we place the 

proof in the appendix. There it is shown (Lemma 11) that if 
the an are given by (2.4) and (2.5), then the recursive integral 
identity (2.3) is obeyed. By Lemma 1 it follows that recur
rence relation (2.1) is satisfied. 0 

Given the determination of the coefficients an in Defini
tion 2, we define a function <1>, which will tum out to be 
proportional to the part of Hamilton's principal function S, 
due to the interaction v [cf. (1.3)]. In the static potential case 
this function <I> is identical with the <1>0 provided by formula 
(1.12). 

Definition 3: Let ved(r, 1) and select a fixed value toEr. 
Set 

T= (2!K)(m/eU)I/2 (2.6) 

and label an interval of the time axis by 
O=O(r,T,to)=(to - T,to + T)nr. Define the function 
<1>( • , .; • ,to): Rd X 0 X Rdt-+R by the series 

"" (t _ t )2n - I 

<I>(x,t;y,to)== L 0 an (x,t;y,to)' (2.7) 
n=1 mn-In! 

We summarize the convergence properties of this series. 
Lemma 2: Let ved(r,l), toEr. 
(i) For each fixed tEO, series (2.7) converges absolutely 

and uniformly for (XJl) ERd. If t is restricted to a compact 
subset of 0 the convergence is also uniform in t. 

(ii) For fixed x,t;y,to in the domain of <1>, series (2.7) de
fines an analytic function of the inverse mass in the complex 
disk 1m- I I <4(eU)-IK -2(t - to)-2. 
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(iii) In the static case (au = 0, r = H) coefficients an are 
independent of t,to and so for fixed XJl€Rd and m > 0, series 
(2.7) defines an analytic function of time displacement in the 
complex disk It - tol < T. 

(iv) If teO is fixed, 4I>isa COO function of (x,y)eRld
• In fact 

if a,a'eWd
, 1,I'e[ 0, I}, and I + I' 0;;;; 1, then 

(Vf V~' a ~ a~' 4I»(x,t;y,to) 

f 1 (!...)I (~)/' [(t _ to)2n - I 

n= I mn-In! at ato 

X(Vf v~' an)(x,t;y,to)] , (2.8) 

where the series (2.8) has the same properties (i)-(iii) above as 
does series (2.7). 

Proof These results are evident consequences of the tree 
sum definition (2.4) and (2.5) of an and the requirement 
ved(r,l). For example, using Cayley's theorem, the fact 
that 2(n - 1) gradients occur in IIPeE(T) b p for TeYVn , and ° <.t/J(505 ) )<'1, we obtain the bound 

lan(x,t;y,to)lo;;;;nn - 2Un(K2/4r -I, 

n>2, (x,y)eRld
• 

This implies (i). Then (ii) and (iii) are immediate. Similarly, 
(iv) follows from the smoothness of v and the estimate (for 
neN, la + a'i + 1+1'#0) 

IVf Vr a~ a~' an lo;;;;nn-2(K 2/ 4r- I(KI{tl)la+a'l 

(2.9) 
D 

III. THE COMPLETE INTEGRAL 

The detailed behavior of the function S(x,t;y,to) and its 
relation to the Hamiltonian is considered in this section. In 
particular it is proved that S is a complete integral of the 
Hamilton-Jacobi equation. The associated Jacobian deter
minant is defined together with its continuity equation. For 
sufficiently small positive time displacements it is shown 
that this determinant is uniformly continuous in all its argu
ments and is positive. 

Let the Hamiltonian H: R2dXn-~R be given by (1.1). 
The associated Hamilton-Jacobi equation is 

a 
- Y( q,r) + H( q,VqY( q,r),r) = 0, (3.1) ar 

where q is the position coordinate in Rd, and Y: Rd X r.-R. 
A class of solutions to (3.1) of particular importance is the 
complete integral. 

Definition 4: A function Y: G ~ Rld + I.-R will be 
called a complete integral of the Hamilton-Jacobi equation if 
(i) G is a region (a connected open set); (ii) Y( q,r,Q) depends 
continuously on d independent parameters 
Q = (QI,Q2, ... ,Qd) lying in some (nonempty) region GQ ~ Rd; 
(iii) Y( q,r,Q) is continuously differentiable with respect to q 
and r; and (iv) Y is a solution of(3.1). 

Consider the function S given by the following. 
Definition 5: For each ved(r, 1), let w==w(r,T,to) 

=On(to, 00 ) and 4I>(x,t;y,to) be the function given by the series 
(2.7). DefineS(.,.;· ,to): RdXwXRd.-R by 

S(x,t;y,to) = m Ix _ Yl2 - 4I>(x,t;y,to)' (3.2) 
2(t - to) 
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We first show thatSis a solution of(3.1). 
Theorem 1: Let ved(r, 1), toer and suppose the Hamil

tonian H (x, p,t ) is given by (1.1). The map 

(x,t, y).-8 (x,t;y,to) 

is a complete integral of the Hamilton-Jacobi equation (3.1) 
with region G = Rd X W X Rd. 

Proof It is apparent that conditions (i)-(iii) of Definition 
4 are satisfied. Note that the d independent parameters are 
given by the vector yeRd. It remains to show that S (x,t;y,to) is 
a solution of the Hamilton-Jacobi equation. Direct calcula
tion yields 

a -=-s (x,t;y,to) + H (x, V",S (x,t;y,to),t ) 
at 

= -!... 41> - _1_(x - y). V",4I> 
at t - to 

+ _1_1 V'" 41> 12 + v(x,t). 
2m 

(3.3) 

Lemma 2 makes it permissible to substitute series (2.7) for 41>, 
differentiate term-by-term, and to evaluate I V'" 41> 12 by the 
Cauchy product. Collecting common powers of m -I, we 
find that the coefficient of - [(t - to)2lm] n - Ilnl is 

[(2n - 1) + (t - to) :t + (x - y). V", ]an(x,t;y,to) 

- v(x,t )c5n,1 -.!.. nil (kn) (V lak • V Ian _ k )(x,t;y,to), 
2 k=1 

(3.4) 

where the sum is taken to be zero if n = 1. But since the ak 
are defined by the tree sums (2.4) and (2.5) it follows from 
Proposition 1 that the coefficient (3.4) vanishes identically. 
Thus the right-hand side of (3.3) vanishes, proving the 
theorem. D 

We observe that our construction of S, and Theorem 1, 
would also be valid if potential v and mass parameter m were 
allowed to be complex valued in the Hamilton-Jacobi partial 
differential equation (1.2). 

In view of the fact that S is a complete integral we can 
continue the investigation of S and the classical dynamics it 
implies by appealing to Jacobi's theorem. First note that the 
Jacobian matrixll,I2 is constructed from the elements 
(i,jel-d) 

a a 
Mjj(x,t;Y,to)== - - - S (x,t;y,to) 

ayj ax) 

m a a 
= -- 8jj + - - 4I>(x,t;y,to), 

t - to iJyj aXj 

and has determinant D: Rd X w X Rd.-R, 

D (x,t;y,to)=det M (x,t;y,to)' 
We now fix some initial time toer for the remainder of 

the discussion. For brevity, we will understand S to be 
S ( . , . ; . ,to) and similarly for D. With this terminology, we 
can state the famous result of Jacobi. 

Theorem 2: Suppose S is a complete integral ofthe Ham
ilton-Jacobi equation. Suppose further that the second par
tials, 
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a 2s a 2s a 2s 
---" --, --, i,jEl-d, 
ax; ay j ax; at ay; at 

exist and are continuous. 
For PO~d, let q(T)=q(Tj}',to,Po) be a solution to 

- (V ~)( q,r, y,to) = Po (3.5) 

defined by the implicit function theorem in a region where 
D( q,r,y,to)#O. Let pIT) p(T;y,to,Po) be given [whenever 
q(T) exists] by 

p(T)=(V1S)( q(T),T;y,to)' (3.6) 

Then q( • ), p( • ) satisfy Hamilton's equations 

ti(T) = (V,p)( q(T),p(T),T), 

PIT) = - (VIH)( q(T),p(T),T). 

Proof See Refs. 13-15. D 
We proceed by deriving a number of technical results 

that facilitate the application of Jacobi's theorem. Most of 
these technical results aid us in applying the implicit func
tion part of the theorem in order to define q(T) as the solution 
of(3.5). 

Lemma 3: Given oe(O, I) let t(u) = (I + clu)- 1/2T, 
where c = 2~2hr. Then 

-- - -- '¥ x,t;y,to <-, 
I

t - to a a ~( ) I u 
max; ay j d 

(3.7) 

for all i,jEI-d, x,yeRd, and tE(to,to + t (u))nrc;;;;;w. 
Proof Estimate (3.7) follows by applying bound (2.9) to 

the series (2.8). D 
An important consideration that occurs when applying 

the implicit function theorem to solve (3.5) for the classical 
path q( • ) is the behavior of the range of - V~. For example, 
if the value Po is not assumed by - (V2S)( q,Tj}',to) asq varies 
through Rd and T varies through w for fixed y, then (3.5) is 
empty and so does not define a function q( • ). The range of 
- V 2S is characterized by the following statement. 

Lemma 4: Given any y,PoERd and tE(to,to + t (u))nr, the 
equation 

- (V ~ )(x,tj}',to) = Po, (3.8) 

has a unique solution for xERd. Consequently, 

- (V~)(RdXwXRd)=Range( - V~) = Rd. 

Proof Equation (3.8) suggests we examine a function 
F: Rd~Rd defined by 

F(x) = Y + t - to Po _ t - to(V2cf>)(x,tj}',to)' (3.9) 
m m 

Of course, F depends parametrically on y,po,t, and to' We 
first show F is a contraction mapping of Rd into Rd. If 
x,x'ERd are arbitrary, then (3.9) implies 

F(x) - F(x') = [It - to)/m] [(V2cf>)(x',tj}',to) 

- (V 2<1>)(X,t;y,to)]. 

Apply Taylor's formula to the jth component of F and use 
the Schwartz inequality. One finds 

IFj(x) -Fj(x')I<lx -x'IIVFj(x +A j(x' -x))1 

for some A jE(O, I). Since t - to < t (u), estimate (3.7) is valid 
and 
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IVFj(x")1 <ul.jii, 

for all x" ERd. Computing the Euclidean norm for the differ
ence of F gives 

IF(x) -F(x')1 <ulx-x'i. 

Since u < I, F is a contraction mapping. By the contraction 
principlel6 it possesses a unique fixed point x*ERd, that is, 
F(x*) = x*. Since t #to this can be rearranged to give 

[m/(t - to)](x* - y) + (V 2cf>)(X* ,tj}',to) = Po' 

so that x* is a solution of (3.8). D 
We conclude this section by investigating the basic 

properties ofthe determinant D. In particular we determine 
the region in x,y, and t where D cannot have a zero. 

Lemma 5: If IE w the determinant D satisfies the follow
ing continuity equation: 

Ox· [(O,p)(x,OxS(x,tj}',to),t)D(x,tj}',to)] 

a + - D (x,t;y,to) = 0, 
at 

(3.10) 

for allx,y. 
Proof This is a consequence of the fact that S is a com

plete integral in region G of the Hamilton-Jacobi equation 
and has partials up to third order which are continuous, 
provided they contain at most one time derivative [cf. 
Lemma 2, (iv)]. See Refs. 11 and 12. D 

Lemma 6: Let [t l ,t2] Cw. The determinantD is uniform
ly continuous on the restricted domain RdX [t l ,t2] X Rd. 

Proof Due to the algebraic nature of the determinant, D 
is a finite sum of finite products. Differentiation of D (x,t;y,to) 
with respect to t or components of x,y can be carried out term 
by term. The resulting factors are uniformly bounded on the 
domain Rd X [t l,t2] X Rd since t is bounded away from to and 
to + T [see (2.8) and (2.9)]. It follows that there exists a finite 
constant C such that 

IV zD (z,to) I < C, zERd X [t l,t2] X Rd, 

where z = (x,t,y). Applying Taylor's theorem and Schwartz' 
inequality to D (noting the restricted domain is convex) one 
finds 

Thus D is uniformly continuous in this allowed range of 
~~ D 

If the determinantD (x,tj}',to) is nonvanishing the implic
it function theorem tells us that (3.5) has a local C I solution 
for x in terms of t,y,to, and Po. So, it is helpful to establish 
conditions that guarantee that D #0. We first note D> 0 if 
tE (to,to + t (u))nr. To see this, recall the definition 

D (x,tj}',to) = (m/(t - to))d det( I + A ), 

where A is the d X d matrix with elements 

t - to a a <1>( ) A;j =---- x,tj}',to ' 
max] ay; 

(3.11) 

But these are just the quantities estimated in (3.7), so we 
obtain the following bound on the operator norm of the lin
ear transformation A: 
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IIA II<C.~ I IAij 12)'" <u< 1. 

This bound is x,y uniform, and for all te(to,to + t (u))nr. It 
follows that 1 + A is invertible, hence D =1= 0 in this region. In 
fact a simple argument involving the Jordan normal form of 
a matrix and the Neumann series for (1 + A )-1 leads to the 
estimate 

D (x,ti,Y,to) > (m/(t - to))d (1 - U)d, 

te(to,to + t (u))nr, x,yeRd. 

Given the existence of an interval (to, to + t (u)) such that 
D is bounded away from zero uniformly (in x,y), it is useful to 
define the largest time interval with this property . We call 
the right end point tl of this largest interval the Jacobi time 
(relative to to). 

Definition 6: Let the domain of D and S be Z = Rd 
X (t) X Rd. Define the sets A and lIt (A) to be 

A=lzeZ ID(z,to) = OJ, 
IIt(A)=1 tElU 1 (x,t,y)eA, for some (x,y)eR1dj. 

If A = 0, then set tl = sup (t), otherwise set tl = inf lIt (A). 
Notice that Z, t1 ,A, and lIt (A) all depend on the choice 

of to; A = D -I {O j is the null set of D and lIt (A) is its projec
tion onto the time axis. From the definition of the Jacobi 
time one has tl ;;;.sup[(to,to + t (u))nr]. In the next section we 
will show that the optimal result tl = sup (t) holds. 

IV. CLASSICAL PATHS, UNIQUENESS, AND THE 
VARIATIONAL PRINCIPLE 

By systematic application of Jacobi's theorem we shall 
derive many of the dynamical properties of the Hamiltonian 
system (1.1). This section will establish the uniqueness prop
erties of the classical paths, prove the absence of conjugate 
points and demonstrate that the fixed-end-point variational 
problem has only one extremum if to < t < tl . 

Consider first the behavior ofthe solutions to (3.5). 
Lemma 7: For eachy,poeRd

, Eq. (3.5) has a C 1 solution 
q( r; y,to, Po) for allr e (to,t 1)' Furthermore 

lim q(r; y,to, Po) = y, (4.1) 
'1'-1 0+ 

aq (t +. Y t p) _ Po -a 0, '0' 0--' r m 
(4.2) 

Proof: Choose u e (0,1) such that t (u) e (O,t, - to) as in 
Lemma 3. Lemma 4 implies there is a (unique) solution 
q(r; y,to, Po) for each r e (to, to + t (u)). Since - V,zS is a C I 
mapping and sinceD (q,r; y,to)=1=0 for r e (to,t1 ), we may ap
ply the implicit function theorem 16 in the neighborhood of 
this solution. Thus it follows that q(r; y,to, Po) is C I and may 
be extended in r to the time interval (to,t, ). 

To establish (4.1) note that (3.5) may be written as 

[m/(r - to)] [q(r;y,to,po) - y] 

= - (V1c1»(q(r,y,to,po),r;y,to) + Po· 

The boundedness of - V2c1> + Po as r_t 0+ implies (4.1). 
The fact that - (V2c1» (q,r; y,to) vanishes uniformly (in q) as 
r-t 0+ gives (4.2). 0 
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We now turn to the uniqueness aspects of the classical 
paths q(r). So far we know from Lemma 4 that q(r) is unique 
if r E (to,to + t (u))nr. We extend this range of uniqueness to 
the interval (to,t,) and remark that in due course it will be 
proved that tl = sup (t). The term classical path will denote a 
C 1 function q: (a,b ) ~ R_Rd that satisfies Newton's equation 

d 2 

m dr q(r) = - Vv(q(r),r). 

Proposition 2: Lety, Po E Rd and q(r)==q(r; y,to, Po) be the 
solution of (3.5) given in Lemma 7. Then q( • ) is a classical 
path with the following properties. 

(i) Initial value uniqueness. Let (q, pI: n_Rld be the 
unique solution to Hamilton's equations, with q(to) = yand 
p(to) = Po. Then 

q(r) = q(r), r e (to,t1 ). 

Hence q( • ) is the unique solution to (3.5). 
(ii) Two-end-point uniqueness. Consider any two dis

tinct classical paths ql: (to,t1 )-+Rd (i = 1,2, ql =l=q2) emanat
ing from the same initial point y: 

q/(to+)=y, i= 1,2. 

Then these paths do not intersect: 

ql(r)=I=q2(r), r e (to,t,). 

(iii) Completeness. As (y, Po) varies throughout R2d the 
unique solutions q(r) to (3.5) exhaust all possible classical 
paths. 

Proof: By Theorems 1 and 2 and the fact that 
D (q,r;y,to)=I=O for q,r,y e RdX(to,t, )XRd we find that q(1') 
and p(r) = V IS (q(r),r; y,to) solve Hamilton's equations 

q(1') = (l/m)p(r), P(1') = - Vv(q(1'),1'). 

These imply q( • ) is a classical path. Lemma 7 shows q(t 0+ ) 

= y andp(t 0+)::;::: mq(t 0+) = Po· 
(i) Writingz = (q,p), Hamilton's equations take the form 

dz = (V2H, - VIH)(z(r),r). 
dr 

For potentials ve d(r,I) one may verify the hypothesis of 
Theorem 6.1.4 of Ref. 17 and conclude that there is a unique 
solution z: n_R2d subject to the initial condition 
z(to) = (y, Po). Hence q = q. 

If there were another solution q' to (3.5) it must agree 
with q on (to,to + t (u))nr, so (q',mq')solves Hamilton'S equa
tions and q' = q. 

(ii) Assuming the contrary, there exists 1'* e (to,t1 ) such 
that ql(1'*) = q2(1'*), and therefore 

- V,zS(ql(r*),1'*i,Y,to) = - V2S(q2(1'*),1'*i,Y,to)' (4.3) 

Since (qumq/) solve Hamilton's equations (i = 1,2), (i) im
plies that they satisfy (3.5) in the form 

- V,zS(q/(r),ri,Y,to) = mq/(t 0+) (i = 1,2, all 1'). 

Choosing r = r*, (4.3) implies ql(t 0+) = q2(t 0+)' Then by (i) 
we must have ql = q2' This contradicts that ql and q2 are 
distinct. 

(iii) This follows from (i) and Lemma 4. 0 
Notice that the fixed-end-point trajectory problem is 

solved by a special choice of Po. Set 
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Po = Po(x,t;y,to)==: - (V ~ )(x,t;y,to), (4.4) 

where t e (to,t]). Then the unique classical path 

q(r;x,t;y,to)=q(r,y,to,po(x,t;Y,to)) (4.5) 

provided by the solution of (3.5) with Po given by (4.4) runs 
fromy at r = to tox at time r = t. That q(t) = x is verified by 
checking that this endpoint is indeed a solution of (3.5). 

A second observation of interest concerns orbital per
iods in the case of a static potential av = o. A closed orbit 
(q( • ),p( • )) is a periodic solution of Hamilton's equations, 
i.e., there is a least positive time To such that (q( • ),p( • )) are 
translation invariant (q(r),p(r)) = (q(r + To),p(r + To)), all r. 
Consider a closed orbit (q( • ),p( • )). One possibility is that the 
orbit be trivially "periodic" in the sense that p( r) = 0 for all 
r. In this case the path q(r) = x o, a constant, and Xo corre
sponds to a point of equilibrium for the system, i.e., 
Vv(xo) = O. (Also a least To> 0 fails to exist.) 

If the orbit is not trivial, then there is a time, say r = 0, 
where Po p(O) #0. Let y = q(O) and consider two distinct 
paths emanating from y; one being the original orbit path, 
and the other having initial momentum - p(O)#Po' Since 
the Hamiltonian is time-reversal invariant, the second path 
follows the trace of q in the reverse direction relative to the 
first. Because the orbit is closed, the two paths must intersect 
at time t· = Tr/2. Proposition 2(i) implies t .;;;. T. So we have 
the conclusion that every (nontrivial) closed orbit has period 
To;;;.2T. 

Returning to the case of the time-dependent potential, 
the next objective is to optimize the region of validity of these 
results by proving that t] = sup al. The following lemma and 
proposition achieve this goal. 

Lemma 8: For all (x,t, y) e Rd X (toh) X Rd, the Jacobian 
determinant has the representation 

D (x,t; y,to) = (~)d exp{l.- f' dr 
t - to m Jto 

X (a I <I»(q(r,x,t; y,to),r; y,to)}' (4.6) 

Proof: Let (x,t, y) be given. Define N: Rd X (to,t )-R by 

N(q,r) = ((r - to)/m)dD (q,r, y,to)' 

The estimates 

(1 - O')d..;;((r - to)/m)dD (q,r;y,to)..;;(l + O')d 

valid for all q, y e Rd
, r e (to,to + t (O'))nr imply, as 0'-0+, 

that 

lim N(q,r) = 1 
T_tO+ 

uniformly in q andy. In terms of N, the continuity equation 
of Lemma 5 reads 

aN 1 -a (q,r) + - (VIS)(q,r;y,to)' (VN)(q,r) 
r m 

= (l/m)N(q,r)(al<l>)(q,r; y,to)' 

Since to<r<t<t], N(q,r) >0 and we may divide by N to 
obtain 

all 
-logN +- VIS· V1 10gN=-a1<1>. 
ar m m 

Take q to be the classical path q(r)=q(r;x,t; y,to) defined in 
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(4.5). Observe from Jacobi's theorem that the velocity, q(r), 
ofthis trajectory is (l/m)V 1S(q(r),r;y,to). So we have 

d 1 
-d log N(q(r),r) = - a 1<1>(q(r),r;y,to)· 

r m 
Integrating over r e (to,t) gives (4.6). D 

Combining representation (4.6) with the uniform con
tinuity of D implies that D (x,t; y,to) > 0 if teal. In terms of 
the notation of Definition 6 we obtain the following. 

Proposition 3: A = 0 (or t] = sup al). 

Proof: We show the assumption A#0leads to a contra
diction. If A # 0, then t J E al and for all ~ > 0 

(tJ - ~,tJ + ~)nnt(A)#0. (4.7) 

Fix ~ small enough so that 

to < t] - ~=tl < t] + ~==:t2 < sup al. (4.8) 

Let 

C=sup{(l/m)lax<l>(x,t;y,to)llx,yeRd, te [to,tdj. 
Lemma 2, part (iv) implies C < 00. Define E to be 

E = !(ml(t] _ to))de - (tJ - tolC. 

From the uniform continuity of D (Lemma 6) there exists a 
~E > 0 satisfying ~E <~ and such that 

ID(x,t;y,to) -D(x',t';y',to)1 <E, (4.9) 

if I (x,t, y) - (x',t ',y')1 <~E and t,t' e [t1,t2]. By (4.7) there ex
ists a point (x',t', y') e A at which D is zero, with 

t' E (tJ - ~E/2,tJ + ~J2). 
Setting x = x' andy = y', (4.9) becomes the upper bound 

ID(x',t;y',to)1 <! (ml(t] - to))de-(tJ-toIC, (4.10) 

for all t e (t] - ~J2, t] + ~J2). But if t E (tJ - ~J2, t]), 
then D has representation (4.6), which in tum implies the 
lower bound 

ID (x',t; y',to)I;;;'(ml(t - to))de - (t- tolC 

;;;.(ml(t] _ to))de - (tJ - tolC. (4.11) 

Bound (4.10) is in contradiction with bound (4.11). Thus 
A=~ D 

Proposition 3 lets us apply Jacobi's theorem in order to 
find all solutions of Hamilton's equations for time displace
ments less than T. However, by an iterative application of 
Jacobi's theorem we can obtain the solution to Hamilton's 
equations for all times t > to. This is done as follows. 

For simplicity we assume the potential v(x,t) is defined 
for all t, i.e., sup r = 00. Let y<0I, p<0) be the arbitrary initial 
position and momentum at time to of a classical path Q: 
[to, 00 ~Rd. We choose some t E (O,T) and let n==:[(r - to)lt] 
be the greatest integer less than (r - to}/t. 

The trajectory Q,P (solution to Hamilton's equations) 
corresponding to path Q is then defined recursively for all 
r> to; 

Q (r)=q(r, y<n),to + nt,p<n)), 

P(r)=(V IS)(Q (r),r; y(n),to + nt), 

y(l)=q(to + It; y(/- 1),to + (I - 1 )t,p'/- I)) = Q (to + It ), 
p(/)==:(VIS)(y(I),to + It,y!/-I),to + (/- l)t) = P(to + It), 

where IE N. 
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The reason this works is because the implicit function 
theorem can always be used to define ql • ; yI.I),to + It,p,I.)) for 
any values of Q Ito + It ),P Ito + It) that may happen to evolve 
along the trajectory. These values are then regarded as new 
initial values for the next segment of the trajectory. 

The action which appears in the WKB approximation is 
the time integral of tile Lagrange function. Ifql1') is the clas
sical path defined in 14.5) the Lagrangian action IHamilton's 
principal function) is defined to be 

SLlx,t;y,to)= i d1' L (q(1'),q(1'),1'). 14.12) 

The integrand here is the Lagrange function associated with 
the Hamiltonian 11.1), 

L Iq,q,1') = !mq2 - vlq,1'). 

It is known that SL is a solution of the Hamilton-Jacobi 
equation 11.2). We demonstrate that S L is identical with the 
function S (x,t; y,to) defined by 13.2) provided t e (J). 

Proposition 4: Sdx,t;y,to) =Slx,t;y,~o) for all Ix,t,y) 
eZ. 

Proof: Start with formula 14.12) where ql1') is the unique 
classical path from qlto) = y to qlt ) = x, i.e., the path defined 
by 14.5). Jacobi's theorem gives us 

ql1') = 11Im)lVIS)(ql1'),1';y,to)· 

Insert this identity into the integrand of 14.12) and use the 
Hamilton-Jacobi equation for S. One finds 

SLlx,t;y,to) = i d1'[ -la ls)lql1'),1';y,to) - 2v(q(1'),1')]. 

Expressing the first term of the integrand as a total deriva
tive with respect to 1', via 

lalS )(q(1'),1'; y,to) = ~ S (ql1'),1'; y,to) - m Iq(1'W, 
d1' 

leads to 

SLlx,t;y,to) = -S(ql1'),r,y,to{=to 
+ 2 i d1' L (ql1'),q(1'),1'), 

or 

SL Ix,t; y,to) = S (x,t; y,to) - lim S ( q(1'),1'; y,to). 
1'-+to+ 

From the properties of q(1') and ~ it is easily seen that the 
limit vanishes. 0 

We conclude our analysis by discussing the implications 
of our solution of the Hamilton-Jacobi equation for the fixed 
end-point variational problem. Fix (x,t, y) e Z and letD (J) be 
a class of functions appropriate for the domain of a func
tional. The action functional J: D IJ )_R is defined by 

J [Q] = i d1' L (Q (1'),Q 11'),1'), (4.13) 

wherethedomainofJisD(J) = {Q: [to,t]_RdIQpiecewise 
smooth, Q (to) = y, Q (t ) = x}. Each smooth element 
Q * e D (J), where the first variation 13 of J vanishes, is an ex
tremal. The associated Q *(1') is a solution of the Euler-La-
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grange equations. In favorable circumstances an extremal 
may be a local minimum of the functional. The nature of the 
minimum is characterized by the norm associated with it. 

For piecewise-smooth functions Q on [to,t J define two 
norms by 

IIQ 110= sup IQ(t)l, 
1'e [toot J 

IIQIII=IIQllo+sup IQI1')I· 
l' 

In the II . III norm the supremum is taken only over the 
values of l' e [to,t] where the derivative exists. An extremal 
Q * e D (J) is a strong local minimum if there exists an E> 0 
such that 

J[Q *]<J[Q], 14.14) 

for all QeD (J) satisfying 

IIQ-Q*llo<E. 

On the other hand, J [Q] is said to have a weak local mini
mum at Q* if (4. 14) is valid for QeDIJ) obeying 

IIQ-Q*III<E. 

Of course, if Q * is a strong minimum it is also a weak mini
mum. 

In general terms establishing whether or not an extre
mal is a minimum requires proving that the second variation 
ofJ (Q ) at Q = Q * is positive and this in tum is determined in 
large part by the absence of conjugate points. More precise
ly,13 given a classical path q: [to,t ]_Rd, a point 1'F e (to,t] is 
said to be conjugate to to if there exists a sequence {q1l) of 
neighboring classical paths satisfying 

q"lto) = q(to), q,,(1'1I) = q(1',,), (4.15) 

where 

O<llq1l-qllo-o, 1',,-rF, asn-oo. 

Lemma 9: For each (y, Po) e RU, let q( . ; y,to, Po) be the 
classical path defined by 13.5). Then q( • ; y,to, Po) has no 
point conjugate to to in the interval (J). 

Proof: Equation 14.15) requires the existence of two dis
tinct classical paths q and q1l that have the same initial posi
tion y and the same final position for l' = 1',,-rF' But by 
Proposition 2 this is impossible if 1'F e (J). 0 

This technical result enables us to establish the charac
ter of the stationary points of the functional J [ . ]. 

Theorem 3: Let ve d'(r,2) and to e r. For each 
Ix,t, y) e Z the associated functionalJ [ . ] has only one extre
mal Q * e D (J). Furthermore if q is the classical path defined 
by (4.5) then Q * = q( . ;x,t; y,to) and this extremal furnishesJ 
with a strong minimum. 

Proof: Our theorem takes ve d'(r,2) as its hypothesis, 
rather than v e d'(r, 1), in order that the Lagrange function 
L (q,q,1') is sufficiently ditferentiablel8 to ensure the applica
bility of standard results from the calculus of variations to be 
used below. 

Each extremal Q * is a solution of the Euler-Lagrange 
equations that has initial pointy, final point x. Proposition 2 
shows that there is only one such classical path and this 
unique path is Q *( . ) = q( . ;x,t; y,to), where q is defined in 
(4.5). 
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Sufficient conditions for a strong local minimum are es
tablished in Refs. 13 and 14. The first three of these four 
conditions are as follows. 

(i) q( • ) is a classical path. 
(ii) The d Xd matrix, K (q(1'),q(1'),1') defined by 

~ ~ L (q(1'),q(1'),1'), i,j e I-d, 
aq; aqj 

is positive definite for l' e [to,t]. 
(iii) The path q( • ) has no point conjugate to l' = to in 

[to,t ]. 
Jacobi's theorem assures us that (i) is valid. Lemma 9 

guarantees that (iii) is fulfilled; (ii) is an immediate conse
quence of definition of the Lagrangian. 

Let E be the Weierstrass function defined by the time
dependent Lagrange function L (q,q,1'). For Q,Q,z e Rd 

E (1',Q,Q,z)=L (Q,z,1') - L (Q,Q,1') 

- (z - Q). (V2L )(Q,Q,1'). 

Upon using the Taylor series remainder formula, this can 
also be written 

E (1',Q,Q,z) = !(z - Q) . K (Q,Q + () (z - Q ),1')(z - Q), 

for some value of () e (0,1). The fourth condition needed to 
establish a strong local minimu~ is the following. . 

(iv) The E-function E (1',Q,Q,z);> 0 in a region of 1',Q,Q 
space containing {(1', q(1'),q(1'))I1' e [to,t]) for all z e Rd. 

Noting that K is m times the unit matrix for all argu
ments, one has 

E(1',Q,Q,z) = !mlz - Q 12;>0. 

Thus condition (iv) is obeyed. o 

APPENDIX: TREE COMBINATORICS 

The purpose of this Appendix is to prove Proposition 1. 
First we make a few additions to our notations for trees and 
their combinatorics. For a given keN, let J k be a k-element 
vertex set chosen from the set {I,2, ... ,n + I}. There are (\+ I) 
such different possible choices and the sum over all these 
possibilities we denote by l:J

k
' Also, given Jk the associated 

complement will be taken as 

J'k = {I,2, ... ,n + I} \Jk • 

Supposep is some element of the edge set for a given tree 
(V(T),E (T)). If Pis removed from theedgesetE (T)thetreeis 
broken into two disjoint subtrees Tf, T~ satisfying 

VITI = V(Tf)uV(T~), E (T) = E (Tf)uE (T~)u{P ), 

ip e V(Tf) and jp e V(T~). 

Finally we let Y indicate the set of all labeled trees 
formed over finite subsets ofN. 

Lemma 10 (tree grafting): Let n e N, and A be a vector 
space. Suppose f: ,72 X N21-+A is a function symmetric in its 
first two and last two arguments 

f(T',T";I,m) =f(T",T';I,m) =f(T',T";m,l); 

i.e.,fis a function of an unordered pair of trees and an unor
dered pair of vertex labels. Then 
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= ) L f(Tf,T~;ip,jp). (AI) 
TE#n+l PEEIT) 

Proof' We show that (i) sums of pairs of terms on the left
hand side occur as a single term on the righ-hand side, and 
conversely, (ii) every term on the right side occurs as a pair of 
terms on the left-hand side. 

(i) On the left-hand side fix an arbitrary term in the sum: 

k=/eVn, JI, TI=TteYJI, T2=T!eYJi, 

r = r* e JI, q = q* e J /. 

However, when k = n + 1 - I, there will exist a partner to 
this term for which I n + I -I = Ji and 

TI = T! eYJn+ I-I = YJi, 

T2 = Tt eYJ~+I_1 = YJI, 

r=q*eJn+ I _ I, q=r*eJ~+I_I' 

We note these partners are always different terms in the left
hand sum. If 1 i= n + I - I, then they arise from different 
terms in the l:~= I sum. Whereas if 1 = (n + 1)12, then be
cause TI and T2 are trees on disjoint vertex sets (JI,Jn, the 
partners arise from complementary choices of Jk in the sum 
l:Jk ' 

The sum of the two partner terms is 

!/(Tt,T!;r*,q*) + !/(T!,Tt;q*,r*) =f(Tt,T!;r*,q*) 
(A2) 

by the symmetry off Now Tt and T! are two disjoint trees 
that can be grafted together by the linkp = {r*,q*} because 
r* eJI = V(Tt)andq* eJi = V(T!). That is we can define 
a tree Tby 

VITI = V(Tt)uV(T!) = Jlu J/ = Vn + I' 

E(T) = E(Tt)uE(T!)u{r*,q*}, 

so that T e YVn + I andp e E (T). Appealing to the symme
tryoffin theeventr* >q*, we find that sum f(Tt,T!;r*,q*) 
of the left-hand side partner terms will occur on the right
hand side of (AI). 

(ii) Let Te YVn+ I andpeE(T) be given on the right 
side of (AI) with Tf and T~ the disjoint trees defined by 
removing link p. Since all possible disjoint vertex sets, trees 
on them, and vertex label pairs between them are summed 
over on the left-hand side of (AI) there will exist a term 
where 

k = (cardinality of V(Tf)) e Vn, 

Jk = V(Tf), J'k = V(T~), 

TI=Tf, T2=T~, rep, qeP\{r}, 
and as in (i) this term will have a partner. 0 

We remark that in the case where A = R andf= I (the 
unit constant function) then (AI) is a known result (cf. Ref. 8, 
p. 53). The basic content of Proposition I is given by the 
following. 

Lemma 11: The functions an: (Rd X r)2I-+R, defined by 
(2.4) and (2.5) satisfy the recurrence relation (2.3) for all n;> 1. 

Proof: We use induction to implement the proof. The 
definition of a I shows the recurrence relation is valid for 
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n = 1. Now assume that (2.3) is valid for all am' l<m<n, 
wheream is defined by the tree sums (2.4) and (2.5). Let Wbe 
the integral 

n 1 (n + 1) 1 -W= L - dss 2n(V lak • V1an+ l-k}(5;y,to}' 
k-I 2 k 1 (A3) 

For potentials in the class d(r,I} we can differentiate with 
respect to t inside the integrals. The V~ may then act on any 
of the factors v. Relabel the integration variables SP' in the 
second [ ] factorabovesi-sk + l>"',Sn + I-k-Sn+ I' then 
the two multiple integrals may be written as one giving 

W= ± J..(n + 1) r dss 2n r dn+ls 
k=12 k J In+1 

X {Te~Vk T'e.rk~l-n+ 1 peIJ;T) b
p 

p'eI].(T') b
p
' 

xCtl q~t~ /rSqDr .Dq) X( v([SSp rl}-
The notation for the argument of the potential is the usual 
abbreviation [SSp] - = (y + SSp (x - y},to + SSp(t - to)), 
and the symbol k + 1-n + 1 denotes the vertex set 
{k + 1, ... ,n + I}. The overall factor (n/ I) may be absorbed 
by summing over all distinct k-element vertex sets Jk , which 
may be chosen from Vn + I , so 

W= ± J.. r dss 2n r dn+ls 
k=12J J1"+1 

n+1 
X II bp' L L SrSqDr·Dq II v( [SSp] -). 

p'eE(T') reJk qeJ~ p= 1 

We may remove all the S dependence in the potentials by 
thechangeofvariablesSp-Spls (p E Vn+ I)' Each factor~ 
in a bp will contribute one mUltiplicative factor of S -I due to 
this change of variables. The altered integration region be
comes 

i l dS r dn+IS= r dn+IS rl 

dS, 
o J[0'61"+ 1 J1"+ 1 JM 

where M = max{SI, ... ,Sn + I J. Thus W may be written as 
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We must show 

(A4) 

or equivalently we must show that W is a tree sum over the 
vertex set Vn + I' Using (2.4) and (2.5) for m<n gives 

X r~k q~~ SrSqDr . Dq :ii: v(€p)}, 
where s;(5;} is the smallest (greatest) value of the pair Sip' 

Sip' 

Observe that the integrand {Si,dS ... J is symmetric un
der the pair exchange I++m of any two labels I,m E Vn + 1 • To 
see this notice that M and the product of the v's have this 
property. Next consider any fixed term Jk in l:J

k
' If I,m E Jk 

(or I,m E Ji.) then I++m at most exchanges the identification 
of two trees in YJk (or Y Ji.). But all trees in Y Jk (or 
Y Ji.) are summed over, so the sum is invariant under the 
exchange I++m. Alternately if IE Jk and m E Ji., then I++m 
just interchanges two terms in the l:J

k 
sum, i.e., Jk 

++(Jk \ {I})u{ m} and Ji.++(Ji. \ {m ))u{l }. 
Since the integrand is permutation invariant the integral 

may be ordered: 

r d n+ls =(n+l)!J ...... Jdn+ls 
JI"+ 1 0<6.<" '<5"+ 1<1 

=(n + 1}1 J~ d n
+ IS· 

With this ordering implemented, note that 

Thus we arrive at 
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To the terms in { ... J we apply Lemma 10 with A chosen 
to be the vector space of differential operators and/ to be 

/=/(T,T';r,q)=[ II ... ][ II .. ']5r5qDr .Dq, 
fJEE(T) aEE(T') 

where the square brackets are those given immediately 
above. This / has all the required properties for Lemma 10 
(note the Dj's commute). Thus, after some rearrangement, W 
may be written as 

w=(n+l)!fldn+15 L (II 5iaDia·Dja) 
< TEYVn + I aEE(T) 

x II (1 _ 5j y
)} 

YEE(T)'\(fJI5 • 
(AS) 

The 5 integral is now elementary and straightforward calcu
lation shows the curly bracket term becomes 

XLV.) 5jal')" • 5ja",,)' 
aCE(T)'\(fJI 

The sum .I (p,) and notation a require explanation. 
First of all, when p, = 0, .I(O)= 1. Otherwise, 
a={a( 1 ), ... ,a(p,)}~E( T) \ {B} denotes a set ofp, distinct 
elements aU) E E( T}\ {B} and the .I(p,) specifies a sum 
over all possible distinct sets a of this type. 

Performing the summation and a few simple manipula
tions gives 

n-I 
~ (~-V.+ I) 1)( 1l.U ~ v.+ I) ~ ••• ~. = ~ !:J n + 1 - -} £.- !:Jja(l) !:JJa(p + 1) 

p,=0 aCE(T) 

II II ( 5j{J) = (1-5j{J)- 1--- . 
fJEE(T) fJEE(T) 5n+ 1 

As P runs through E ( T) there is at least one link with j fJ 

= n + 1, so the last product vanishes. Returning to (AS) we 
see that it takes the form 
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Note that the differential operator in the square bracket is 
b a' Observingthat the integrand is invariant under permuta
tion of the labels on 51,52'''',5n + I' we may remove the order 
restriction and integrate over the (n + 1 )-dimensional unit 
cube giving (A4). D 
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The direct scheme to test integrability of a given nonlinear equation proposed by Chen, Lee, and 
Liu is tested on the cylindrical Korteweg-de Vries equation. The explicit dependence on t of this 
equation does not present any real difficulties. Constants of motion and symmetries are found 
readily and the Lax operators for the scattering problem constructed accordingly. 

I. INTRODUCTION 

A given nonlinear evolution equation 

Ut = K (u,u x 'Uxx , ... ,)C,t ) (1) 

is deemed integrable if (1) can be rewritten as an operator 
equation 

L t = [A,L], (2) 

where L depending on u is a spectral operator for wave func
tions t/J(x, t) such that 

L", = ).,,,,. (3) 

The operator A also depending on u, governs the time 
evolution of the function", such that 

""=A,,,. (4) 

Equations (3) and (4) are compatible if and only if u satisfies 
Eq. (2) and hence Eq. (1). 

The linearization ofEq. (1) can be written as 

,p, = K '(,p ), (5) 

where 

K'(,p) = !!..K(u + E,p)1 ' 
dE £=0 

and its adjoint equation is 

"', + K '+("') = 0, (6) 

where K' + is the adjoint operator of K' defined by 

(K'(,p),"') = (,p,K'+(",), (7) 

and 

(S) 

is the inner product in the Hilbert space. From Eqs. (4) and 
(6) we then identify - K'+==A. 

It is well known I that if Tn is a constant density of Eq. 
(1), then the functional derivative of the constant Tn 
= f ~ : Tn (u)dx with respect to u(x,t) is a solution ofEq. (6). 
That is, 

!!..(8Tn(U»)+K,+(8Tn (U»)=0. (9) 
dt 8u 8u 

Among the solutions "'n = 8Tn /8u ofEq. (6), the linear 
recursion operator R, such that 

(10) 

-I Permanent address: Department of Mathematics, Chinese University of 
Science and Technology, Hefei, Anhui, People's Republic of China. 

can be shown to satisfy 

R, = [A,R], (11) 

and therefore it is taken to be the spectral operator L in Eq. 
(2). 

So far this scheme has been applied successfully to many 
equations with coefficients independent of x and t. In this 
paper, we would like to extend the case to the cylindrical 
Korteweg-de Vries (cKdV) equation, which has an explicit t
dependent coefficient. 

II. SYMMETRIES OF THE cKdV EQUATION 

The cylindrical KdV equation is written as 

u, + 6uux + Uxxx + u/2t = O. 

Its linearized equation is 

(12) 

,p, = K'(u),p = (- 6ux - 6uDx - D! - 1/2t)rfJ; (13) 

therefore 

K'+ = 6uDx + D! - 1/2t. 

Equation (6) becomes 

"', + 6u",x + "'xxx - ",/2t = O. 

When u = 0, Eq. (15) has a solution 

'" = t 1/2 exp(k 3t - kx). 

(14) 

(15) 

(16) 

The standard approach is to assume 
'" = t 1/2 exp(k 3t - kx + r_ '" T dx) to be a solution of Eq. 
(15) for large Ik I. Substituting it into Eq. (15), and expanding 

(17) 

we obtain a nonlinear recursion relation for Tn, 

f: '" Tn" dx - 6u8n + 1,0 + 6uTn + Tn.xx - 3Tn + l,x 

n n+1 

+ 3 I TI Tn _ l,x + 3Tn + Z - 3 I T/ Tn + I - I 
1=0 1=0 

n n-i 

+ I I TI 1jTn _ I _ j =0. (IS) 
I=Oj=O 

From (18) we immediately obtain 

To = 0, TI = 2u, Tz = 2ux , 

T3 = 2uz + 2uxx + (1/3t)D -IU, 

T4 = 2uxxx Suux + 2u/3t, (19) 

Ts = (l/2t)[D -1(2u2 + (1/3t)D -lull + (2I3t)uD -IU 

+ (1/t)ux + lOU! + 12uuxx + 2uxxxx + 4u3
, 
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where 

D -1 = f: QO • dx. 

These Tn's are not yet the conserved densities of Eq. 11)· 
From the recursion relation (19) we obtain instead an equa

tion for r- QO Tl dx 

!!... (f" Tl dX) = - 6u2 - 2uxx - ~ (I" Tl dX) . 
dt - QO 2t - QO 

(20) 

Supposing u and its nth partial derivative with respect to x 
(n = 1, 2, ... ) vanish when lxi- 00, then in the limit 
x - + 00 we have 

d - 1-
-Tl= --TI • 
dt 2t 

(21) 

We thus obtain a constant of motion CI as 

CI = t 1/21'1 = t 1/2 f-+ QOQO 2u dx. (22) 

A sequence of constants of motion are obtained this way. We 
now list the first seven of them: 

and 

d - 1-
-TI= --TJ> 
dt 2t 
d- 3-
-T3= --T3' 
dt 2t 

-T - 1 t -3/2C 
4- 3 I' 

CI = t 1/21'1 = t 1/2 f: QO 2u dx, C2 = 0, 

C3 = t 3/2T3 = t 3/2 f+ QO [2u2 + ~D -IU]dx, 
- QO 3t 

C4 = t 3/21'4 = C1/3, 

Cs = t S12Ts - (CUI2)t 1/2 

= t S/2 f+ QO [~D -IU2 
- QO t 

+ ~ D -2U + 2uuxx + 4u3]dX, 
6t 

C -tS12-T.- J C 6- 6-23' 

C7 = t 7/21'7 - ~ Cit -! CIC3t 1/2 

= t 7/2 f+ QO [~D -2 (2u2 + ~D -IU ) 

- QO 12t 3t 

+ ~D -1(4u3 + 2uuxx ) 
6t 

+ (10u2u"" + 2u;'" + lOu4) + 5u 2]dX. 
36t 

(23) 

(24) 

We see from (24) that the even-numbered constants are 
not independent. From (22) and (24) we get 
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tPl = ~~I = 2t 1/2, 

tP3 = 8C3 = t 3/2(4U - ~) , 
8u 3t 

tPs = 8Cs = t S/2 [~- 2xu + 12u2 + 4U], (25) 
8u 12t 2 t xx 

tP7 = 8C7 
8u 

_ 7/2 [ 5 (- x
3 

+ 6x
2
u + 1) 10 (3 2 + -t - -- -- xu xu 

12 ISt 3 3t 2 3t xx 

+ u,,) + (40u3 - 40uuxx + 20u; + 4u"xx,,)] . 

They can be verified directly as solutions ofEq. (15). We also 
note that if ¢J is a solution ofEq. (15), then (1/t)t/J" is a solu
tion ofEq. (13). They are also called symmetries.2"·4 The first 
three of these classical symmetries 

K; = (1/t)( ~) (tP2;+ d, i = 0, 1,2 

are given as follows: 

Ko = t 1/2(4u" - 1/3t), 

3/2 ( x 2u + 2xu" ) KI = t -2 - + 24uu" + 4u""" , 
6t t 

K2=tS/2[4(lOu3+ lOuuxx +5u; +u"""")x] (26) 

-1l (x2 It 3) + (5/6t 2)(2xu + x2u,,) 

- (10/3t)(3u2 + 6xuu" + xu""" + 2uxx )' 

On the other hand, three new symmetries can be found as 

To = 3t - 1/2Ko +Ao = 12u" , 

1'1 = Jxt - 1/2Ko + 3t -1/2K I +AI 

= 12t(u"xx + 6uu,,) - 2u - 4xu" , 

1'2 = 2. xt - 1/2K I + 3t -1/2K2 + A2 
2 

= 12t 2(U"""" + 5u; + lOuuxx + lOu3)" 

- t(12u"" + 14u2 + 8xu""" + 48xuu" 

- 4u"D -IU) + t xu + tx2u" -!D -IU, 

with 

Ao = t -1, Al = 4u - 4xu", 

A2 = t [16u2 - 24xuu" - 4xu""" + Suxx + 4u"D -IU] 

+ (Jt x2u" - i xu -! D -IU) - x2/24t. 

These symmetries satisfy a graded Lie algebra 

[Km,K,,] =0, [Km,1',,] =2(2m+ l)Km+"_I' 

(27) 

[1'm'1',,] =4(m-n)1'm+,,_I, m,n=0,1,2, (2S) 

where the Lie product for two symmetries F and G is defined 
by2 [F, G] =F'[G] - G'[F]. 

III. LAX SPECTRAL OPERATOR FOR cKdV EQUATION 

We now present two methods to derive the Lax spectral 
operator L. 
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A. Use of the scheme In Cll1 

Equation (25) suggests that they are connected by the 
recursion operator 

L=Lo+LI, 

where 

and 

Lo=L lu=o' (29) 

In order to determine L 0, we set u = 0 first and obtain 

AO=A lu=o = 1I2t-D! (30) 

t/J? = 2t 1/2, ~ = - ~ xt 1/2, 

t/J~ = -b x2t 1/2, 

Finally, we obtain 

L = t [D ~ + 4u - 2D -lux] - ~ x + 1 D -I. 

B. A scheme utilizing the new symmetry rz 

We can see from (28) that 

[Km,r2] = 2(2m + l)Km+ 1 • 

(41) 

(42) 

This implies that r2 is related to the recursion operators (42) 
L + that generate all the K symmetries. A direct relation is 
easily obtained as5 

L + = r; + Dx r; + D -I . (43) 

From (27) and (43) we obtain 

t/J~ = -lhx3t 1/2 + ~ t3/2, 

where 

(31) L + = {tiD! + 4u + 2ux D -I) - ~D -I -!Xl. (44) 

f/ = t/Jjlu=o' 

In general, we obtain from (4) and (31) 

[n/3] 2(2 1)" 1 ~ = L (-It- m n - .. _xn-3mt1l2+m 
2n+ I m=O 6n(n _ 3m)! m! ' 

where [x] is the integral part of x. 
From (21) and (32) we obtain 

L ° = tD! - xl3 + 1 D -1, 
such thatl 

(32) 

(33) 

L ° ~n+ 1 = t/J~n+3 . (34) 

Following Ref. 1, we will now derive L I. Let u be small, i.e., 
u = Eq. At first order in E, Eq. (12) has the solution 

qO = L _1_ q?,. e - mx + m't 
m[i 

and Eq. (15) has the solution 

tiP = L [i t/ft r Ix+ I't , 
1 

where q?,., t/ft are arbitrary constant amplitudes. 
The leading term in Eq. (2) is 

[A o,L I] t/J0 + [A I,L 0] t/J0 = L: t/J0, (35) 

(36) 

In order to determine L I, set 

L It/J0 = } (A (/,m,t) q?,. ) [i t/J~ e - (m + 1- x + (I' + m')t . 
~ [i 

(37) 

Substituting (30), (33), and (36) into (35) we obtain an equa
tion for A (I, m, t ), 

A (/,m,t) - (1I2t)A (/,m,t) - 3m/(1 + m)A (/,m,t) 

= (21 + m)l(1 + m) - 61m(21 + m)t; 

therefore 

(38) 

A (/,m,t) = 2t (21 + m)/(1 + m) = 2t [2 - m/(1 + m)) (39) 

and 

L 1=2t[2u-D- 1ux ]' (40) 
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It can be verified directly that 

L + K j = K j + 1 , L + rj = rj + I' i = 0,1. (45) 

IV. liE ALGEBRA 

We now define 

r3 =L +r2• (46) 

Then we have by direct calculation 

[r3,rO] = 12 r2, [r3,Ko] = - 2K2. (47) 

It is compatible with (28). 
We now define Km's and r m's (m ~ 3) as follows: 

Km+1 = [1I2(2m+ 1)][Km,r2]' m>2, (48) 

r m + I ==[1I4(m-2)l[rm ,r2]' m>3. (49) 

We then obtain two series of symmetries K n 's and r n 's. 
They constitute an infinite-dimensional Lie algebra ex
pressed by (28). As a matter off act, Eq. (28) can be combined 
into a single formula as the following6

: 

[u: ,ff.] = 4[r(n + ! ) - m(s + ! )] u:: :~/ , (50) 

for 

m,r = 0,1 noS = 0,1,2, ... , 

where 

V. ALTERNATIVE FORM OF THE SPECTRAL 
OPERATOR 

Substituting (41) into (3) and taking its derivative with 
respect to x, we get, together with (15), 

t/Jxxx + (2ux - 1I6t)t/J + (4u - xl3t )t/Jx = A Itt/lx , (51) 

t/lt + 6ut/Jx + t/lxxx - t/l12t = O. (52) 

This is the sought-after spectral problem for the cKdV equa
tion. We now show that it is equivalent to the following 
eigenvalue problem used7

,8 previously to solve the cKdV 
equation: 

<l>xx + u<l> - (xl12t) + A 14t)<I> = 0, (53) 

<l>t + (xl3t + 2u + A It )<I>x - (1I6t + ux)<I> = O. 

(54) 

G. Zhu and H. H. Chen 102 



                                                                                                                                    

Set 

I/lx = ¢>, 

¢>x = (xl6t - 2u +,1 12t)I/l + S, 
Sx = (xl6t - 2u + A 12t )¢>. 

(55) 

(56) 

(57) 

Equations (51) and (52) can be written in the following matrix 
form: 

(58) 

and 

(59) 

where 

M = A + (xl6t - 2u + A 12t)B, (60) 

N = (lI3t + 2ux )C - (xl3t + 2u +,1 It )A 

+ [2uxx - (2u + xl3t 

+ A It)(xl6t - 2u + A 12t )]B. (61) 

The 3 X 3 matrices A, B, and C are given by 

A~G ~ D· (62) 

B~G ~ D· (63) 

C~G ~ _ D· (64) 

They satisfy the following algebra: 

[A, B] = C, [A,C] = -A, [B,C] =B, (65) 

where the Lie bracket for two matrices F and G is defined by 
[F,G] = FG - GF. 

Now we introduce 2 X 2 matrix representations of A, B, 
and C as follows: 
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A=
J2 C I 2 0 ~), (66) 

B=
J2 C I 2 I ~), (67) 

CI=~C 
2 0 - ~). (68) 

They also satisfy (65). 
Put 

MI = AI + (xl6t - 2u + A 12t )BI' (69) 

NI = (lI3t + 2ux )CI - (xl3t + 2u +,1 It)AI 

+ [2uxx -(2u+xI3t-2u,1/2t)]BJ• (70) 

We see that (53) and (54) are just the scattering problem 

! (;) = MI(;). 

:t (;) = N 1(;). 

(71) 

(72) 

Indeed (51) and (52) can be derived from (53) and (54) 
directly by setting I/l = tP 2. 
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Positivity and unimodality hypotheses on an unknown function X I (x) confer Stieltjes character to 
another function HI(z), known in a discrete set of real points and affected by errors caused by 
experimental measurements. and impose constraints on the coefficients of its formal expansion 
which limit the universe of approximant functions. so acting as stabilizers of the analytic 
extrapolation. The type I Pade approximants. built with the coefficients ofthe formal expansion. 
provide rigorous bounds on the function in the cut complex plane. The application of a Stieltjes
Chebyshev technique allows approximations to the function. even on the cut. to be obtained. The 
physical problem of K ± P forward elastic scattering is approached by the previous method. and 
bounds on the coupling constant and real part of the amplitude are found. 

I. INTRODUCTION 

An application of analyticity. analytic extrapolation. 
has been widely used in high energy physics: Once experi
mental data on an analytic function have been measured in a 
certain domain of the complex plane. a fitting procedure is 
designed in order to interpolate the data. and the resulting 
parametrization is extrapolated to regions where no data 
have been obtained yet. or. in some cases. where data are not 
physically accessible. 

However. the fact that the functional values are not ex
actly known. but rather are subject to errors coming from 
the experimental measurements. makes the predictive power 
of analytic extrapolation by itself null. It can be shown I that 
one can construct an analytic function which. in the region 
where there are experimental data. fits them well. but out
side that region can take arbitrarily preassigned values in 
points of its analytic domain. In other words. there is an 
arbitrary number of parametrizations which. while agreeing 
in the experimental region. give absolutely different results 
when extrapolated to other regions. This fact. known as in
stability in analytic extrapolation. forces the search for other 
properties off unctions (besides analyticity). which act as sta
bilizers of the analytic extrapolation in such a way that small 
perturbations in the data region do not give rise to very dif
ferent predictions outside the experimental region. 

Several methods exist for stabilization of the analytic 
extrapolation. We shall use two properties of the functions. 
positivity and unimodality. which allow the use of the 
bounding and convergence properties ofPade approximants 
and the properites of the sequences of Hausdorff moments. 
to produce a stable extrapolation. 

In Sec. II the bounding properties ofPade approximants 
on Stieltjes functions are discussed and the Gronwall trans
formation. which allows the determination of the coeffi
cients of the formal series expansion. is introduced. In Sec. 
III the constraints imposed on the coefficients by the positi
vity property are presented. and the same thing is done in 
Sec. IV with those imposed by unimodality. In Sec. V the 
extrapolation to the poles is discussed. In Sec. VI Stieltjes
Chebyshev techniques are used to obtain an approximation 
to the function on the cut. and in Sec. VII the physical prob-

lem of K ± P forward elastic scattering is approached. 

II. STIEL T JES FUNCTIONS, PADE APPROXfMANTS, 
AND THE GRONWALL TRANSFORMATION 

We shall consider the problem of extrapolating from the 
values 

Go(Zj) ± G~(Zj)' j = 1 ..... p. 

Zj real. z} > - Eo Vi.j. 

of the function 
k R. 

Go(z) = L -'-+ H(z). 
/=1 E/ +Z 

(2.1) 

(2.2) 

where H (z) is a Stieltjes function with convergence radius R, 

H(z) = __ I"IU_. tP(u) E t!3 [O,lIR 1. (2.3) l llR d·1J ) 

o 1 +zu 
to the poles region, - E/. in order to calculate the residues 
R, of the function Go(z) inz = - E/. 

Let us consider. without loss of generality, R = 1, and 
see how we can get the values of the residues R,. 

Let us first transform the function Go(z) into 

GI(z) = Go(z)(z + EI) - GO(Z)(ZI + Ed . (2.4) 
Z-ZI 

It can be easily seen that GI(z) is of the form 
k R ~ 

GI(z) = L -'-+ HI(z), (2.5) 
/=2 E/ +Z 

where HI(z) is again a Stieltjes function with convergence 
radius R. Now 

HI(z) = XI(U) duo l
liR 

o 1 + uz 
(2.6) 

where 

XI(U) = X(u)(1 - Elu)/(l + xlu»O in [O.lIR 1. (2.7) 

and 

(2.8) 

Continuing this pole absorption process as far as neces
sary, one eventually gets 
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(2.9) 

where now Hk (z) is a pure Stieltjes function, free of poles, 
with a weight function 

k 1 - E.U 
Xk(U) = II I, X(u»O, U E [O,lIR ]. (2.10) 

i=11+ziu 

In what follows we shall assume, for the sake of simpli
city, that there is a single pole in - EI = - ZA with residue 
R I' and consequently we shall work with the Stieltjes func
tion HI(z) from Eq. (2.6), but the more general case is 
straightforward. 

The formal expansion of HI(z) is 
00 

HI(z) = Ihj ( -z)j, (2.11) 
j=O 

where 

hj = iIlRxjXI(X)dX (2.12) 

are the moments of the function XI(X). Equation (2.11) is 
called the Stieltjes series expansion of the function HI (z). Ac
cordingly, the two following statements are equivalent: (i) 
There exists a solution to the moments problem (2.12), i.e., a 
function XI(X»O in [O,lIR] exists such that hi are its mo
ments; and (ii) HI(z) is a Stieltjes function with convergence 
radius R. 

If R = 1, the moments problem (2.12) is known in the 
literature as the Hausdorff problem.2 In that case HI(z) is 
analytic in the complex plane cut on the real axis 
] - 00, - R ], and its series expansion (2.11) agrees with the 
function for Izl <R. 

In the case R = 0 the formal series (2.11) is asymptotic 
around the origin and HI(z) is analytic in the plane cut on 

I 

] - 00, 0]. In this case the moment problem is known as the 
Stieltjes problem. 

The formal series expansion (2.11) does not allow the 
calculation of the Stieltjes function HI(z) outside its conver
gence circle, and even for Izl < R the convergence can be very 
slow, and for R = 0 it converges nowhere. Conversely, the 
Pade approximants constructed with the coefficients of the 
formal series expansion for this kind of function do converge 
very fast to the exact value of the function 

HI(z) = XIX X illR () d 

o 1 +xz 

in any ~.)int of its analyticity domain. 3 

More precisely, we shall use the following theorem to 
obtain lower and upper bounds to the value ofHI(z) for realz 
from a certain number of coefficients of the formal expan
sion of HI(z). 

Theorem 2.13
: LetHI(z) be a Stieltjes series with conver

gence radius R, then 

[M IM]c<;HI(z)<;[M 1M], z>O, 

[M 1M + l]<;HI(z)<;[M 1M + l]C, 

where 

PI(I(Z) 
[LIM] =--, J=L-M, 

Q~I(z) 

(2.13) 

(2.13') 

(2.14) 

is the Pade approximant of the formal series and P Land QM 
are polynomials of degree Land M, respectively, whose coef
ficients are constructed from those of the series imposing 

(2.15) 

Here, [M 1M)" and[M 1M + I)" arethecomplementaryPa
deapproximantsto [M 1M] and [M 1M + 1], which are cal
culated imposing the convergence radius to be R besides 
(2.15). We have 

M 1M C = P~(z)Q~ II( - R) + (ziR )P~~II (z)Q~( - R) 

[ ] Q~(z)Q~II(-R)+(zIR)Q~II(z)Q~(-R)' (2.16) 

pl-ll(z)QI-11 (-R) 
[MIM+1]c= M M+I 

Q~111(z)Q~( -R) + (ziR )Q~(z)Q~111( -R) 
(2.17) 

When - R < z < 0 the sense of the inequality (2.13) 
changes, and that of (2.13') holds. 

Our problem is now to obtain from the data 
HI(z;) ± H~ (Z;),Zi real, the series expansion of HI(z) in order 
to apply the previous theorem. 

We now discuss the Gronwall transformation.2.4 The 
formal series expansion of HI(z) is divergent in most of the 
points where HI is known, therefore one cannot determine 
the coefficients by a fit of the series to the known values. 

Instead, we transform the cut z plane into the unit circle 
lsi < 1 by means ofthe conformal transformation 

s=(~l +z-l)1(~l +z+ 1) (2.18) 

which unfolds the cut in the z plane into the unit circumfer-
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ence, and the Zi values that range from - 0.3 to 11.73 map 
into a real interval close to the origin from s = - 0.076 to 
0.56. 

The function G (z) = HI(z) ~1 + z, having the same ana
lytical properties as HI(z), can be expanded in series in s as 
follows: 

00 

G (z(s)) = I gji, (2.19) 
;=0 

and its coefficients gj can be determined by fitting the experi
mental values G (Zi) with errors Ge (Zi) by the least squares 
method. The importance of these coefficients gj lies in that 
they are related to the coefficients h j of the series expansion 
of HI(z) by the remarkable formula, obtained by Gronwall 
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(2.20) 

which allows us, once the first p coefficients are known, to 
calculate the first p coefficients of the expansion (2.11). 

The advantage the present procedure has over any other 
possible conformal transformation is that the hi'S so deter
mined are the coefficients of a Stieltjes series or, in other 
words, the moments of a positive function. 

Conversely, in Sec. III we shall introduce the con
straints the coefficients hi must fulfill because they are mo
ments of a positive function. 

III. CONSTRAINTS IMPOSED BY POSITIVITY 

Given a sequence (h" J we shall say that the moments 
problem has a solution in the set of nondecreasing bounded 
variation functions in the interval [a,b ], J.t(x) E tP [a,b ], if a 
function J.t(x) belonging to that set exists, satisfying 

h" = fX"dJ.t(X), n =0,1,.... (3.1) 

In the case where J.t(x) is differentiable, (3.1) reads 

h" = ibX"X(X)tiX, n = 0,1, ... , (3.2) 

where xIx) = J.t'(X)>0 in [a,b], the latter being the case of 
interest to us. 

Several moments problems are considered according to 
the interval [a,b]: Hamburger's problem for the interval 
] - 00,00 [ and Stieltjes's for [0,00 [ . By the appropriate lin
ear transformation one can go from the finite problem in 
[0,1], the Hausdorff problem, to the problem in any other 
finite interval [a,b ]. 

In each case the corresponding name is given to the se
quence of moments. 

The conditions to be satisfied by the hn in order that a 
functionJ.t(x) E t P [a,b ] exists, which has h" as moments, are2 

given in the following theorem. 
Theorem 3.1: A necessary condition for the existence of 

a solution to the Hamburger problem is that, for all n>O, 

H~(h »0, (3.3) 

where the H ::'(h ) are known as the Hankel determinants, 
defined by 

hm hm+l hm+n 

H::'(h) = 
hm+l hm+2 hm+n+ 1 (3.4) 

hm+n hm+"+l hm+2n 

We shall say that {hi J E MH is a sequence of Hamburger 
moments. 

Theorem 3.2: A necessary condition for a solution to the 
Stieltjes problem to exist is that, for all n>O, 

H~ (h »0, H! (h »0. (3.5) 

We shall say that {hi I EMS is a sequence of Stieltjes 
moments. 

Theorem 3.3: A necessary and sufficient condition for 
the Hausdorff problem to have a solution is 
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hp=a~>o, p = 0,1, ... 

a;=a;-l - a;.;/>o, m = 1,2, ... , P = 0,1, .... 
(3.6) 

Such a sequence is said to be totally monotonic, 
{hd E TM. 

In the Hausdorff case the solution is unique; the mo
ment problem is said to be determined. 

The following properties of a TM sequence will be used. 
Theorem 3.4: If {h" J E TM, then {hn J n:>k E TM for k 

fixed. 
Theorem 3.5: If {hn J n:>O E TM then {a; Jp:>o E TM for 

k fixed. 
Obviously, if {h n I E TM then {h n J EMS, since one can 

take the functionJ.t constant outside [0,1], and conversely, if 
{hn J is convergent and {hn J EMS, then (h" J E TM. From 
this it follows that (3.5) applies also to totally monotonic 
sequences.s 

In the case of J.t(x) taking an infinity of values in the 
pertinent interval, i.e., J.t(x) is not a step function, which 
would yield rational Stieltjes functions, the inequalities in 
Theorems 3.1 and 3.2 become strict and the conditions be
come necessary and sufficient. In such a case (in the Stieltjes 
case, for instance), {h" J n:>O and {h" J II:> 1 are said to be defi
nite positive sequences. 

In the case of a Hausdorffmoment sequence we have the 
following theorem. 

Theorem 3.6: If (hn J ,,:>0 is a Hausdorff moment se
quence with J.t(x) taking an infinity of values J.t(x) E tP [0,1] 
V;, then {h" J n:>O is a definite positive sequence, i.e., 

H~ >0, 'tin. 

It follows from Theorems 3.6 and 3.4. that 

H~(h »0, k = 1,2, ... , n = 0,1, ... , (3.7) 

and that when we use Theorem 3.5, Eq. (3.7) also applies to 
(a; Jp:>o sequences, with fixed k 

H::,(ak) >0, m,n = 0,1, ... , (3.8) 

where 

a k 
m a~+l a~+n 

H::,(ak)= 
a~+l a~+2 a~+n+l (3.9) 

a~ + n a~ + n+ 1 a~ + 2n 

In our case, hi being determined from experimental data 
with errors, we shall use (3.8) to obtain bounds that the hi 
should satisfy if they are the moments ofa positive function. 
In this way, using the Hankel determinants of the first line, 
a~ = hp , we get lower bounds for the coefficient hp , given 
the previous ho, .. ·,hp _ l' 

Ho(h»O~m >0, 

mh h (hm+d
2 

HI ( »O:=} m+2 > >0, 

H'2(h »0:=}hm+4 

>(hm+31:m m+l 
m =0,1, ... , 

hm 

hm+21_ h H m+ 1)(Hm)-1 h m+2 1 l' 
m+3 

(3.10) 
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and so forth. 
As more coefficients are obtained, more and tighter 

bounds are obtained. One gets upper bounds for hm in terms 
of ho, ... ,hm I taking Hankel determinants of Ii I, which give 
lower bounds of Ii~ in terms of Ii~ , ... ,Ii~ _ I 

H;;'(IiI»O=>Ii~ >0, m = 0,1, ... , Ii~ -li~+ 1>0, 

(3.11) 

h h 
(hm+ I - hm+Z)2 

m=O,I, ... , m+3< m+Z------
hm -hm+1 

The same procedure as with rows 1 and 2 can be fol
lowed with the rest of the rows of table Ii~ [See Eq. (3.6)], 
yielding lower bounds for Ii~ with increasing m, which 
translate into lower bounds for hm when k is even, and upper 
bounds for hm when k is odd. 

A subroutine has been designed which, given the m first 
coefficients Iig, ... ,Ii~ + I' calculates the tighest possible low
er and upper bounds for the next coefficient to be one of a 
Stieltjes series with non-null convergence radius. 

In Sec. IV the conditions to be satisfied by the moments 
of the functionXl{x) are sought when, besides being positive 

I 

in x E [0,1], the function is supposed to have a unique maxi
mum in a position P E [0,1]. This condition will be referred 
to as unimodality. 

IV. CONDITIONS IMPOSED BY UNIMODALITY 

Let P E [0,1] be, then, the position of the maximum of 
X I (x). We shall call X 1 (x) unimodal if it satisfies 

XI (x»O, x <p, 

X;(x)=O, x=P, (4.1) 

X; (x)<O, x>p. 

The function ct>'(x) = (P - xIx; (x) is positive in [0,1] 
and its moments are related to those ofXI(x) in the following 
way: 

#" = fx"ct>,(X) dx = (v + Ilh - pvhv _ \' v:;>fO, (4.2) 

#0 = ho Px 1(0), 

where #v' being the moments of a positive function, form a 
totally monotonic sequence, for which the positivity proper
ty of the Hankel determinants H :;'( Ii k) applies, Ii k being the 
table constructed with the #v : 

lig = #0 Ii? = #1 Ii~ = #2 Ii~ = #3 

lib iiI 1i1 

Ii~ 1i2 
\ 

Ii~ 

The inequalities so obtained for the p" tum into inequal
ities in the h", some of which are more restrictive than those 
obtained previously with positivity alone. 

The most restrictive conditions that can be obtained 
with three coefficients are 

h >p;v (0) Pho <h «P+ l)ho -PXI(O) (4.4) 
o Al , 2 1 2 ' 

2f3h + (2h 1-Pho)2 <3 h <2{ R+ l)h -{1h. (4.5) 
I ho PXI(O) , 2 (J I 0 

The previous inequalities and those obtained as more 
coefficients are available, being necessary and sufficient con
ditions for p" being moments of a weight function, can be 
used in two ways: (a) assuming we know n moments, discuss 
whether the associated function is unimodal or not, and 
what is the allowed range for p, and (b) assume that the 
weight function is unimodal with P in a certain range and 
discuss the necessary conditions the moments must satisfy. 

We shall follow the second procedure, using the condi
tions from Eqs. (4.4) and (4.5) to constrain the values of the 
coefficients hi candidates to representing our data faithfully, 
consequently limiting the number of possible functions fit
ting the data, and so obtaining a stable result when extrapo
lating to the poles, as will be seen in the applications. 

Once of the coefficients hi of the series expansion of 
HI{z) are known, the Pade approximants [M - 11M] and 
[M 1M] are built. 
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(4.3) 

V. EXTRAPOLATION TO THE POLES REGION: 
RESIDUES 

The bounding properties of the type I Pade approxi
mants on the Stieltjes functionHI(z) [see Eq. (2.6)] on the real 
axis ] - 1, 00 [, produce, once the absorption is reversed, 
bounds on the residue of the function Ho(z} in the position 
- Z A ofthe pole 

Ho(z)=~+ r1X(x)dx. (5.1) 
Z+ZA Jo 1 +XZ 

AccordingtoTheorem2.1,the[M IM]and[M 1M + 1] 
Pade approximants and their complementary ones satisfy 

0< [M 1M J < [M 1M + 1] <H\(z) 

< [M 1M + 1 JC < [M 1M ]e, 

(5.2) 
which, in terms of Ho(z), related to HI(z) by the absorption in 
ZI' 

becomes, withz1 >O>z> -ZA' 

[M IM]Ho > [M 1M + I]Ho > Ho(z) 

> [M 1M + l]~o > [M IM]~o' (5.4) 

Also, for Z \ > ° > - Z A > z, all inequalities changing sense, 
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[M 1M ]Ho < [M 1M + I]Ho < Ho(z) 

< [MIM+ 1]~o<[MIM]~o' (5.5) 
with 

[L 1M ]Ho = { [L IM](z - zJ) + Td/(z + ZA) (5.6) 

and 

TJ = Ho(zt!(zJ +ZA)' (5.7) 

All these approximants to Ho(z) have, then, a pole at 
- ZA, as does Ho(z) itself. 

The situation is illustrated in Fig. 1, where the negative 
sign of the residue of Ho has been taken into account. 

Calculating from (5.6) and its counterpart for [L 1M] ~o 
the residues V t and cv t of the approximants [L 1M] Ho 
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o 

o 

and [L 1M ]~o' respectively, one has the bounds on the neg
ative residue of the function Ho{z) on the pole at Z = - Z A' 

cvg <cV~ <cV: < ... <RJ < ... < V: < v~ < vg. (5.8) 

Each couple of inequalities requires one more coeffi
cient in the expansion of HJ(z), so with ho, cvg <RJ < vg, 
and with ho and hJ' cvg <cV~ <RJ < V~ < vg. 

Let us finish this section with a comment on an alterna
tive or complementary use of the function HJ(z). The same 
kind of inequalities can be obtained from the type II Pade 
approximants3 built from values of HJ(z) at different points 
ZJ,Z2,'" . 

More precisely, the necessary and sufficient conditions 
for n points to belong to a Stieltjes function provide n en-

...... [%1 

FIG. 1. The upper figure 
shows the bounding proper
ties of the Pade approximants 
to the Stieltjes function H)(zl 
for z > - 1. The lower figure 
shows how the transformed 
approximants to the function 
HrJ.zl bound ever more tightly 
the negative residue of the 
pole -ZA' 
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cased inequalities for the residue of Ho, R I' The drawback of 
the method is that there is no unique set of points satisfying 
the conditions, but rather many sets which satisfy them sepa
rately, but not when joined together. The method followed in 
this report, based on the series expansion of HI and type I 
Pade approximants seems to us advantageous in that it uses a 
unique set of points. (See Sec. VII.) 

VI. EXTRAPOLATION TO THE REAL CUT 

In order to obtain an approximation to the weight func
tion X I (x) closely related to the imaginary part of H I (z) on the 
cut ] - 00, - 1], we need to invert the moments 
ho, hi' ... ,hn calculated in the fitting procedure. 

Even if the number of calculated moments is insufficient 
to obtain a faithful approximation to XI(X) we can again use 
the constraints imposed by positivity and unimodality on the 
coefficients of the formal expansion of HI(z) [See Eq. (3.9)] to 
obtain upper ({ h ~ + i 1 i>O) and lower ({ h ! + i 1 i>O) moment 
sequences allowed by the mentioned hypotheses 

h ~+2'" 

h~+1 

ho,hl' ... ,hn (6.1) 

h!+1 

h !+2'" 

In this case we have to check if the results with both 
sequences are compatible. 

Stieltjes-Chebyshev techniques are used to obtain ap
proximations to the distribution function6

•
7 

(6.2) 

and to the weight function f/!I(X) in the form of histogram 
approximations, thanks to the orthogonality properties of 
the Pade denominators with respect to the weight function 
XI(X).2.3 

More precisely, Chebyshev inequalities provide upper 
and lower bounds on the vaues of t/J I (x) at positions related to 
the Pade poles by means of the positive residues of the ap
proximants.7 

Indeed, the approximant [n - lin] toHI(z) can be writ
ten as 

p(-I)(Z) n I(n) 
[n - lin] = n - I =" P, (6.3) 

Q~-I)(Z) p~d +z4n) 

with/~) and ~pn) related to the residues and poles of the ap
proximants 

n I·(n) 
[n-lIn]=" p ,Ip·(n»o, (6.4) 

k + ·(n) p= IZ Ep 

by 

€.n) = lIE·(n) I (n) =1 ·(n)€.n) (6.5) 
p P' P P p' 

Since E;(n) E [1, 00], this implies ~;) E [0,1] and I~) > O. 
In view of (3.2), dtP(x) = XI(X)dX can be approximated by 

n 

dtflsn)(x) = I I ;n)8(x - ~;))dx, (6.6) 
p=1 
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which yields a step approximation t/J~n) to f/!(x), 

tflsn)(x) = 0, O..;;x < ~rl, 
j 

tflsn)(x) = I/;n), E)n)<x<E)n~l> j=I, n-I, (6.7) 
p=1 

n 

tflsn)(x) = I I~) = ho, ~nn) < x, Ei < Ej , for i <j, 
p=1 

providing bounds for the distribution function t/J(x) in points 
~;), p = I,2, ... ,n, such that 

tflsn)(~n) _ o)..;;~m)(~n) - o)..;;tP(~n)) 

..;;~m)(Ei + o)..;;~n)(Ei + 0), m > n. (6.8) 

An approximation to XI(X), X~n)(x), is obtained from the 
slopes of the segments joining the midpoints of the discontin
uities of ~n)(x). 

Satisfactory as the Stieltjes distributions and weights are 
in many aspects, it is desirable to have continuous approxi
mations to t/JI(X) andXI(x) at any point x E [0,1]. It is conven
ient in this connection to consider approximations to the 
formal expansion of HI(z) having a prespecified pole at an 
arbitrary position on the cut] - 00, - IV·8 The denomina
tors of these new approximants are related to the quasiortho
gonal polynomials associated with the distribution function 
f/!1(X).8 

The interpolation of the midpoints of the discontinuities 
of the histogram approximations to f/!I(X), having an arbi
trary spectral point in [0,1], produce a continuous approxi
mation to f/!I(X). An approximation to XI(X) is obtained by 
differentiating the approximation to f/!I(X). 

The Cauchy integral formula allows us to obtain the real 
part of HI(z) on the cut using the XI(X) approximations. 

VII. APPLICATION TO THE K± P FORWARD ELASTIC 
SCATTERING AMPLITUDE 

The K ± P forward elastic scattering amplitUde can be 
represented by two analytic functions of the complex labora
tory kaon energy w, F ± (w), related by the crossing property 
erty 

F ± (w) = F += (- w), (7.1) 

which allows the reduction of the description to only one 
function, F _(wI. 

The function satisfies the Schwartz reality condition 

F _(w*) = F*- (w), (7.2) 

and is supposed to be asymptotically polynomically bound
ed. 

Unitarity predicts the analytic structure of F _(wI con
sisting of two poles at the (unphysical) values w A and Wl:, , 

corresponding to the K - P system having the mass of the 
hyperons A and ~, respectively, a left-hand cut going from 
- mK to - 00 (K +p scattering), and a right-hand cut from 

w A1r to 00 (K - P scattering). The latter cut has an unphysical 
region from WAfT (the unphysical energy corresponding to 
the K - P system having the invariant mass m A + mfT) to 
w = m K' The unphysical region, experimentally inaccesible 
to the K - P channel, and dominated by the YT405 resonance, 
is mainly responsible for the discrepancies in the determina
tion of the residues in the A and ~ poles, or in the reduced 
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FIG. 2. Comparison of our bounds with other determinations of G 2. The dashed line indicates the upper bound imposed by positivity, the continuous one 
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pole, as explained later. Figure 2 shows the wide range of 
extrapolations for the residues.9

-
2o 

By applying Cauchy's integral theorem one can write a 
dispersion relation,21 once subtracted at w = wo, 

ReF ± (w) = ReF ± (wo) + L X y 

w - Wo W - Wo y (w y ± w)(w y ± wo) 

±!.. ra> 1m F +(w') dw' 
1T JmK (w' =F w)(w' =F wo) 

T !..ia> 1m F _(w') dw' 
T ---"'--'--- , Y = A, I.. 

1T ",,,,,(w' ± w)(w' =F wo) 

Then we define a discrepancy function20 as 

a_(w) = ..!..imK 1m F _(w')dw' 
1T "'"" (w' - wo)(w' - w) 

Y= A, I., 

... .... _ .... , 

(7.3) 

(7.4) 

which has the structure of(2.2) if we assume the integrand to 
be singly signed within the integration range. This is essen
tially the positivity hypothesis, supported by low energy par
ametrizations.22 

The dispersion relation can be written in the form 

a_(w) = ReF_(w) - ReF_(wo) 
w - Wo 

+ p ra> 1m F +(w')dw' 
1TJmK (w' + w)(w' + wo) 

p ra> 1m F _(w')dw' 

- -; JmK (w' - w)(w' - wo) , 
(7.5) 

which allows the evaluation of a_(w) in those points where 
Re F ± (w) has been measured. Now, .1_ is known, with er
rors, in 218 points, 119 on the K + P cut and 99 on the K - P 
cut. (See Fig. 3.) 

The integrals in (7.5) are evaluated using the optical 
theorem, which relates 1m F ± with the experimentally 

6_IWI 

, . . .... . . . .. -
W(h¥Ic) 

Ho(Z) 

• • •••• •• ••• •• • • • 
-1 -~-~ o z 

FIG. 3. Analytic structure of the I:L discrepancy function in the kaon laboratory energy plane w and of the function Ho in the transformed plane 
z = (w - w",,)I(w - mK ). Crosses and closed circles indicate the experimental zone in the K +p and K -p regions, respectively, and their location in thez 
plane. 
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FIG. 4. "Experimental" points of the function H I(Z) with the region allowed by ho ± 2h ~. The points marked with an arrow have been excluded from the fits. 
In the lower part, the same experimental points, plus the absorption point, for Ho(z), together with the approximation. The blank point is the absorption point 
and points marked with" X" are the alternative absorption points. 
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measured total K ± p cross section. 
Conventionally, the residues Xy in (6.4) are parame

trized as 

(7.6) 

where Gy is the so-called coupling constant, which we shall 
reduce to an effective coupling constant of a single A pole to 
account for both physical poles A, l:, 

0 

-02 

- 0.4 

·0.5 
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-1. 

-1.2 

-1.4 

-u 

-1.8 

-2. 

0.8 
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0.4 

0.2 

o 

-0.2 

(7.7) 

ReF.(w) fm 

0.5 

0.5 

The values for G 2 extrapolated by several authors range 
from 6 to 22, giving a measure of the instability in the analyt
ic extrapolation referred to above (Fig. 2). 

By means of the transformations 

, w' - m K mK - WAfT 
x(w ) = , z(w) = , (7.8) 

WAfT - m K W - m K 

the discrepancy function is turned into 

Ho(z) = _ ~L(z) = rIX(x)dx + RA(mK -wA1r ), (7.9) 
z Jo 1 + zx 1 + ZXA 

5 6 

5 5.5 Ii 

(a) 

w(GoY/c) 

(b) 
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FIG. S. Real parts of the K + P and K -p amplitudes against (J). The continuous line is the result of our calculation. Points marked with a bold square are those 
measured with Coulomb interference. Points marked with X are the absorption points. 
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where 

xix) = 1m F _(w')/1r(w' -wo)' Wo <wA1r ' (7.10) 

with X(x);;.O for x E [0,1] as a consequence of the positivity 
hypothesis, 1m F _ (w');;.O, w' E [w A1T' m d. Also R A = X A I 
(w A - wo), and the position of the effective pole is now 

- ZA = ( - XA)-l = (mK -wA1r )/(wA - mK) 

= -0.65044. 
The analytic structure of Ho(z) is shown in Fig. 3. 
The only remaining effective pole has been absorbed by 

choosing an absorption point, and that has been done in four 
different ways, all of them producing coherent extrapola
tions. 

Fifty-four experimental points have been rejected, being 
incompatible with the positivity hypothesis, as made evident 
by the fact that a1154 points, with their error bars, lie outside 
the corridor formed by the Pade approximants [01 
0] = ho ± 2h ~ and [O/OY = (ho ± 2h ~ )/( 1 + z), as shown in 
Fig. 4. 

The bounds for the coupling constant produced by the 
positivity hypothesis are 

14.4<G 2 <17.8. (7.11) 

When the unimodality hypothesis is added, expressing 
the fact that 1m F _(wI in the unphysical region is dominated 
by the YT40S resonance, which produces a pronounced peak, 
the bounds are reduced to 

(7.12) 

The limits, compared with previous determinations, are 
shown in Fig. 2. 

When the 54 points inconsistent with positivity are tak
en into account, the values obtained for the coupling con
stant lie below the lower bounds in (7.11) and (7.12), which 
might give a clue to some low determinations shown in Fig. 
2. 

The real parts of the forward elastic K ± P amplitude 
have been calculated [using (7.5)] up to k = 300 GeV /c, and 
are shown in Fig. 5. In particular the value 

I 

Im(w) Gev/c 
0.61- x 

0.5 o 

0.4 

0.3 

0.2 

0.1 

-0.2 -0.1 0 0.1 0.2 0.3 0.4 

Re(w) Gev/c 

FIG. 6. Positions of the complex-conjugated zeros, on the upper semiplane, 
of the K - P scattering amplitude. The marks X, 0, ., "', and + refer, re
spectively, to the determinations carried out by Atkin20, Dumbrais 1972,24 
L6pez, '4 Dumbrais 1978, 2~ Dumbrais 1980.26 The rectangle and their inte
rior points are the allowed region and the values obtained in this work. 
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FIG. 7. The succesive approximations !/f."1 and x1~) to the distribution I/t(x) 
and function X ,(x) generated by the approximants [n - lin] are shown. The 
continuous line is the upper moment sequence approximation, and the 
dashed line is the lower one. 

Re F ± (0) = D (0) = - 2.8 fm has been obtained, in agree
ment with its most recent determination.23 

The consistency of the calculated real parts has been 
checked by using them in the absorption points, and the sta
bility of the extrapolation has been confirmed by repeating 
the calculation after randomly perturbing the experimental 
values of the real parts according to their errors. 

Taking advantage of the fact that the Pade approxi
mants are valid for complex z, the position of the complex 
conjugate zeros of the amplitude (Fig. 6) has been found to be 

f~4)(X) (Gevlc)-2 

,----.,._---- 144 

(d) 

0.8 

7 

6 

5 

4 

X
(4 ) -2 
T( x)(Gev/c) 

(d) 

FIG. 8. The left-hand figure shows the interpolation of the Chebyshev val
ues obtained when varying the pole position in the interval [0,1]. The histo
gram is the [3/4] approximation. The right-hand figure shows the approxi
mation X~)(x) obtained by differentiating the previous interpolation, 
together with the histogram approximation. 
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FIG. 9. Comparison ofthe weight functions obtained by our extrapolation 
in the four cases (right) with the result of an dective range K matrix analy
sis. 8 

(0.245 ± 0.035, ± 0.345 ± 0.025). (7.13) 

We have also obtained approximations to the weight 
function, Xl (x) related to 1m F _ (w') in the form (7.10). 

Figure 7 shows the Stieltjes histogram approximations 
~n'(x), n = 1,2,3,4, calculated with 2,4,6,8 moments, respec
tively, and also the Stieltjes weight histograms X~n'(x), calcu
lated from the former by means of the slopes of the straight
line segments connecting the succesive Stieltjes values of 
~n'(x), giving a first idea of the shape of X 1 (x) in one of the 
absorption cases. 

Figure 8 shows the continuous approximations ¢,,:'(x) 
and X~'(x) calculated, varying the position of one of the spec
tral points of the histogram distributions. 

Figure 9 compares the results obtained, using a low en
ergy model, 18 for Xl (x) with ours, depending only on experi
mental data and therefore being model independent. 

Lastly, Fig. 10 shows the real part of the amplitude in 
the unphysical cut obtained with the calculated values of G 2 

and the approximations for X1(X). 
In particular a range from - 1.075 to - 0.865 fm is 

obtained for the real part of the amplitude at the elastic K -P 
threshold, agreeing with other low-energy model-dependent 
determinations of this parameter. 18.27 

More details on the physical applications of the method 
can be found in Ref. 28. 

Our extrapolation method used to obtain the previous 
results can be applied to other functions of physical interest 
with analytic structure similar to that of the K - p amplitude, 
like the K ± n amplitude, form factors, and structure func
tions. 
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A general theory of unbounded representations of *-algebras in the Krein space is fonnulated. 
Following the corresponding theory of unbounded representations in the Hilbert space, the 
connection between states and representations, properties of covariant representations, the notion 
of irreducibility, and decomposition into irreducible parts are discussed. 

I. INTRODUCTION 

In the algebraic approach to quantum field theory 
(QFT) with an indefinite inner product (lIP), developed in 
our previous works, 1.2 the necessity of consideration of some 
class of *-algebras represented by unbounded operators in 
lIP vector space, arises in a natural way. Since the general 
theory of unbounded representations does not cover this 
class, one should try to generalize some well-known results 
of the standard theory to this indefinite inner product case. 
The aim of the present work is to carry out such generaliza
tion for so-called J *-representations in the Krein space. Us
ing some ideas and results ofPowers3 and Borchers and Y ng
vason,4 we examine in detail the following problems: (1) what 
is the natural extension of the notion of cyclicity of represen
tation to the case of J *-representation; (2) how can we con
struct a cyclic J *-representation starting from some state on 
the algebra; (3) in what sense is a J*-representation covar
iant; (4) how can we introduce the notion of irreducibility; 
and (5) is it possible to obtain some kind of decomposition of 
the J *-representation into irreducible parts? 

The article is organized as follows. In Sec. II, after the 
short introduction of elementary concepts from the theory of 
lIP spaces, we study some properties of unbounded opera
tors in the Krein space (closability, relation between adjoints 
with respect to different inner products, essential self-ad
jointness, etc.). In Sec. III we introduce the notion of a J*
representation of a *-algebra and other algebraic concepts 
connected with it (a-cyclic representation and a-cyclic vec
tor, G-covariant representation, a-positive state). We show 
that a-cyclic J *-representations can be generated by some 
state on the algebra that is not positive, but instead satisfies 
another condition-a-positivity. As in the standard case, a 
G-invariant state yields a G-covariant representation, but in 
contrast to the usual Oelfand-Naimark-Segal (ONS) con
struction the group G is represented by (generally) unbound
ed operators. Finally, following Ref. 3, we construct several 
closed extensions of a given J * -representation and show how 
this construction works in the case of a G-covariant repre
sentation. Section IV contains the explicit construction of 
the algebra of unbounded operators in the Fock-Krein 
space. This algebra has all the properties of the so-called 
Op J*-algebra (i.e., the algebra of operators generated by 
some J *-representation). We show by this example the exis
tence oftheJ *-representation itself and illustrate all features 
of the general theory. In Sec. V we analyze the notion of 
irreducibility of the J *-representation. Our definition of the 

so-called a-irreducibility seems to be the natural generaliza
tion of the corresponding definition from the theory of un
bounded representations in the Hilbert space, since in the 
case of a representation generated by the a-positive state, a
irreducibility is equivalent to the extremality of the state. We 
show also how to generalize the concept of reducing sub
spaces and construct (following again Ref. 3) the class of J *
representations for which a-irreducibility is equivalent to 
the nonexistence of nontrivial reducing subspaces. Finally, 
in Sec. VI we apply the results of general analysis of the 
problem of decomposition of unbounded representation per
fonned in Ref. 4 to our case and conclude that every a
cyclic, strongly continuous, J *-representation of a separable 
nuclear topological algebra can be decomposed into a-irre
ducible parts. 

II. INDEFINITE INNER PRODUCT SPACES AND 
OPERATORS 

In this section we collect some facts concerning the the
ory of indefinite inner product space (for more details see the 
book of Bognar5 and the work of Jadczyk6

). We prove also 
some elementary properties oflinear operators in an indefin
ite inner product space. 

A. Indefinite Inner product space 

Let E be a vector space with an inner product ( , ). If the 
quantity (x, x), X E E may be positive, negative, or zero, a 
pair (E, ( , ») is called the indefinite inner product space. If 
( ,) is nondegenerate and 

E = E + ff) E -, E ± = {x E E: (x, x) ~ 0 J, (2.1) 

then (E, ( , ») is called the decomposable indefinite inner 
product space. Let P ± E = E ±. Let us define the funda
mental symmetry I of E as 

I=P+ -P- (2.2) 

[J (E) will denote the set of all fundamental symmetries of E]. 
For every IE J (E), we have 

(A) I-I =1, 

(B) (Ix,y) = (x,ly), 

(e) (x, yII = (x,ly) is positive definite. 

We can also introduce the I-norm 

IIxllI = (x, xW2 
• (2.3) 

One can check that for every x, y E E 
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l(x,y)I<lIxll/ll yli/' 

for any leJ(E). 

B. Krein space 

(2.4) 

Iffor every Ie J (E) the I-inner product ( , h turns E into 
the Hilbert space, the indefinite inner product space (E, ( , ») 
will be called the Krein space.7 (We will use the following 
notation: (%, ( , ») will denote the Krein space and %1 the 
corresponding Hilbert space for I e J (%).] 

Let Y C % be a subset of the Krein space %. Let us 
define 

y1= {xe%: (x,y) =0, VyeY}, (2.5) 

y1(1) = {xe%: (x,yh=O, VyeY). (2.6) 

It is easy to show that the following relations hold: 

(ly)1 = y 1
(II, (Iy)ltl) = Y1, (2.7) 

and as a consequence of(2.7) and (2.8), 

(ly)1 = IY1, (ly)1(1) = Iy1(1). 

Using these relations we obtain the following result. 

(2.8) 

(2.9) 

Lemma 2.1: Let Y c %. The closure Y of Y in the 
Krein space topology is equal to Y!!. 

Proof For a fixed Ie J (%), %1 is a Hilbert space, so 
Y = y1(1) 1(11. On the other hand, 

Y!! = (ly1(1))1 = I (ly111))111) 

Thus Y = Y!!. 

C. Linear operators In the Krein space 

LetA be a densely defined linear operator in % with the 
domain D (A ). Now we define the adjoint A * with respect to 
the indefinite inner product ( , ): 

D(A*)={XE%:VYED(A) 3z E%: 

(x,Ay) = (z,y) J, (2.10) 

A *x = z, for XED (A *). 

[In the following A "(I) will denote the adjoint of A with re
spect to the I-inner product ( , h.] One can simply prove the 
following lemma. 

Lemma 2.2: XED (A *) iff for every y E D (A ) there is 
k> 0 such that 

I (x, Ay) I <k II ylll 

[for any IE J (%)]. 

Lemma 2.3: For every IE J(%), ID (A *) = D (A "(I)). 
Proof Let x E ID (A *), then x = Ix for xeD (A *). Since 

I (x, Ayhl = 1(lx,Ayhl = l(x,Ay)l<kllyll/' 
xED (A "(1'). Let now xED (A "11)). Since 

I (Ix, Ay)1 = l(x,Ayhl<kdlyll/' 
Ix ED(A *) and x EID(A *). 

Proposition 2.1: A densely defined operator A in the 
Krein space % is closable iff D (A *) is dense in %. 
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Proof Assume that A is closable in the Krein space to
pology. It means that A is closable as an operator in the 

Hilbert space %1 for any I E J (%). Hence D (A "II)) is dense 
in %1' Since 

D (A *)1 = (ID (A "(1)))1 = D (A "11))1(1) = {O}, 

D (A *) is dense [D (A *) = D (A *)!! ]. Suppose now that 
D (A *) is dense in %. Since 

D (A "(1))1111 = (ID (A *))111) = D (A *)1 = {O}, 

D (A "II)) is dense in %1 and A is closable. 
Lemma 2.4: Let A be a densely defined operator in the 

Krein space %. Suppose that for a fixed IEJ(%), ID(A) 

C D (A ). Then (AI ((I) = A * I. 

Proof First we have to check thatD((A/)"(I)) = D (A */). 

Let xED ((AI) "(I)) and y E D (A ). Since 

I (Ix, Aly) I = I (x, Alyh I <k II ylll = k II/yll/' 

Ix E D (A *) [because Iy E D (A )] and x E ID (A *). Similarly 
we can show thatID (A *) = D (A *1) C D ((AI) "(I)). Let now 

x ED ((AI "(I)) =D(A *I) = ID(A *): 

((AI)*(l)x,y)1 = (x,Alyh. 

On the other hand, 

(x,AlY)1 = (ix,Aly) = (A *lx,Iy) = (A *Ix,yh. 

Hence 

((AI(ll)x,yh = (A *Ix,yh, 

for every y e D (A ). 
Proposition 2.2: Suppose that A is a symmetric, densely 

defined linear operator in the Krein space % such that 
ID (A ) C D (A ) for some IE J (%). If the operator AI is 
essentially *(1) -self-adjoint, then A is essentially *-self-ad
joint. 

Proof We show that ID ((AI (II) "II)) = D (A **). Indeed, 
let xED ((AI (II) "111). Then, for every y e D ((AI)"(I)) 
=D(A *I), 

I (x,(AI)"11) yh I <k IlYlIl> 
so 

I (Ix, A *Iy) I = I(x, (A/)"(l)yhl<k Il/yll/' 
Hence Ix ED (A **) and ID ((AI (II) "II)) C D (A **). If 
D ((AI)"II) "(I)) = D ((AI "(I)) then, since 

D (A **) = ID ((AI) "II) "11)), D (A *) = ID ((AI ((I)), 

we obtain D (A **) = D (A *). 

III. or-REPRESENTATIONS OF TOPOLOGICAL 
*-ALGEBRAS1.2 

A. Definition of the or-representation 

Let .J2f be a topological *-algebra. If aut. (.J2f) denotes 
the set of all continuous *-automorphisms of .J2f, let 
j(.J2f) C aut. (.J2f) be the set of elements a satisfying a 2 = id. 
Then (17', D (17'), {/,.(a): a Ej(1T)}) is called a J *-representa
tion of.J2f if we have the following. 
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(A) 1T: d -op(D (1T)) is a mapping of d into the set of 
linear operators onD (1T). Here((D (1T), ( , )1T)isanondegen
erate indefinite inner product space such that (A 1) for every 
A ed, 1T{A )D (1T) C D (1T); (A2) for every A, Bed,).,,p. e C, 
and XeD (1T), 1T{AB)X = 1T(A )1T{B )X, 1T{).,A + ftB )X 
= ).,1T{A )X + ft1T{B)X; and (A3) for every A e d and 

X, YeD(1T), (X,1T{A )Y)1T = (1T(A .)X, Y)1T' 
(B)j(1T) C j(d) and 11T(a): D (1T)-+D (1T) has the proper

ties 

11T(a)2 = 1, (I1T(a)X, Y) 1T = ( X, 11T(a)Y) ", 

and (X, Y)a: = (X, 11T (a) Y) 1T is positive definite. 
(C) for every a ej(1T), A e d, and XeD (1T), 

1T{a(A ))X = 11T(a)1T{A )I1T(a)X. 

Remarks: (A) Let 

%1T,a: = D(1T)'H'a[IIXlia = (X,X):/2] 

and (,) a be the extension of (, ) 1T to % fT,a' A pair 
(% 1T,a' ( , ) a) is the Krein space. 

(B) If a, {3 ej(1T) and a =I={3, the norms II lIa and II lip are 
not generally equivalent (see Sec. IV for an example). 

(C) 1T( d) is the example of the Op I • -algebra discussed 
by Dadashyan and Horujy,8 

Suppose that there is defined the representation {1"g] of 
the topological group G: 

g-1"g e aut* (d). (3.1) 
The J ·-representation is G-covariant if there exists a family 
{U~1T): g e G ] oflinear operators with the following proper
ties: (A) for every g e G, U~): D (1T)-D (1T); (B) for every g e G 
andX, YeD(1T), 

(U~) X, U~1T) Y)" = (X, Y)1T; 

(C) for every A Ed, g E G, and XED (1T), 

1T{1"g(A))X = U~) 1T{A) U~,,)· X; 

(D) for every gl' g2 e G and XED (1T), 
U(1T) U(1T) X = U(,,) X' 

HI 82 g. g2 ' 

and (E) the mappingg-( X, U~) Y)1T is continuous. 
The representation (1T, D (1T), {I1T(a): a ej(1T)]) is a-cy

clic [a ej(1T)] if there is a vector 0" ED (1T) such that (A) 
1T(d)01T is dense in % ",a' and (B) I"(a)O,, = 01T' 

B. States and GNS construction 

For an a-cyclic J*-representation, the functional m1T , 
defined by 

m,,(A ) = (01T' 1T(A )0,,) 1l" (3.2) 
has the properties 

(A) m1T 0 a = m", 
(3.3) 

(B) for every A e d, m,,(a(A *)A );;;.0. 

It suggests the following definition: A functional m on d is 
a-positive if there exists such a ej(d) that m satisfies (3.3). If 
m is a-positive, then P.,: = {aej(d): m is a-positive]. 
Thus m is an a-positive state if mIl) = 1. 

Theorem 3.1: Let m be an a-positive and G-invariant 
state on d. Assume that for every A, Bed the mapping 
g-+(i)(A 1"g(B)) is continuous. Then there exists G-covariant 
representation (1T."D." {I", (a): aePwJ) of d with the 
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family { U~): g e G ]. It is a-cyclic for every a e P w' More
over, for every g e G, 

U~): % ""a-% ""a
g 

(ag = 1"g 0 a 01"g-l) 

is the unitary operator between Hilbert spaces % ",a and 
%",a' , g 

Proof: Let Nw = {A e d: m(BA) = 0, VB e d]. Let 

D", = d INw • 

If we put 

(X~,X;;)", =m(A ·B) 

(where X ~ denotes the equivalence class in D", containing 
A e d), we obtain an indefinite inner product space 
(D"" ( , ),,,). Next we define 

1Tw(A )XB =X~B' 

I",(a)X~ =X:(A)J 

U ("')X"'-X'" 
g A - rsiA)' 

It is easy to check that (1T." D." {I.,(a): a e P.,]) so defined 
is a J·-representation. It is G-covariant and a-cyclic with 
an a-cyclic vector 0 = X~. Since 

( U(.,) X'" U("') X"') = m(a 01" (A·) 1" (B)) g A' g B all g gog 

= m(a(A .)B) = (X~,XB)a' 

u; can be extended to the unitary mapping between % "',a 

and%""ag ' 

c. Closed extensions of the .r-representatlon 

Theorem 3.2: Let (1T." D"" {I",(a): a e P", J) be a G-co
variant J ·-representation of d defined by some a-position 
state m. For every a e P OJ there exists a J *-representation 
(1T""a' D""a' {I",(a)]) (an a-closed extension of it) defined as 
follows: 

1T""a(A )X= 1T",(A )a X, XeD""a 

(3.4) 

(3.5) 
(T a denotes the closure of T in the norm IHla). This J *
representation has the following properties. 

(A) For every A Ed, 1T "',a (A ) is closed in % "',a' 

(B) D "',a is complete in the topology defined by semi
norms 

IIXIIs,a = L 111T""a(A )Xlla 
AeS 

(S is a finite set of elements of d). 
(C) Let (1T ""ag ' D ""a

g
' {I", (ag )]) be an ag-closed extension 

of(1T", , D"" {I", (a): a eP",]) for some fixedg e G. Then U~): 
D "',a _D ""a

g 
and 

U~) 1T""a(A)X = 1T""a
g
{1"g(A)) U~"') X. (3.6) 

Proof Since D{1T",(A ).) ::J D(1T",(A·)) =D"" 
D{1T",(A ).) is dense in % "',a (for every a eP.,) and, by Pro
position 2.1, 1T., (A ) is closable for every A e d. Hence, we 
can define D OJ,a and 1T OJ,a' Similarly as in Ref. 3 one can show 
that (1T."a' D""a) is a *-representation of d. Now we com
plete the proofthat (1T."a D""a' {I", (a) J) ia a J·-representa
tion. First we show that I",(a)D""a C D""a' Let XeD""a' 
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There exists the sequence [ Xn }, Xn ED w' such that Xn-X 

in %w,a and for every A E d, 1Tw(A )Xn-1T",(A t x. Let 
Y=I",(a)X. For Yn = Iw(a)Xn we have Yn-Y, Since 

1Tw(A) Yn = 1Tw(A )I",(a)Xn = I",(a)1T",(a(A ))Xn, 

there exists the limit 

lim 1T",(A) Yn = Z E% tr,a' 
n 

But 1T '" (A ) is closable, so 1T '" (A )a Y = Z and Y E D "',a' It is 
easy to check that for every X, Y ED w,a' 

(1Tw,a(a(A *))X, I",(a) Y)a = (X, I",(a)1Tw,a(A) Y)a' (3.7) 

Using the fact that 1T "',a is a *-representation, from (3.7) we 
obtain 

1T""a(a(A ))/w(a)X=I",(a)1Tw,a(A )X. 

Since point (A) is obvious and the proof of (B) is contained in 
Ref. 3, we have to show only point (C). 

Let Xn-X in %""a and 1T",(A )Xn-1T",(A t x. As 
Ui"') Xn-Ui"') X in % ""a.' the limit limn 1T ",(A) ut;) Xn ex
ists in % ",a and .. 

1T (A )a. UI"') X = lim 1T (A) UI"') X 
OJ g t:U g n· 

n 

Thus U i"') XED w,a. for XED "',a and 

UI"') 1T (A)X = lim UI"') 1T (A)X 
g "'. g w n n 

= lim 1T",(1"g(A)) Uiw) Xn 
n 

IV. Op .r-ALGEBRA GENERATED BY FIELD 
OPERATORS IN FOCK-KREIN SPACE 

A. Tensor product of Krein spaces' 

Let (%)' (,) ))and (%2' (, )2) be two Krein spaces. For 
a fixed I) E J (% d and 12 E J (% 2) let us define 

(4.1) 

For %) ® %2 (tensor product in the sense of Hilbert 
spaces) we define 

(x,y) = (x, Iy). (4.2) 

Here, (%) ® %2' ( , ») is the Krein space, which we call the 
tensor product of Krein spaces. As one can easily check, 
such a defined tensor product of Krein spaces does not de
pend on the choice of I) E J (%)) and 12 E (%2)' 

B. Direct sum of Krein spaces 

Let [(% y' ( , )y): rEA} be a family of Krein spaces. 
Let us fix the sequence [Iy: rEA}, Iy EJ(% ). Then 
%(Iy) is the set of all sequences [Xy: rEA j,xy : % sa-
tisfying y 

(4.3) 

If X = [Xy J, Y = [Yy J, and X, YE %[Iy), then we define 

119 J. Math. Phys .• Vol. 27. No.1. January 1986 

(X, Y)[Iy) = L (Xy, YY)Y' (4.4) 
y 

The space (%[Iy), ( , ) [Iy) ) with the topology defined by the 
norm 

IIX IITly) = L IIXy lI;y (4.5) 
y 

will be called a direct sum of Krein spaces [(% y' ( , ) y): 
rEA } defined by the sequence [I y: rEA } and will be de
noted by l:~Ir) (%y, ( , )y). 

C. Fock-Krein space 

Now let us consider the family of Krein spaces 
n 

(%n,(,)n):n=0,1,2,oo.,with%n = ® %,%o=C,and 
n 

(., ')n = (-, ® I')n (where % is the "one-particle" Krein 

space and ( ,)n is the inner product in the Hilbert space 
n 

® %). Also let us fix the sequence [In: n = 0,1,2, ... } with 
n 

10 = 1, In = ® I, IE J(%). The direct sum 

rA%) = L [I.) (%n, ( , )n) (4.6) 
n 

we call Fock-Krein space defined by IEJ(%). If So= 1, 
Sn = (lin!) l:O'EP. U (Pn the permutation group of n ele
ments), then we define 

%n+ =Sn %n 

and 

rI(%) = L [I.) (%n+, ( , )n). 
n 

(4.7) 

Let r 0(%) c r 1(%) be the set of sequences X = [ Xn: 
n = 0, 1,2,oo.} containing only a finite number of Xn different 
from 0, then 

r
I
(%) = ro(%)II.IIII.J. (4.8) 

For any i E J (%) such that i =1=1, we can define r i(%) as 
before, and also 

ri(%) = ro(%)II.lIli.J. 

For every X)' X 2 E r 0(%)' we have 

(X), X 2 ) [i.) = ( X)' X 2 ) [I.) 

and 

(4.9) 

(4.10) 

(X)' X 2 )[i.) = (X)' r(Ii)X2lu.) (4.11) 

[r(Ii) means the second quantization of lll. 
Lemma 4.1: If i =1=1, the operator r(Ii) defined on 

ro(%) is unbounded. 
ProofWefirstshowthatifi =1=1 then IIIi III> 1 (see Ref. 

6). Fora fixed I EJ(%), %1 istheHilbertspaceandB (%1) 

is the C *-algebra with respect to the involution A_A -II) 
= IA * I,Ii is the positive self-adjoint element of B (%1)' and 

IIIi III = sup[ IA I: A E sp(Ii)}. 

Since (Ii) -) = I (Ii)/, if A E sp(ll) then A -) E sp(Ii). Thus 
IIIiIlI> 1 wheni =l=I. Thus, ifi =1=1, r(Ii) must be unbound
ed.)O 

Corollary 4.1: lei =1=1 the norms 1I·lIti.) and 11·11[1.) de
fined on r 0(%) are not equivalent. 
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D. Abstract field operators" 

For every Fe % we define 
n n-l 

b-(F): ® %- ® % 

as 

and 
n n+ I 

b+(F): ® %_ ® % 

as 

(4.12) 

b +(F) XI ® ••• ® Xn =F ® XI ® ... ® X n • (4.13) 

IfN=r(I)andS t %n=Sn,wecandefine 

a-IF) = (N + 1)1/2 b -I(F), 

(4.14) 
a+(F) = S b +(F)(N + 1)1/2. 

Then, the Segal field operator 

<l>s(F) = 2- 1/2 [a-(F) + a+(F)] (4.15) 

has the following properties: (A) <l>s(F) is closable; (B) if 
Fn-F in %, <l>s (Fn)X-<I>s (F)X in rAY); (C) OF 
= (l,o,O, ... J e r 0(%) is a r(f)-cyclic vector, i.e., the set 
{<I>s (FI) .. ·<I>s (Fn) OF: n = 1,2, ... J is total in r I (%) and 
r(1) OF = OF; (0) [<I>s( Fd, <l>s( F2)]X = i 1m (FI, F2 ) X; 
and (E) <l>s (F) is essentially self-adjoint in rAY). 

E. Representation of a symmetry group 

Suppose that the symmetry group G is represented by 
unitary operators {Tg : g e G J in the "one-particle" Krein 
space %. Since, in general, IITgIII> 1, Ug = r( Tg) 
t ro(%) is unbounded. On the other hand, since 

r( Tg )r(I)r( Tg)* = r( Tg IT g- I) = r( Ig), we have that 

Ug: r I (%j-rI• (%) (4.16) 

and Ug is the unitary mapping between two different Hilbert 
spaces. The properties of the family {Ug : g e G J can be 
summarized as follows: For every g e G, 

(A) Ug : ro(%)-ro(%), 

(B) Ug: rJ!%)-rIg(%), 

(C) Ug: <l>s(F)U;X=<I>s(TgF)X. 

F. Properties of the Op J*-algebra generated by field 
operators 

Let d F be the set of polynomials with complex coeffi
cients over the set {<I>s (F): Fe %}. Then d F has the fol
lowing properties. 

(A)ForeveryAedF , A: ro(%)-ro(%). 
(B) d F is a *-algebra of operators in r 0(%)' 
(C) r 0(%) is dense in each Fock-Krein space r 1(%)' 

leJ(%). lfi #1 then rj(%)'\XO(%)#rI(%)\rO(%)' 
(0) For every I e J(%) there is a *-automorphism aI of 

d F defined by the extension of the formula 

aI(<I>s(F)) = <l>s(IF), 
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where a I is implemented by the operator r(f) defined in 
rI(%)' 

(E) d F is G-covariant, i.e., there exists the family 
{ Ug : g e G } of operators in r 0(%) implementing the group 
of *-automorphisms 

1'g(<I>s(F)) = <l>s( 1'g F). 

If aI 0 1'g #1'g 0 aI' Ug is unbounded and 

Ug: rI(%)-rI.(%). 

(F) d F is a rcyclic for every Ie J (%), with a 
aI-cyclic vector OF' From these properties,(d F' ro(%), 
(r(I): Ie J (%) J) can be thought of as a J *-representa
tion of some abstract field algebra. Let us look at the state 
corresponding to this representation: 

"'F(A) = (OF,A OF)' (4.17) 

Functional (4.17) is aI-positive for every leJ(%), so P{J)F 
'::::d (%). As was shown in Ref. 6, the set J (%') has the fol
lowing structure: for every Pair/I' 12 eJ(%) there exists 
12,1 e J(%) such that 12 = 12.1 . II .12,1' Thus, for every 
aI" aI, eP{J)F [not necessarily lying on the same orbit in 
j( d F) with respect to the group G) there is the mapping V2•1 

satisfying 
(A) V2,1: r o(%j-r 0(%)' 
(B) (V2,1 X, V2•1 Y){I2ni = (X, Y)(Ilni' 
(C) V2,I r(11) = r(12) V2•1 , 

(0) V2•1 : rI,(%)-rI,(%). 

V. IRREDUCIBILITY OF J*-REPRESENTATIONS 

In this section we study the notion of irreducibility of 
some J *-representations. We introduce the so-called a-irre
ducibility property that seems to be the natural one in the 
caseofJ *-representations. As it turns out, in the case ofGNS 
representation, a-irr~ucibility is equivalent to the extrema
lity of the a-positive state. Moreover, for the so-called self
adjoint J *-representations, our notion of irreducibility is 
equivalent to the intuitive property of nonexistence of non
trivial subrepresentations. 

A. a-Irreducibility of J*-representatlons 

Let (1T,D (17'), (1".(a): a ej(1T) j)beaJ*-representationof 
a *-algebra d. For a fixed a ej(1T) we define the following 
weak commutant: 

A 

(1T)~,a = (BeB(%".,a): 
A A 

(X, B1T(A) Y)a = (1T(A *)X, BY)a} 
(5.1) 

A 

n{BeB(%".,a): 
A A 

( X, Bl".(a) Y) a = (1".(a) X,BY) a }. 

We say that the J *-representation is a-irreducible if (1T)~.a 
= {A 1: A e C}. 

Remark: In this general case, irreducibility of a given 
J*-representation depends on the choice of a ej(1T). When 
the GNS representation is G-covariant, then for a, p ej(1T) 
such that P = 1'g 0 a 0 1'g- I for some g e G, there exists the 
isomorphic mapping 

(5.2) 
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defined by 

'" '" Mp,a(B) = U~W) B U~w)', (5.3) 

and for such a and {3, the notion of irreducibility is unique. 
Suppose now, that the structure ofthe setj(..cat) is such as in 
the case of a field algebra (Sec. IV F), i.e., for every a, 
{3 ej(..cat) there exists r ej(..cat) satisfying{3 = r 0 a 0 r. Iffor 
a given state w, for every a, {3 e P w the corresponding r satis
fies W 0 r = w, then there exists also the isomorphic map
ping of type (5.2) and the property of irreducibility depends 
only on the representation itself. 

Let £i) be an a-positive state on ..cat. For a fixed a e P w' we 
define the set 

E: = {w: w is a-positive J. 
We say that the state W is a-extremal if £i) is an extremal point 
of the set E: (and in this case we write W e a. E:). 

Proposition 5.1: £i) ea. E: iff (1Tw)~,a = {A 1 : A e C J. 
Proof: Suppose that wEI' a. E:. There exist WI' W2 e E: 

such that W = A WI + (1 - A )W2 and WI =/=w2• Let us define 

ba(X~,XB) = AWI(a(A *)B). (5.4) 

Since 

O";;ba( X~, X B) = A£i)I(a(A *)A) <w(a(A *)A) = IIX~ II~ 
'" '" there exists B e B (.5V w,a)' B < 1, such that 

ba(X~,XB) = (X~,BXB)a. 

It is easy to check .that B e (1Tw)~,a~so (1Tw)~,a is not t!!-vial. 
Suppose n0'X that B e (1T .,)~,a and B =/=/}:.. 1. Take 0 <B < 1, 
i.e., 0 < (X, BX)a < (X, X)a' Since (0, BO)a > 0 we can de
fine two states 

wM) = liB 1/20Ila-2(0, B1Tw(A )O)a' 

w 2(A) = 1I(I-B)I/201l;-2(0,(I-B)1T.,(A )O)a' 

Thus we ",have WI' W2 e E: and w = AWl + (1 - A )£i)2 
[Ii = (0, BO)a]' 

B. Reducing subspaces and self-adjolnt.}*
representations 

Now we consider another characterization of irreduci
bility of the given representation, i.e., nonexistence ofnontri
vial subrepresentations. For a J *-representation (1T, D (1T), 
{I1T(a): a ej(1T) J) we introduce the notion of an a-reducing . 
subspace, i.e., a subspace Da CD (1T) such that 

(A) 1T(.Qf") Da C Da, 

(B) I1T(a) Da C Da. 
Foranya-reducingsubspaceDa ,(1T ~ Da,Da, {I".(a)J) is 

also aJ*-representationof ..cat andmoreover,Da = Do 1I' lIa is 
an orthocomplemented subspace of the Krein space .5V 1T,a' 
i.e., 

C}'/ A Ai 

Jl 1T,a =Da $ Da 

(not every closed subspace of the Krein space is orthocom
plemented). In this context it is natural to call a J *-represen
tation a-irreducible if it has no nontrivial a-reducing sub
spaces. But in the general case there is no connection 
between this definition of a-irreducibility and the previous 
one, because the set (1T)~,a is not even an algebra. In this 
subsection we define, following Ref. 3, the class of J *-repre-
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sentations for which the set (1T)~,a is the von Neumann alge
bra of operators in .5V 1T,a' Let 

D (1T*) = n D (1T(A )*), 
Aed 

1T*(A ) X = 1T(A *)* X, XeD (1T*). 

(5.5) 

(5.6) 

Proposition 5.2: For a fixed a ej(1T), (1T*, D (1T*)) has the 
following properties: (A) (1T*, D (1T*)) is the representation of 
.4; and (B) 1T*(a(A ))X = I1T(a)1T*(A )1". (a) X, XeD (1T*). 

Proof: (A) One can repeat the corresponding prooffrom 
Ref. 3 having in mind the characterization of the setD (1T(A )*) 
(Lemma 2.2). 

(B) Let XeD (1T*), Ye D (1T). Since 

I (I1T(a) X,1T(A )Y) a I = ( X, 1T(a(A ))I1T(a) Y) a I 
..;;kIII1T (a) Ylla =kl\Ylla 

I1T(a) XeD (1T*) and I1T(a): D (1T*)---+D (1T*). For every 
X eD(1T*) and YeD(1T), we have 

(X, I1T(a)1T(A )Il7(a) Y)a = (I1T(a)1T(A *)Il7(a) X, Y)a' 

thus 

and 

1T*(a(A))X = 1T(a(A *))X = (I1T(a)1T(A *)I".(a))*X 

= Il7(a)1T(A *)*I1T (a)X = 11T(a)1T*(A )I1T(a)X. 

One can show the following proposition by a method 
similar to that in Ref. 3. 

Proposition 5.3: For every B e(1T)~.a, we have 

BD (1T) C D (1T*), B1T{A)X = 1T*(A ,nX, XeD (1T). 

At this point it is natural to introduce the following notion: a 
J*-representation(1T,D(1T), {Il7(a): a ej(1T)J)is*-se/j-adjoint 
in the Krein space K 1T,a if for (1T*, D (1T*)) we have 
D (1T*) = D (1T) and 1T* = 1T. 

Corollary 5.1: 12 For the *-self-adjoint J*-representa
tion in the Krein space.5V l7,a the set (1T)~,a is the von Neu
mann algebra of operators in .5V 1T,a' 

For the formulation of the next proposition, we have to 
introduce the following notion: D a CD (1T) is a *-self-adjoint 
a-reducing subspace if J*-representation

A 
(1T ~ Da, Da, 

{I". (a) J) is *-self-adjoint in the Krein space Da. 
Proposition 5.4: For a *-self-adjointJ *-representation of 

.4 there is a one-to-one correspondence between projection 
(in the sense of Krein space) in (1T)~,a and *-self-adjoint a
reducing subs paces. 

",roof: Suppose that", E e (1T)~,a a~d E 2 = E, E * 
= E. Let us define Da = ED (1T). Since E: D (1T)---+D (1T), 

Da C D (1T). On the other hand, 

'" A 
1T(A )D a = 1T(A )ED (1T) = E1T(A )D (1T) C D a' 

A A 

I".(a)Da = I1T(a)ED(1T) = EI1T(a)D(1T) C Do' 

SoDa is an a-reducing subspace. ToshowthatDa isa *-self
adjoint a-reducing subspace, one can repeat the correspond
ing proof from Ref. 3. Suppose now that Da is a *-self-ad-
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joint a-reducing subspace for the .-self-adjoint 
A 

representation (1T,D (1T), (l".(a): a ej(1T)}). LetEbea projec-
tor (in the sense of Hilbert space) on the closure of Da in 

A 

%".,a' Hence ED(1T)::::> Da. Now we show that 
A A A_ _ 

ED(1T) C Da. Let XeED(1T), X=EX with XeD(1T). 
For every Ye D a' we have 

(X,1T(A )Y)a 
A_ A_ 

= (EX, 1T(A )Y)a = (EX,/".(a)1T(A )Y)a 
A_ _ A. 

= (EX,1T(a(A ))l".(a)Y)a = (X,E1T{a(A ))l".(a)Y)a 

= (X,1T{a(A ))l".(a)Y)a = (X,1T{A )Y)a' 

Since XeD (1T) = D (1T.), for every Ye D (1T), 

I( X,1T(A )Y)a I<k IIYlla' 

Thus 

I(X,1T(A)Y)al = I(X,1T(A)Y)al<kIlYlla' 

for every YeDa, so XeD((1T(A) t Da)·)· But 1T t Da is 
.-self-adjoint, so XeD (1T t D a) = D a' 

Now let X, YeD(1T), since 
A A A 

(I". (a) X,EY)a = (X,El".(a)EY)a 

and 
A A 

(EX,/".(a)Y)a = (1".(a)EX, Y)a 
A A A A 

= (El".(a)EX, Y)a = (X,El".(a)EY)a' 
we have 

A A 

(1".(a)X,EY)a = (EX,I".(a)Y)a· 

On the other hand, for every A e.flf and X, YeD(1T), we have 
A A 

(1T{a(A ·))X,EY)a = (X,E1T(A )EY)a 

and 
A A 

(EX,1T(A )Y)a = (1T{a(A ·))EX, Y)a 
A A A A 

= (E1T(a(A ·))EX, Y)a = (X,E1T{A )EY)a' 

So we also have 
A A 

(X,E1T(A )Y)a = (1T{a(A .)) X,EY)a' 
A A 

From these two equalities, it follows that E· = E and 
Ee (1T):",a' 

Corollary 5.2: For .-self-adjoint J ·-representations in 
the Krein space, a-irreducibility is equivalent to the nonexis
tence of nontrivial .-self-adjoint subrepresentation. 

VI. INTEGRAL DECOMPOSITION OF j*-REPRESEN
TATIONS 

In this section we consider the problem of decomposi
tion of aJ ·-representation of some topological.-algebra into 
a-irreducible parts. As in the standard case we should de
compose 1T with respect to a maximal Abelian algebra in the 
weak commutant (1T):",a' But since operators 1T(A ), A e .fIf, 
are unbounded, the weak commutant is, in general, not an 
algebra and we have to extend the operators 1T{A), A e .fIf, in 
such a way that the weak commutant will coincide with the 
strong one. To do this we can apply the extension theory 
from Ref. 4. 

Let (1T, D(1T), [I". (a): a ej(1T)J) be a J·-representation 
and a ej(1T) be fixed. Then ([ 1T{A): A e.flf J, l".(a): D (1T)) is 
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the operator family in the Hilbert space % "',a (we assume 
that % "',a is separable). Let us define the strong commutant 
(1T);,a as 

A A 

(1T);,a = [BeB(%".,a): BDi1T) C D(1T) and 
A A A A 

B1T(A)X = 1T(A )BX, Bl".(a) X = I". (a)BX J. 
(6.1) 

Now we can formulate the following proposition. 
Proposition 6.1 I~. For the operator family 

({1T(A): A e .fIfJ, I". (a); D(1T)) there exists a so-called maxi-
mal regular induced extension in the separable Hilbert space 
&'" ".,a: ({ 1T(A); A e .fIf J, j".(a), N, .0 (1T)) such that 

(1T):",a nN' = (1T);,a nN' =N, (6.2) 

where N is a commutative algebra of operators in·&'"". a' 

From the above proposition follows that { N, &'" ;a J is 
the commutative von Neumann algebra of operators in 
&'" "',a' There exists the measure space (A, p,) such that14 

[ N, &'" "',a J = 16> ( N,tJ &'" ".,a;A J dp,(...t ). (6.3) 

Equation (6.3) means that &'" 1Ta is the direct integral ofHil
bert spaces ( &'" ".,a;A: ...t e A J ~d N contains diagonal oper
ators with respect to the decomposition 

&'" "',a = 16> &'" ".,a;A dp,(...t ). (6.4) 

Proposition 6.2 IS.. Suppose that D (1T) is a separable nu
clear vector space and (1T(A): A e .fIf J is a separable topo
logical space. Suppose also that ( 1) the imbedding 
D (1T~% "',a is continuous; (2) the mapping (1T{A), 
X) ..... 1T(A ) X is' separately continuous on 
1T(.fIf)XD(1T~D(1T);and(3)themappingl".(a): D(1T~D(1T) 
is continuous. Let({1T(A): A e .fIfJ, j".(a), N, .o(1T)) be the 
maximal regular extension and 

[ N, &'" "',a J = 16> { NA, &'" ".,a;A } dp,(...t ) 

be the corresponding decomposition of { N, &'" "',a }. Then 
for every ...t e A there is a linear mapping E A: D (1T~&'" ".,a;A 
such that we have the following. 

(A) DA = EA D (1T) is a nuclear space, continuously im
bedded in &'" "',a;A and dense in % ".,a;A for p,-almost all 
...teA. 

(B) For all XeD (1T), 

x= 16> EA Xdp,(...t). 

(C) 1T A (A )EA X: = E A (1T(A ) X) defines for p,-almost all...t 
the linear operator such that 1T A (A ) D A C D A' 

(D)IA(a) EA X: = EA(I".(a) X) defines forp,-almost all...t 
the linear operator such that lA (a)2 = lA and 

(IA (a) EA X,EA Y)a;A = (EA X'/A (a)EA Y)a;A' 

(E) The mapping 1T{A }-1r A (A ) preserves all algebraic re
lations. 

(F) 1TA(a(A ))EA X = lA(a)1TA(A )lA(a) EA X for p,-al
most aH...t. 

(0) (1TA ):",a = [p lA: p e CJ forp,-almost aH...t. 
For the application of this result to our problem, we 

need some topology on the algebra .fIf. If we assume that .fIf 
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is a separable, nuclear topological algebra and 11' is strongly (B) ( 11'A (A ) XA, YA) A = (11'A (A ) XA,fA (a)YA )a;A 
continuous and a-cyclic (with a-cyclic vector 01T)' then we 
can define the nuclear topology on D (11') = 11'(d)01T as the = (XA' 11'A (a(A *))IA (a)YA )a;A 

quotienttopology of d modulo the kernel of the continuous = ( XA, lA (a)11'A (A *) YA )a;A 
map 

ct>1T: d-+11'(d)01T C %1T,a' 

If we put also the quotient topology of d !ker 11' on 17'( d) we 
obtain the following results: (A) D (11') is a separable nuclear 
vector space; (B) 17'(d) is a separable topological space; and 
(C) the mapping 11'(d)XD (11') 3(17'(A ), X) t--+ 17'(A )X is sepa
rately continuous. Since (by assumption) the *-automor
phism a is continuous on d we have also that (D) the map
ping l1T(a): D (11')-+D (11') is continuous. 

Corollary 6.1: Let d be a separable nuclear *-algebra 
and (11',D (11'), {11T(a) J) be a strongly continuous a-cyclic J *
representation of d. Then there exists a separable Hilbert 
space % 1T,a containing % 1T,a as a closed subspace, a direct 
integral decomposition 

% 1T,a = L" % 1T,a;A dJ-t(A ), 

and strongly continuous representations (in the sense of Hil
bert space) {(11',t>DA): AEAJ such that (A) for every 
X ED(11'), 

11'(A ) X = L" 11'A (A) X A dJ-t(A ); 

(B) 11'A (a(A )) X" = I" (a) 11'" (A) I" (a) X" for J-t-almost all A, 
where 

l1T(a) = Ie lAta) dJ-t(A); 

and (C) (11' A )~,a = { P 1,,: p E CJ for J-t-almost all A. 
Remark: For J-t-almost all A E A, (11'", D", {I" (a)]) is a 

J *-representation of d since (A) (D", ( , ) A) is an indefinite 
inner product space with respect to ( , >,,: = hI" (a)')a;,,; 
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A distance function between points in space-time is defined and used to consider the manifold as a 
topological metric space. The properties of the distance function are investigated: conditions 
under which the metric and manifold topologies agree, the relationship with the causal structure 
of the space-time and with the maximum lifetime function ofWald.and Yip, and in terms of the 
space of causal curves. The space-time is then completed as a topological metric space; the 
resultant boundary is compared with the causal boundary and is also calculated for some 
pertinent examples. 

I. INTRODUCTION 

The singularity theorems of Penrose and Hawking dem
onstrate that in many cases solutions of Einstein's equation 
must be singular (Hawking and Ellis, 1 hereinafter HE, Chap. 
8). The theorems do not say much about the form this singu
lar behavior will take, however, because the manifolds which 
represent space-time in general relativity do not include the 
singularities. The approach to studying the singular behav
ior thus has been to attach a boundary to the space-time 
manifold, i.e., to define a new topological space in which the 
space-time is an open, dense subspace. One then interprets 
the points of the boundary as "singular points.,,2 To describe 
the singular behavior precisely Einstein's equation must now 
be solved near the singularity. Here "near" is defined by the 
procedure used to attach the boundary to space-time. 

Several boundary constructions have been given (HE,1 
Chaps. 6 and 8; Beem and Ehrlich,3 hereinafter BE, Chap. 5), 
but all suffer from some drawback. The b-boundary con
struction4 has been shown to have unphysical topological 
properties5 as has, recently, a wide class of constructions, 
including the g boundary/ by Geroch, Liang, and Wald. 7 

Moreover, in general it is difficult or impossible to extend the 
causal and differentiable structure of the space-time to the 
boundary. Clearly this is crucial to solving the equations 
near the singularity. Belinskii, Khalatnikov, and Lifshitz8 

did this using a method of successive approximations in Ein
stein's equations, assuming certain coordinate conditions. 
The validity of these coordinate conditions has been exam
ined by Barrow and Tipler9 and more recently by Wald and 
Yiplo in the special case of "simultaneous synchronous co
ordinates" (Gaussian normal coordinates in which the sin
gularity takes place everywhere at t = 0), although the most 
general version8 of the work of Belinskii, Khalatnikov, and 
Lifshitz does not use simultaneous synchronous coordi
nates. 

This paper suggests a new approach through which so
lutions to some of these problems may be found. The mani
fold is made into a topological metric space by the introduc
tion of a distance function, where the distance between two 
points is a measure of the difference between the chronologi
cal pasts and futures of the points. The metric space is then 
completed and the additional points form the boundary of 
this construction. Although the metric defined here is not 
differentiable it may be usable to obtain bounds for deriva
tives in some approximation procedure. And by its very na-

ture, of course, it provides a precise definition of "near" a 
singularity. Moreover, being closer in spirit to the causal 
boundary construction of Geroch, Kronheimer, and Pen
rose,2 it is more "global" than the constructions considered 
by Geroch, Liang, and Wald7 and avoids the difficulties in 
the example they present. 

In Sec. II we define the distance function D and show 
that it is a metric. In Sec. III we investigate some properties 
of the metric, concentrating on its continuity, since when D 
is continuous, the metric and manifold topologies agree. We 
consider necessary and sufficient conditions for continuity, 
relating properties of D to the causal structure of the space
time, to conditions on the maximum lifetime function of 
Wald and Yip, 10 and in terms of the space of causal curves on 
M, given the usual CO topology. 

We construct the D boundary in Sec. IV and consider 
several examples. Then, in order to compare the D boundary 
to the related causal boundary, we define a causal structure 
on the completed metric space. This enables us to show that 
the part of the D boundary which has either a past or a future 
is homeomorphic to the part of the causal boundary which is 
generated by uniformly continuous curves, thus generalizing 
some of the observations made in the discussion of the exam
ples. Finally in the conclusion, Sec. V, we summarize and 
suggest further directions to be investigated. 

II. PRELIMINARIES 

Let (M,g) be a space-time, i.e., a paracompact connected 
C"" Hausdorfl'manifold with a Lorentz metric g of signature 
( - , + , + , + ) and a time orientation. Denote the proper 
length of a future directed causal curve r: F - M (Fan inter
val of~) by L (r). (The notation is as in HE 1 unless otherwise 
indicated.) The height of any subset U e M is defined to be 

d(U)=supL(r), 

where r ranges over all future directed causal curves con
tained in U. 

Consider the collection of past sets in M, alternatively 
{ U eM: U = I - (U) }. We define the distance between two 
past sets to be 

D(U,V)==d(UllV), 

where 

UllV==(U- V)u(V- U) 

is the symmetric difference of U and V. 
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Proposition 2.1: D is a topological metric on.the collec
tion of past sets in M. 

Proof: D must satisfy three conditions. 
(i) D (U, V):>O and D (U, V) = o¢}u = V. That D is non

negative is immediate sinceL (y) is. If U = V then U 6. V = 0 
soD (U, V) = O. Conversely, supposeD (U, V) = Obut U ¥= V. 
Then there is a peU - V, say. Since U, V are past sets, 
I + (P)n(U - V)¥=0sothereisaqeU - VsuchthatqeI+(p). 
Connectingp and q by a timelike curve forces D (U, V) > 0, a 
contradiction. 

(ii)D (U, V) = D (V,U). Trivial since the symmetric differ
ence is symmetric. 

(iii) D (U, V)<D (U, W) + D (W, V) (triangle inequality). 
FirstobservethatforA,BCM,d (AuB )<d (A) + d (B). To see 
this consider the image of a causal curve yCAuB. Let 
YA = ynA'YB = ynB. ThenL (YA )<d(A ),L (YB)<d(B),so 

L (y)<L (YA) +L (YB)<d(A) + d(B). 

Since this holds for all yCAuB the result follows. Now, 

U 6. VC (U 6. w)u( W 6. V), 

since any point in U 6. V is in exactly one of U and Vand is 
thus in exactly one of U and Wor exactly one of Wand V. So 
applying this result gives 

D(U,V) =d(U6.V) 

<d(U6.W ) + d(W6.V ) 

= D(U,W) + D(W,V). 

Property (iii), the triangle inequality, is really the key proper
ty. The triangle inequality is often the hardest property to 
satisfy when one attempts to define a topological metric. The 
fact that it emerges neatly here out of the causal structure of 
space-time is some reason to take D seriously. 

Now we use D to define a topological metric on M. Let 

D -(p,q) D (I -(P),I -(q)), p,q e M. 

Proposition 2.2: Provided (M,g) is distinguishing, D - is a 
topological metric on M. 

Proof' Since I -(PI and I -(q) are past sets, the proof of 
Proposition 2.1 carries over line by line except for the second 
statement in (i). But (M,g) is distinguishing means that for all 
p,qe M, if I +(P) = I +(q) or I -(PI = I -(q), then q = p. Thus 
D -(p,q) = O~p = q. 

Replacing past by future throughout the preceding dis
cussion gives a dually defined metric D +. (For most of the 
definitions and results which follow, only one of the past
future dyad will be stated explicitly; the dual is to be as
sumed.) Then, abusing the notation slightly, we define 

D (p,q) D +(p,q) + D -(p,q), p,q e M, 

and observe that D is a metric on M since D + and D - are. 
The pair (M,D ) is now a topological metric space so we will 
be able to complete it and thus effectively to attach a bound
ary to M. Before doing so, however, we investigate some of 
the properties of (M,D ). 

III. PROPERTIES 

Although D is a metric on M, D (p,q) need not be finite. 
For example, Minkowski space D (p,q) is infinite for all 

length in I -(P)6.I -(q). To avoid situations like this we re
strict our attention to space-times of finite timelike. diameter 
(BE,3 p. 329), that is, those with finite length for all timelike 
curves. This includes, e.g., the closed Friedmann universe, 
the region 0 < r < 2m in the maximally extended Schwarzs
child solution, and any globally hyperbolic space-time which 
is the future development of a Cauchy surface on which the 
maximum lifetime function ofWald and Yiplo is finite. 

Since D (p,q) depends on the length of curves in 

p6.q=(I -(P)6.I -(q)) u (I + (P)6.I + (q)), 

even restricting D to be finite does not prevent properties of 
the space-time far from p and q being reflected in the behav
ior of D near p and q. In particular, consider the continuity of 
D. Two-dimensional "step Minkowski space" gives an ex
ample where D is neither upper nor lower semicontinuous. 
In Fig. 1, 

D (p,q)<lim sup D (p,qn), 

D (q,r):>lim inf D (qn ,r). 

We will investigate conditions on (M,g) under which D is 
continuous for the following reason. Define 91 to be the met
ric topology, i.e., the topology generated by the open balls of 
D: 

B€(p)=[q eM:Dp(q)<EJ, 

where Dp(q)=:D (p,q). We have then the following theorem. 
Theorem 3.1: D is continuous ~ 91 agrees with J/, 

where J/ is the manifold topology. 
The importance of this property will become apparent 

when we attach a boundary to M using this construction. 
Before giving the proof we prove a lemma. 

Lemma 3.2: D is continuous ~ D + and D - are contin
uous. 

Proof: (<=) Trivial. 
(~) D is continuous means, since M is paracompact, 

that Pn ~ p, qn ~ q ~D (Pn ,qn) ~ D (p,q). Thus 
Pn ~ P ~Dp (Pn ) ~ O. Moreover, the converse holds as 
well:ifpn ~p~Dp(pn)~Oandqn ~q~Dq(qn)~O,the 
triangle inequality gives 

D (Pn ,qn )<D (P,Pn) + D (p,q) + D (qn ,q), 

D (p,q)<D (P,Pn) + D (Pn ,qn) + D (qn ,q), 

so D (Pn ,qn) ~ D (p,q). 
Thus D is continuous ~ Dp is continuous for all P eM. 

But Pn ~ P implies 

Dp (Pn) = D / (Pn) + D p- (Pn) ~ O. 

P ¥= qe M, since there are timelike curves of arbitrarily long FIG. I. The metric D is not semicontinuous in "step Minkowski space." 
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Then, sinceD + andD - are non-negative, bothD p+ (p" ) and 
D p-(P" ) must go to zero asp" _po SinceD + andD - satisfy 
the triangle inequality, the argument in the preceeding para
graph shows that each of D + and D - is continuous. 

Prool (01 3.1): (:::» Consider B£(P) E~. We have 
B£(P)~ p- 1([O,E)) E Jt since D is continuous; therefore Dp 

is continuous and [O,E) is open in [0,00). 
Now consider any open set 0 E Jt. For allp E 0 there is 

a neighborhood U(P) E Jt such that U is compact and 
U C 0, since M is paracompact. Let au = U - U. Now 
au = Un U c, soaUis closed. Then, since au C Uwhich is 
compact, au is also compact. The continuous image of a 
compact set is compact, so D l (au) are compact and, being 
contained in f/i, which is Hausdorff, are closed. Let 
E± = inf D l (aU). Since p (! au, and since D± are both 
metrics, E ± > 0. 

Claim: Let 0 =! (E+ + E-). Then Bc5(P) C u. 
Proof We consider rEM - U in the four possible re

gions and find, in each case, a q E au such that 
D -(p,r»D -(P,q»E-. 

(i) IfI-(r)nI-(p) =0, thenI-(p)CP6 -r, where 

P6 -r ==I -(P)6I -(r), 

so any q E I -(PI n au works. 
(ii) If I-(r)naUnI-(p)=0 but I-(r)nI-(p)#0, 

thenp is contained in the common future of I -(r) n I -(PI, 
which is defined as {s:s E I +(t )Vt E I-(r) nI-(p) j,sothereis 

aq E aUnI (P) which is also. But thenP6 -q C r6 -po 
(iii) If rEI +(P) - U, then there is a q E au n I -(r) such 

thatp6 -q =I-(q) -I-(P) C I-(r) -I-(P) = r6 -po 
(iv) All other rEM - U must have I -(r) n au #0. Let 

qE I (r)naU.Thenp6-qCP6-r. 
The dual argument shows that D +(p,r»E+ for all 

rEM - U so D (p,r»E- + E+. Thus Bc5 (P) C U. Therefore 
OE~. 

(<=) Suppose D is not continuous. Then there is apE M 
and an E> ° such that for all neighborhoods U (P), there is a 
q E U such that D (p,q) > E. Consider the set B£/2 (P) E ~. 
Then there is no neighborhood U(P) E Jt such that U 
C B£/2(P). Thus B£/2(P)(!Jt. Hence the topologies do not 
agree, which is a contradiction. This concludes the proof of 
Theorem 3.1. 

We have seen in Fig. 1 that D is not continuous for "step 
Minkowski space." In fact, this illustrates a necessary condi
tion for the continuity of D. 

Proposition 3.3: D is continuous:::>M is causally contin
uous. ll 

Proof Suppose M is not causally continuous. Then there 
is ap EM such that either I - or I + is not outer continuous at 
p. Without loss of generality, let I - be not outer continuous. 
Then (BE,3 HE, I and Hawking and Sachsll) there is a com-

pact set K C M - I -(PI such that for all neighborhoods 

U(P) E Jt there is a q E U(P) such that K n I -(q) #0. 

Consider the set {I +(r):r EM - I -(PI j. This is an open 
cover of K so there is a finite open subcover, say {I + (r;): 
l<i<nJ. Let sEKn I-(q), where qE U(P) is such that 

Kn I-(q)#0. Since sEK, sEI+(r;) for some i. Since 

S E I -(q), there is a sequences" -S,S" E I -(q); and I +(r;) 
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is open, so there is a neighborhood VIs) C I + (r;). Choose 
s" E V (theremustbeonesinces" -s). Then there is a future 
directed timelike curve from ri to q which contains s,,' so 
ri EI-(q). ThusI-(r;) C I-(q). 

LetE = mind(I-(r;)), l..;;i..;;n. Then {q: D(p,q) <EjE ~ 
contains no open set of Jt, but is not empty (it contains pI, 
and so is not open in Jt. By Theorem 3.1, since the topolo
gies do not agree, D is not continuous. 

A simple example shows that causal continuity is the 
strongest of the usual causal conditions (BE3 and Ref. 11) 
which is necessary for the continuity of D. Let M be Min
kowski space with t restricted to some open interval f/i (to 
guarantee finite time1ike dimeter). If a single point is re
moved, M is no longer causally simple (the weakest causality 
condition stronger than causal continuity) since there exists 
apE M such that J + (P) is not closed in Jt. Nevertheless it is 
clear that D is unaffected by the removal of a single point. 

However, D reflects more than the causal structure of 
M. Since D depends on lengths of curves in M, conformal 
changes in the metric can affect continuity. In their discus
sion of the existence of simultaneous synchronous coordi
nates, Wald and Yiplo define a maximum lifetime function 
I: M - f/i. In our notation 1(P) = d(J+(p)), but since null 
portions of causal curves have zero length,J(p) = d (I +(P)). 
This is clearly a measure of the effect of the metric on lengths 
offuture directed causal curves through p, so we expect rela
tionships between properties of D and properties of I The 
next few results illuminate the connection between the con
tinuity of D and various conditions onl 

Figure 2 is an example ofWald and Yip in whichl is not 
continuous. A conformal factor O(t,x) = 1 + h (8 )/r, where 
r = (t 2 + X 2)1/2 and tan 8 = - t lx, multiplies the Min
kowski metric in two dimensions. The function h (8) is 
smooth, non-negative, vanishes outside the wedge, and rises 
to a maximum of 1 on an open 8 interval inside the wedge. 
They show that there is an E > Osuch thatl(P) > E for points P 
which have access to the wedge, i.e., I +(P) intersects ther< 0 
portion of the wedge, for some 0> 0. Thus,fis discontinuous 
along the null segment shown, terminating at q such that 
I(q) = E. Moreover, D is clearly discontinuous along the en
tire null cone. This example illustrates, therefore, that causal 
continuity is not a sufficient condition for the continuity of 
D, and motivates the following proposition. 

Proposition 3.4: D is continuous:::> lis continuous. 
Proof Suppose I is not continuous. Then there is a 

P E MandanE> Osuch that for all neighborhoods U(P) E Jt, 
there is a q E U such that If(q) - 1(P)1 > E. Without loss of 
generality, we may assume that/(q) > 1(P). Then there exists a 

q 

FIG. 2. The maximum lifetime function! is discontinuous along the dotted 
null segment. 
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future directed causal curve r from q such that 
L (r) - lip) > ~E. Choose r e r such that L (r;q,r):;;.L (r) - lE. 
Then D +(r,p)<JIp) and D +(r,q):;;.L (r) -lE so 

D +(r,q) - D +(r,p):;;.L (r) - !E - lip) > lE. 

Thus D + is not continuous and therefore, by Lemma 3.2, D 
is not continuous. 

It is clear, however, that even continuity ofl is not suffi
cient to guarantee the continuity of D. In the example of Fig. 
2, consider removing the null segment along which/is dis
continuous. Since D is discontinuous on the entire null cone 
this provides a counterexample to the converse of Proposi
tion 3.4. The following theorem shows that one of the other 
conditions of Wald and Yip on I is sufficient, though not 
necessary, for the continuity of D. 

-fheorem 3.5: Provided (M,g) is strongly causal, I ~ 0 
along every future inextendable causal curve (and the dual of 
this condition) ::} D is continuous. 

Proof: Suppose D is not continuous. Then by Lemma 3.2 
there is ape M and a {j> 0 such that for all neighborhoods 
UIp) evil, there is a q e Usuch that D +Ip,q»{j. Choose a 
sequence of such qn which converges to p in vii. For any 
E> 0, there is, for each q n , a future inextendable causal curve 
rn c p6. +qn such that 

L (rn»D +Ip,qn) - E>{j - E. 

Since this holds for any E>O, there are rn Cp 6. +qn such 
thatL (rn ):;;'{j. Now p is an accumulation point of f rn } so, by 
Proposition 2.18 of BE,3 there is a causal limit curve r of 
f r n } such that per and r is future inextendable. 

Note that r n J + Ip) must be null, i.e., r n J +Ip) is con
tained inJ +Ip) - I + Ip), since, ifrwere to intersect I +Ip) at a 
point r, we could find a neighborhood VIr) C I +Ip) and a 
points e rnI +Ip) nI -(r) suchthatsEi V. ThenI-(s)wouldbe 
a neighborhood of p so for q n e I - (s), r n n V = 0, hence r 
cannot lie on r if r is a limit curve of f rn }. But r C J +Ip), 
since r is causal and per. Thus r is null and L (r) = O. 

Now consider a sequence of points f r m} C r such that 
r m + 1 e I + (r m ) and f r m } is not convergent. Such a sequence 
exists because r is future inextendable. Since r is a limit 
curve of f r n }, for each r m we can find a sequence of points 
f sn.m} C r n such that sn,m ~ r m . By construction, the seg
ment of r from p to r m , denoted by r; p ~ r m , is a limit curve 
of the sequence of segments of rn terminating at sn,m' de
noted frn; ~sn,m}. By Proposition 2.21 ofBE,3 since Mis 
strongly causal, there is a subsequence of f r n ; ~ S n,m } 
which converges to r; p ~ r m in the CO topology on curves. 
For convenience we also denote this subsequence by 
f r .. ; ~ sn,m }. Since the length functional is upper semicon
tinuous with respect to the CO topology on curves (Penrose, 12 

p.54), 

L(r;p~ rm):;;.lim supL (rn; ~sn,m) 
n 

::} 0 = lim supL (rn; ~sn,m)· 
n,m 

Thus 

127 

L (r .. ) = L (rn; ~sn,m) + L (rn;S .. ,m ~ ):;;.{j 

::} L (rn; sn,m ~ ):;;.{j - L (rn ;sn,m) 
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::} lim inf L (rn ;Sn,m ~ ) 
n,m 

:;;.lim inf [{j - L (rn; ~ sn,m)] 
n,m 

:;;.{j -lim supL (rn; ~ sn,m) 
n,m 

= {j. 

Now I -(r) is a terminal indecomposable past set (TIP) [see 
Sec. IV for a review of TIP's and terminal indecomposable 
future sets (TIF's)), so there is a future inextendable timelike 
curve A such that I -(r) = I -(A) (Ref. 2). 

Claim: I~ along A. 
Proof: Let teA. Then t e I - (r) so there is an M such that 

m>M::}teI-(rm). Therefore, rm eI+(t) for all m>M. 
Since I + (t ) is open, there is a neighborhood of r m contained 
inI +(t ) so there is an Nsuchthatn >N,m >M::}sn,m e I +(t). 
But 

I(t I:;;. sup I(sn,m) 
m>M,n>N 

:;;.lim inf L (r .. ;Sn,m ~) 
m," 

The dual argument is the same so the theorem follows 
from Lemma 3.2. 

Using Proposition 3.4 we also have the following inci
dental, but immediate, corollary. 

Corollary 3.6: If (M,g) is strongly causal andl ~ 0 along 
every future inextendable causal curve (and the dual condi
tion holds) then lis continuous. 

Having explored in some detail the relationship between 
the continuity of D and the various conditions which can be 
placed on the maximum lifetime function ofWald and Yip, 
we now examine the continuity of D from another point of 
view. 

The usual CO topology on the space of causal curves 
(Ref. 12, p.49) can be modified to give a CO topology on the 
space of future (or past) inextendable causal curves. LetMbe 
strongly causal and let ~ denote the set of all future inexten
dable causal curves in M. Define ~ R (P,Q) = f r:r is a future 
inextendable causal curve in R from a point of Pinto, but not 
out of, Q }. The CO topology on ~ is defined by taking as the 
base the sets withP e vii, Q = I +Ip)forp e I -(r), whereris 
a future inextendable causal curve from a point of P, and 
R e vii such that P C R and Q C R. That this is indeed a 
topology on ~ follows immediately: r e ~ R (P,Q) and 
re ~ R,(P',Q')::}re ~ R-(P",Q"), where R" =R nR I, 
P" =PnP",andQ" =Q nQ'. 

The proper length of future inextendable causal curves 
is a functional L:~ ~ f!lt. Using this we can formulate the 
following proposition. 

Proposition 3.7: D + is continuous atp e M~L is contin
uous across the null cone of p. 

Proof: (<=) Suppose D + is not continuous at p. Then for 
any neighborhood UIp) e vii, there is a q e U such that 
D +1p,q»E.ButthentherecanbenononemptyCOneighbor
hood of the null cone at p in which all the future inextendable 
causal curves have length less than E, a contradiction. 
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(~) We must show that for any E> 0 there is a CO neigh
borhood of the null cone in which all curves have length less 
than E. Since D + is continuous at p, B .. /2 E JI, so let 

P=B .. / 2 (P)· Let R =/+(P) - t P Here t P=/+({q: 
q E / + (r) for all rEP 1) is the chronological common future I I 
of P. Then all causal curves in R have length less than E 

because the segment lying outside / +(P), starting at q, say, 
has length less than !E, as does the segment lying inside/ +(P) 
since it lies outside / + (r) for some rEP. Finally, let Q be the 

union of all / + (q), where q E / + (P) such that / + (q) n t P 
= 0and/ +(q) CR. Then ~ R (P,Q )isaCOneighborhoodof 

the null cone at p in which all future inextendable causal 
curves have length less than E. 

Applying Lemma 3.2 we conclude that D is continuous 
if and only if the length functional on both past and future 
inextendable causal curves is continuous across the light 
cone. 

IV. BOUNDARY 

We now return to the question of attaching a boundary 
to M. Since (M, D) is a metric space there is an isometric 
embedding of (M, D ) into a complete metric space. 13 More
over, there is such an embedding under which the image of 
It!... iS3ensel4; here we denote the complete metric space by 
(M, D), the completion of (M, D) and write M = M u aDM 
where aDM will be termed the D boundary of M. We note 
immediately that (M,D) is Hausdorff since it is a metric 
space. 
_ In tM, 1) ) all Cauchy sequences converge; thus points in 
M can be identified with equivalence classes of Cauchy se
quences of points in M. Then the D boundary of M consists of 
those equivalence classes containing Cauchy sequences 
which do not converge in (M, D ). Consider some examples. 

Example 1: The simplest example is a strip of Min
kowski space. That is, let M = Minkowski space with 
0< t < 1. In this case we can compute D explicitly. In fact, for 
p,qEM, 

+ {A', 
D (p,q) = [A,2 _ (a' _ d )2] 1/2 , 

d>a', 
d<a', 

where A = max(tp,tq), a = min(tp,tq), A' = max(1 - tp' 
1 - tq), a' = min(1 - tp,1 - tq), and d = Ixp - Xq I. Then 
D = D + + D -. To determine the D boundary ofMwe must 
find the equivalence classes of Cauchy sequences which do 
not converge in M. It is clear that the points {p n 1 of any such 
Cauchy sequence will have t coordinates approaching 0 or 1 
and that d for Pn ,Pm with n,m > N will approach 0 as 
N -. 00. Hence equivalence classes of Cauchy sequences will 
be determined by the limit of their t coordinates (either 0 or 1) 
and some value of x. Thus aDM consists of two pieces iso
morphic to flIP. This is exactly what we expect since D is 
continuous, so Theorem 3.1 tells us that ~ agrees with JI; 
hence the space-time can be extended to all of Minkowski 
space and will then include points with these coordinates as 
the boundary of the open set M. 
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FIG. 3. Example 2: M is step Minkowski space with step height A. 

Having written down D explicitly, we can also check 
differentiability. Take, for example,p = (to,O) and considf!;r a 
point q approaching p along the t axis from below. Then if 
q = (to - E,O), 

D;(t)=Dp-(q) = [t~ -(to-E)2]1/2= [2€to-~]1/2 

dD-(t) . (2Et _~]1/2 
~ p =hm- 0 , 

dt .. _0 E 

which is infinite. In fact, this nondifferentiability wUI mani
fest itself at all points even in this simplest of examples. Thus 
(M, D ) is only a CO manifold. 

Example 2: We have already considered two-dimen
sional "step Minkowski space" in Sec. III. As in Example 1 
we can compute D explicitly for this manifold M. In Sec. III 
we observed that D is not continuous across the shadow of 
the step, the part of the light cone labelled r in Fig. 3. Thus 
we know that ~ will not agree with JI and the D boundary 
will therefore not be the boundary of M considered as an 
open set embedded in full two-dimensional Minkowski 
space. In fact, it is easy to see that the future D boundary will 
be in two pieces: one to the left of r in Fig. 3, and one to the 
right, each constructed just as in Example 1, but with a dis
continuity at r since across r, D jumps by the height A of the 
step; see Fig. 4. Moreover, sequences of points which con
verge to a point of r in M only do so in (M, D) if they do not 
approach from the right, since a sequence which approaches 
from the right, although Cauchy, will have distance A from 
its limit point (in M) on r. Thus we will identify such se
quences as points of aDM. Finally, again treating the past D 
boundary as two pieces, to the left and right of r, it is clear 
that each is just the boundary of the open set embedded in 
full two-dimensional Minkowski space. Thus we see that the 
structure of the past singularity causes (M, 1) ) to consist of 
two components a distance A apart, as shown in Fig. 4. 

FIG. 4. Example 2: The completed manifold with boundary (M. 15) has two 
components. 
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Example 3: We now consider an example where we can
not write D explicitly. The closed Friedmann universe has 
Robertson-Walker metric 

dr = S 2(r)[ - dr + dX2 + f2(x) (dO 2 + sin2 0 dIP)], 

wheref(x) = sin(x) and S (r) is proportional to 1 - cos r in a 
matter dominated era and to sin r in a radiation dominated 
era. In this metric, radial geodesics satisfy 

x'(r) = (1 + ~S2)-1/2, 
where E is an arbitrary constant which is zero for null geodes
ics and infinite for the geodesics which are the world lines for 
fundamental particles. Thus the length of a geodesic y is 

L (y) = f S(r) (x,2 - 1)1/2 dr 

= f S(r) [(1 + ~S2)-I_l]I/2dr 

= f ES2[ 1 + ~S2] -1/2 dr. 

Now, a sequence of points {qn J which converges to a pointp 
of M will have converging null cones, and geodesics lying in 
p6,.qn will therefore approach the null cone ofp. But 

L(y)-f ES2(1-~S2)dr=O(E)' E-O, 

so {qn J isaCauchysequencein(M, D ) which converges top. 
Thus ~ agrees with 1. Moreover, any sequence of points 
whose pasts or futures converge to a TIP or TIF will be a 
Cauchy sequence in (M, D), and hence a point in aDMby the 
same argument, so the D boundary and the causal boundary 
agree in this space, each consisting of two pieces isomorphic 
to S 3. This motivates the review of the causal boundary con
struction and the results relating the two boundaries which 
follow later in this section. 

Example 4: This is the example for which Geroch, 
Liang, and Wald7 show that all geodesically continuous 
boundary constructions in which every incomplete geodesic 
of the original space-time terminates at a boundary point 
give non-TI (and hence non-Hausdorff) behavior. We know, 
a priori, that this cannot occur for our metric space construc
tion, but let us examine exactly why the D boundary works 
for this example. 

Take a strip of two-dimensional Minkowski space and 
choose three points p, s, and r as in Fig. 5, where r lies on the 
future light cone of s. Let { Yi J be a sequence of smooth time
like curves which converge in the C°(p,r) topology to y fol
lowed by A. Each A i is a geodesic except for a short section of 
acceleration near s. These short sections can be covered by 
nonintersecting open sets, and Geroch, Liang, and Wald 
show that a conformal factor n can be chosen such that n 
makes each Yi a timelike geodesic, n = 1 on each Yi and 
n = 1 outside the open sets. Thus n can be chosen to be 
smooth everywhere buts so we excises from the manifoldM. 
Now, since the lengths of the geodesics Yi approach the 
length of Y, in any geodesically continuous boundary con
struction the sequence {r J will converge to the boundary 
point at s. (For more detail see Ref. 7.) 

What happens near s if we define D on this space-time? 
Although this is a singularity which blue-shifts nearby geo-
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r 

p 

FIG. 5. Example 4: The D boundary is Hausdorff. 

desics, any sequ~nce of points which converges to s in the 
original Minkowski space will still be a Cauchy sequence in 
(M, D). Thus the D boundary contains a point which we can 
identify with s. Moreover, D (r, s) is then clearly positive so 
the non-TI behavior of a geodesically continuous boundary 
construction has disappeared. This is consistent with the fact 
that the D boundary construction is not geodesically contin
uous in all cases. For example, in the "step Minkowski 
space" considered in Example 2, the boundary is clearly not 
geodesically continuous across y. In general this is a reflec
tion of the global character of D discussed in Sec. III. 

What relation does the D boundary construction have to 
other boundary constructions? To answer this question we 
begin by extending the causal structure of M to M. 

Let F = [a,b) C fit. Consider a causal curve y: F _ M. 
Thenp e aDMis a future boundary point (FBP) ofyatc eF, 
iff or all neighborhoods U (P) e g; there is a to e F such that 
y(t) e U for all t e F with to<,t < c. If c = band y is future 
inextendable, p is a future boundary endpoint (FBE) of y. 
Here g; is the metric topology on (M, 15 ). The past boundary 
point (PBP) and endpoint (PBE) are defined dually. 

Lemma 4.1: A FBP at c is unique if it exists. 
Proof: Suppose not. Then there are p =l=q such that q and 

pare FBP's of a curve y at c. Since (M, D) is Hausdorff there 
are neighborhoods U(P), V(q) e g; such that Un V = 0, a 
contradiction. 

In particular, the FBE of a curve is unique if it exists. 
With this result an extension of y into (M, 15 ) is well defined: 
Lety:F - (M, 15 )begivenbyy(t) = y(t ) for all t e F, Y(b) = p 
if p is the FBE of y. 

Lemma 4.2: If 1 = ~ , Y is continuous. 
Proof: Since 1 = ~, y: F _ (M, D) is continuous. 

Hence, by definition, y is continuous on F. Consider a se
quence {xn J C Fwithxn -b. Then for all to eF there is an 
N such that n > N => x n > to' Since p is the FBE of y, for all 
E>O there is a to eFsuch that y(t) eBe(P) ifto<t<b. Thus 
there is an N such that n >N> y(xn) e Be(P). Therefore 
y(xn ) - p, so Y is continuous. 

Lemma 4.3: Provided 1 = ~, y: F _ (M, D) has a 
FBE ¢> y is uniformly continuous. 

Proof: ({:::::) Since y is uniformly continuous there is a 
unique uniformly continuous extension y: F _ M. Then Y(b ) 
is the FBE of y. 
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(=» If y has a FBE then r is contin~us (by Lemma 4.2), 
and hence uniformly continuous since F is compact, so y is 
uniformly continuous also. _ _ 

Now we can define the chronology on M. For p,q e M, 
define p to be to the chronological past of q (and q to be to the 
chronological future of p) if there is a timelike curve y such 
thatp e y, orp is aPBP ofyand q e y, orqis FBP ofy. This 
clearly reduces to the chronology on M if so restricted, so we 
continue to write pel - (q) and q e I + (P). 

We observe first that forp eaDM, I-(P) nMisopen in 
vii by the usual argument (see Ref. 12, p. 13). Moreover, we 
have the following lemma. _ 

Lemma 4.4: For p eM, I +(P) is open in g. 
Proof Consider q e I + (P). Since q e I + (P) there isa time

like curve y either through p and q or with boundary points 
at p and/or q. Suppose 1+ (P) is not open at q. Then for every 
neighborhood U (q) e J!), U intersects the complement of 
I+(P). Thus we can choose a Cauchy sequence {rn 1 eM 
such that rn -+q, i.e.,D(rn,q) -+ 0, andI-(rn) nI+(p) = 0 
for alln. But then y C rnD.qsoD(rn,q»L (y) >0, a contra
diction. 

With this lemma we can relate the chronological pasts 
and futures of points on the D boundary to the TIP's and 
TIF's of the Geroch, Kronheimer, and Penrose causal com
pletion.2 Recall that an indecomposable past set (IP) is a 
nonempty past set which cannot be written as the union of 
two proper subsets which are also nonempty past sets. A 
terminal IP (TIP) is an IP which cannot be written as I -(PI 
for any p eM. Indecomposable future sets (IF's) and TIF's 
are defined dually. Alternatively, IP's are the past of time I ike 
curves while IF's are their futures. Applying the same argu
ment used to prove Lemma 4.4 we obtain a corollary. 

Corollary 4.5: IP's and IF's are open in J!). 
We will use this result shortly, but the next step is the 

following proposition. 
Proposition 4.6: Let peaDM. Then if I-(P)#0, 

I -(PI nMis an IP. 
Proof For the purposes of this proof we will use I - to 

denote I - restricted to M. Since I -(PI is nonempty, p is a 
FBP of some curve y: F -+ M. Consider the IP in M generat
ed by y, I -(y). Suppose I -(y)#I -(Pl. Then either (i) 
3r e I -(y) - I -(PI, which is impossible since, if reI -(y), 
thenr e I -(p),or(ii) 3r e I -(PI - I -(y), which is alsoimpos
sible since pel + (r). So by Lemma 4.4 and the fact that p is a 
FBP inI-(p) ofy, ynI -(r)#0 and hence reI -(y). 

Note that 1-(P) n Mis a TIP ¢:> p is a FBE, i.e., the curve 
y which generates I -(PI n M is future inextendable. 

Thus to compare the D boundary to the causal bound
ary, we define a mapping i:(M, D) -+ Me given by the entries 
i(P) in the following table: 

I+(P)#0 

[I (P)] 

o 
Here [I +(P)] denotes the equivalence class of IP's and IF's 
identified with I +(P) n M under the causal completion proce
dure. To verify that this mapping is well defined we must 
check that the identification [I + (P)] = [I - (P) ] is really 
madeinMe. 
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First we briefly review the construction of Me. (For a 
thorough account see Ref. 2.) If M is required to be strongly 
causal, then Mis the set of all IP's, M is the set of all IF's, and 
~ is the disjoint union MuM with the identification of 
I -(PI eM and I +(P) eM forallp eM. IfP e M or P e M, the 
corresponding element of ~ is denoted by JiR . 

The topology on ~ is the coarsest in which the sets 

Aint = {JiR:PeMandPnA #0l, 

Aext = {JiR:PeMand 'tiS C M,P=I-(S)=>I+(S)Q:A l, 

and their duals Bint and r t are open, for A eM and B e M. 
Finally, Me is ~ / -, where the equivalence relation -
makes the fewest identifications necessary to obtain a Haus
dorff space. We denote the associated topo..!ogy by cr? 

Since M is isometrically embedded in M and since I + (P) 
and I -(PI are identified in ~ for p eM, the mapping 
i:M -+ Me is well defined for p eM. For p e aDM consider 
I - (P) n M #0 as an IP. Then I - (P) n M has neighborhoods 
in ~ of the form A \nt n ... nA:t nA ~xt n ... nA ~xt. Since 
A int and A ext are sets ofIP's they are, considered as subsets of 
M, open in!) by Corollary 4.5. Thus every neighborhood of 
I -(PI nM (considered as an IP) is open in J!) and~enceinter
sects I +(P) n M (considered as an IF), so since Me is Haus
dorff, the two must be identified. 

This shows that i: M -+ Me is well defined and, more
over, continuous. Is this map open as well? That is, for 
U e J!) is there a Ve cr? such that i( U) = V? For a strongly 
causal space M, cr? restricted to M agrees with vii (Ref. 7). 
Since i identifies p eM in M and Me' i is open on M if and 
only if the image of every open set in g is open in vii, i.e., g 
agrees with vii. (We already know that the preimage of every 
open set in cr? is open in J!) .) Thus by Theorem 3.1 i is open 
on M if and only if D is continuous. 

Now consider an open set U e J!) which contains points 
of a DM and suppose i( U) is not open in cr? That is, suppo~ 
there is some pointp e aDM such that every open set in ~ 
containing i(P) contains points which are not in i(U). These 
points are equivalence classes of TIP's and TIF's which ei
ther correspond to points in aDM which are not in U, or 
correspond to no point of aDM [which means, by Lemma 
4.3, that they are generated by curves which are not uniform
ly continuous maps of F into (M, D)]. In either case this 
means that there must be causal curves oflength greater than 
some E arbitrarily near and outside the null cone of p. But 
then each null curve in the null cone of p is also a null curve 
through points of M, and hence, by Proposition 3.7, D is not 
continuous. We have just proved the first of the following 
propositions. 

Proposition 4. 7: For a strongly causal space-time M, 
i:(M, D ) -+ Me is open ¢:> D is continuous. 

Proposition 4.8: If i is an open map, it is also one to on!: 
Proof Suppose not. Then there ~e !.wo points p #q in M 

such that i(P) = i(q). Since p #q and (M, D ) is Hausdorff there 
are neighborhoods U(P), V(q) e J!) such that Un V = 0. 
Consider i( U) and i( V). Since i is open, these images are open; 
hence, since they both contain i(P) = .!lq) they!ntersect in an 
open set We cr? Since M is dense in Me' and ~ restricted to 
M agrees with vii, W n M is open in vii. But i-I( W) contains 
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FIG. 6. Example 5: Strip Minkowski space with I± (P) and I± (q) re
moved. Cauchy sequences approachingp and q are identified. 

points of M which must then be in both U and V, a contradic
tion. 

We can now combine Lemma 4.3, Proposition 4.7, and 
Proposition 4.8 in the following theorem which summarizes 
the relationship between the D boundary and the causal 
boundary. 

Theorem 4.9: The part of aDM which has either a past or 
a future is homeomorphic to the part of acM which is gener
ated by uniformly continuous curves. That is, (p e aDM: 
1+(P)#0 or 1-(P)#0}:::::{Peac M: P=[/+(y)) or 
P = [I - (y)] where y: F -+ (M, D ) is uniformly continuous} . 

R. Geroch (private communication via R. Wald and D. 
Eardley) has suggested the following example in which there 
is a part of aDM with no past or future. 

Example 5: Consider a strip of Minkowski space-time 
again, as in Example 1; consider two spacelike separated 
points p and q in the strip. Remove the closures of their pasts 
and futures; see Fig. 6. Then we have the curious pheno
menon that Cauchy sequences appr9achingp and q are iden
tified in the construction of aDM. Roughly speaking, p and q 
map to a single point in a DM. This phenomenon is generic to 
the case where the part of aDM with no past or future is 
nonempty, and illustrates the fact that it always consists of 
exactly one point in this case. This boundary point is always 
missing in Me because no TIP's or TIFs belong to it. 

v. CONCLUSION 

We have seen that defining a metric space topology on a 
spacetime, and then completing the metric space to obtain 
the D boundary provides a new procedure for constructing 
the "singular points" of a spacetime manifold. The new con
struction is different from, but related to several older con
structions. In particular, it is closely related to the causal 
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boundary, and conditions under which the two are the same 
have been obtained. 

The new construction is different from the causal 
boundary, though, in that it provides a metric topology on 
the boundary. Also, the D boundary is by its nature more 
global than the g boundary and thus avoids the particular 
problem of the unphysical topology in the example of Ger
och, Liang, and Wald. The detailed relation between the D 
boundary and this as well as other boundary constructions 
could be explored in future work. Moreover, the global and 
metric nature of the new construction suggests that it may be 
possible to use it to obtain bounds on solutions of Einstein's 
equation, despite the fact that, since D in general is not differ
entiable, it does not provide adequate coordinates in which 
to solve the equations exactly. 
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Let the compact Lie group G act smoothly on the C ao manifold S with a single orbit type G I H, 
whereH is a closed subgroup of G, and letN (H)I Hbe a Lie group [N (H) denotes the normalizer of 
H in G). Assuming a given connection in the fiber bundle S - M, where M = S IG is the orbit 
space (to be identified with the physical space~time) andN (H)/ His the structure (gauge) group, the 
G-invariant tensor fields and linear connections on S are analyzed. A kind of "dimensional 
reduction" for these objects is established: every field corresponds uniquely to a field on M, and 
the linear connection defines uniquely a set of fields and a linear connection on M. 

I. INTRODUCTION 

Field theories defined on a multidimensional space-time 
became part of a proliferated conception for a unified de
scription of the fundamental interactions. Moreover, there is 
a different physical content in the dynamical structure of 
a multidimensional field theory for models based on the 
so-called "spontaneous compactification," Kaluza-Klein 
schemes, or dimensional reduction (see, e.g., Ref. 1). 

In the present work we suppose that the description of 
gravity and Yang-Mills interactions in four-dimensional 
space-time results from an appropriately chosen dynamic of 
tensor and spinor fields defined on a manifold S with dimen
sion greater than 4. We assume that S is equipped with the 
smooth action of a compact Lie group G such that its orbits 
have a single type G IH, where H is a closed subgroup of G. 
This allows for S to be fibered over the orbit space S I G with a 
typical fiber diffeomorphic to G I H; the four-dimensional 
space-time is then identified with the manifold M = S IG. 

The picture of a field theory on a multidimensional uni
verse with the properties of S has been proposed by Coquer
eaux and Jadczyk.2 They have described the G-invariant me
trics on S and the G-invariant connections in a principal fiber 
bundle P _ S, whose structure group is a compact Lie group 
(see Refs. 3 and 4) and made applications to model building. 
An approach similar to that in Refs. 3 and 4 has been devel
oped in Ref. 5. 

At a preliminary stage before studying a possible dy
namics over S we describe in this paper the G-invariant ten
sor fields (an example is a metric on S) and the G-invariant 
linear connections on S: these objects are, in some sense, 
most naturally related to the manifold S and will be consid
ered as basic ingredients in a dynamical scheme. (In a forth
coming work we shall extend this consideration by the inclu
sion of spinor fields.) We shall suppose that a G-invariant 
Yang-Mills connection is given in the fiber bundle S - M 
whose structure (gauge) group is the group N (H)/ H, where 
N (H) is the normalizer of H in G. This assumption together 
with the property of G invariance leads to a kind of "dimen
sional reduction" of both the tensor fields and the linear 
connection on S: every field corresponds uniquely to a field 
on the orbit space M = S IG, and the linear connection de
fines uniquely a set of fields and a linear connection on M. 

The material in this paper is organized in the following 
way. In Sec. II we introduce some of our notations and re
view the basic properties of a G space S with a single type of 
orbits. In Sec. III we consider the structure of the bundle of 
linear frames F (S) over S with regard to the naturally in
duced action of the group G. We show that in the presence of 
a Yang-Mills connection in the bundleS _ M,F (S) admits a 
structure of a fiber bundle with base M and typical fiber-a 
homogeneous space of the group GL(dim S,R) X G. Section 
IV is devoted to the description of the G-invariant fields over 
S with values in fiber bundles associated to F (S). The exam
ples of G-invariant vector and tensor fields are considered. In 
the final section we describe the so-called G-invariant pseu
dotensorial fields on S (cf. Ref. 6. Chap. 2, §5), and, in more 
detail, arbitrary linear connection on S. It is the property of 
F(S) to admit a fibering over M which allows the G-invariant 
fields and the linear connection on S to be uniquely deter
mined by a set of fields and a linear connection on M, i.e., to 
be dimensionally reduced (cf. Ref. 7). 

Throughout the paper all manifolds and mappings are 
supposed from class C ao. A principal fiber bundle with total 
space P, base space Q, structure group N, and projection p: 
P _ Q will be denoted by P (Q,N, p) or P (Q,N). For a fiber 
bundleE associated to P (Q,N) by some action of the group N 
on the typical fiber Fwe shall use the notation E = (P XF)/ 
N. Occasionally we shall write an element from E in the form 
[u,J), u E P, f E F, where [ , ) denotes the equivalence class 
defined in P X F with respect to the action of the group N. 
For the vector spaces A1, ... ,A" and B we denote by 
L (A I, ... ,A,,;B ) the space of linear maps of A I X .. · XA" into 
B. 

II. STRUCTURE OF THE FIBER BUNDLES 50 AND 5 

Let G be a compact Lie group and H a closed subgroup 
of G. Then the homogeneous space G I His reductive, i.e., the 
Lie algebra ® of the G admits a decomposition (as a vector 
space) 

®=~ Ef) m, (2.1) 

where ~ is the Lie algebra of H and the subspace m is Ad(H) 
invariant: Ad(H)m~m. 

We suppose that the natural action of G on G I H, 
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gH 1--+ g'gH, is effective. If it is not the case, i.e., the normal 
subgroup 

Go= {goEG:gogH=gH, VgEG Ie H 

is nontrivial, one forms the quotient groups G' = GIGo, 
H' = H IGo, and then G' has an effective action on G' I H'. 

Let N (H) be the normalizer of H in G, 

N (H) = {n E G: nhn- I E H, V h E HI· 

Then ® = ~ $ 2 is a direct sum decomposition, where ~ is 
theLiealgebraofN(H) and the subspace2is Ad(N (H))invar
iant. 

We also require that the factor group K = N (H)I H be a 
Lie group. The Lie algebra ~ of N (H) then admits a direct 
sum decomposition 

~ = S) $ ~, (2.2) 

where ~ is a subalgebra of~ isomorphic to the Lie algebra of 
K. It follows from (2.1) that (cf. Ref. 2) 

(2.3) 

Note that the adjoint action of the algebra ~ leaves the vec
tor space 2 invariant. 

In ® we fix a basis {e, I (r = 1, ... ,dim ®) adapted to the 
decomposition (2.3) and consisting of 

{e,}(r = 1, ... ,dim S») basis for S), 

{e, I (t = 1, ... ,q = dim~) basis for~, (2.4) 

{e, lit = 1, ... ,1 = dim 2) basis for 2. 

The set {ell = {e, I u let I (i = 1, ... ,m = dim!ln) is a basis 
for !In. 

Having fixed the basis {ell we identify Wl with Rm
, ~ 

with Rq, and 2 with R/, respectively, where Rm = Rq $ R/. 
Consequently, the corresponding invertible linear maps, 
Wl ..-. Wl, ~ ..-.~, and 2 ..-. 2, are identified with the groups 
GL(m,R), GL(q,R), and GL(/,R), respectively. In particular, 
since the adjoint action of N (H) on ® leaves Wl invariant, it 
follows that the homomorphism n 1--+ Ad n I Wl of N (H) into 
the space of linear maps Wl ..-. Wl induces a homomorphism 

A:N(H)..-. GL(m,R) (2.5) 

[for n E N (H), A (n) is the matrix of the linear map 
Ad n:Wl..-. Wlinthebasis {ell]. We write A (N (H)) or simply 
A (N) for the image of N (H) under the homomorphism A and 
use the notation 

A(K) = A (N)I A (H), (2.6) 

for the factor group with elements A(k) = A (n)). (H), 
k=nHEK. 

In a similar way, the Ad action of K on ~ induces a 
homomorphism 

A':K..-. GL(q,R), (2.7) 

where A '(K) is the matrix of the linear map Ad k:~ ..-. ~, 
k E K, in the basis {e,}. We note that A (N )IRq = A '(K). De
noting A (N) I HI by A I (N) we have 

A (n) = (A I (n),). '(k)) E GL(/,R)x GL(q,R), 

for every n E N (H), with k = nH. (2.8) 

Let S be a smooth manifold equipped with a smooth left 
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action of G, such that all G orbits have the same type G I H. 
According to a well-known result (Ref. 8, Chap. 2, Theorem 
5.8 and Chap. 6, §2) the manifold S admits a structure of a 
fiber bundle 11': S ..-. S IG with typical fiber G I H and struc
ture groupK = N(H)IH, i.e., 

S = (G IH XSo)IK. (2.9) 

Here So is the submanifold of S consisting of the H-invariant 
points and the free left action of K on So is induced by the 
action of N (H) on S. Thus if 11'0 = 11'1So, we have a principal K 
bundle 11'0:S0,,-,SalK, and SalK = S IG. The action of the 
structure group K on the typical fiber G I H is identified with 
the right action of the automorphism group of the homogen
eous space G IH (see Ref. 8, Chap. 1) 

k:gH 1--+ gnH, for k = nH. 

In order to simplify the notations, we shall write 

nso = kso (V SO E So) and gnH = gHk 

if k = nH. The action of K on G IH XSo' 

( gH ,so) 1--+ ( gHk -I,kso), 

(2.10) 

(2.11) 

generates an equivalence relation in G IH XSo: 
( gH ,so) - ( g' H,s~) iff g' H = gHk and s~ = k -I SO for some 
k E K. Factorizing with respect to -, we obtain S = (G I 
H xSo)IK, where the equivalence class [gH,sol determined 
by the pair ( gH,so) equals s = gso. 

Let { Wa I a E I be an open covering of the smooth mani
fold M = S IG with coordinate neighborhoods. Then Sol Wa 
and, consequently, S I Wa , are trivial for every a: 

1TO-I(Wa)~Wa XK and 11'-I(Wa)~Wa XG IH. 

Let O'a: Wa ..-.1To- I(Wa)' a E I, be a family oflocal sec
tions of the bundle So(M,K, 1T 0) and let ka{J: Wa n Wp ..-. K 
denote the corresponding transition functions 

(2.12) 

We introduce local trivializations ua: Wa X G IH..-. S, 
which correspond to 0' a: 

Ua(X, gH) = g. O'a(X) = [gH'O'a(x)], X E Wa' (2.13) 

For every x E Wa the G orbit 1T- I(X) C S is identified with 
G I H in the standard manner: if s E 1T- I(X), then 

s=gO'a(x), (2.14) 

for some g E G, and from (2.13) the correspondence with G I 
H is established by the diffeomorphism 

s E 11'-I(X) 1--+ pr2!Ua- I(S)) E G IH. 

Consider now G I H as a base of the principal H bundle 
G (G I H,H) with the natural projectiong 1--+ gH, g E G. Since 
G is locally trivial over G I H, there exists a set of local sec
tions ga: Ua ..-. G where { Ua } a E J is an open covering of G I 
H. The corresponding transition functions hab: 
Ua n Ub ..-. H satisfy 

gb(gH) =ga(gH)hab(gH), for gHE Ua nUb' 
(2.15) 

Using the open covering { Ua } ofG IH, we define a family of 
open sets in S by 

Vaa={SE11'-I(Wa):pr2 ou,;-l(s)EUa }, aEI, aEJ. 

(2.16) 
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Then 

1r- I (Wa) = U Vaa' 
aEJ 

If S E Vaa , we can use the local sections ga : Ua ~ G to 
rewrite (2.14) in the form 

S =gaa(s)ua(11is)), (2.17) 

where 

(2.18) 

Suppose that S E Vaa () Vpb ' Then x = 11is) E Wa () Wp and 
s = gaa(s)ua(x) = gPb(S)Up(x), From here 

ua(x) =gaa(s)-lgPb(s)up(x) 

and we obtain a smooth mapping 

naa,Pb:Vaa () VPb ~N(H) 

defined by 

naa. Pb (s) = gaa (s) -lgPb (s). 

It follows from (2.12) that it satisfies 

(2.19) 

(2.20) 

naa,Pb(s)H = kaP (1r(s)), S E Vaa () Vpb ' (2.21) 

We equip the product space G X So with a right action of 
N(H): 

(2.22) 

Lemma 2.1: With respect to the action (2.22), G XSo is 
the total space ofa principal N(H)-fiber bundle over Swith 
projectionp: G XSo ~ S given by p( g,so) = gso. 

Proof It is clear that p -I(S) is diffeomorphic to N (H) for 
every S E S. A family of local sections can be defined in the 
following way: with the open covering { Vaa } a E I, a E J of S we 
associate the local mappings 

qaa:Vaa ~ G XSo 

defined by 

qaa(s) = [gaa(s),ua(1r(s))] 

(2.23) 

(2.24) 

[cf. Eqs. (2.17) and (2.18)]. One derives that the corre
sponding transition functions are naa, Pb: Vaa () VPb ~ N(H) 
givenby (2.20). 

Remark 2.1: The above result is a simple generalization 
of the statement that for every Lie group G and every closed 
subgroup Hof G the natural projectiong .-gH is the projec
tion in the principal H bundle G ~ G I H. The simplest case 
of generalization appears when S is just one orbit of G and So 
is diffeomorphic to K, i.e., M = S IG reduces to one point 
only. Thus every orbit S of a Lie group G can be considered 
as a base of a principal fiber bundle with total space G X So, 
with So being the set of H-invariant points and the projection 
p:G XSo ~Sis given by p( g,so) =gso' The choice ofanH
invariant point So E So reduces So to So and identifies the orbit 
with GIH. 

III. THE BUNDLE OF LINEAR FRAMES OVER S 

The bundle of linear frames over S is a principal fiber 
bundle n: F(S) ~S with typical fiber GL(p), p = m + d, 
m = dim G IH, d = dimM [we use the notation GL(n) in
stead of GL(n,JR) and @[(n) instead of@l(n,R) for the corre
sponding Lie algebra]. For every r E F(S) the right action of 
the element a E GL( p) is denoted by 
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(3.1 ) 

The action of the group G on S induces a natural action on 
the bundle of linear frames over S which we denote by 

n--+Lgr=g.r, rEF(S), gEG. (3.2) 

This allows us to define a left action of the group 
G = G XGL(p) onF(S) by 

r.-g . r = LgRa-' r, for g = (g,a) E G. (3.3) 

Given a fixed connection l' in the bundle S (M,G I H), in
duced by a connection 1'0 in the principal fiber bundle 
So(M,K), the tangent space at every S E S can be uniquely 
split into a vertical part Vs and a horizontal part Hs, 

Ts(S) = Vs $ Hs, 

with Hs possessing the following property. 
Lemma 3.1: If So E So and S = gso for some g E G, then 

Hs =g.Hso · 

Proof Following the standard construction of horizon
tal spaces at the points of an associated fiber bundle (see, e.g., 
Ref. 6, Chap. 2, §7), we find that every horizontal curve in S 
throughs = gso is of the form Yt = g • Yt' where Yt is a hori
zontal curve in So through So' 

In the following we shall assume that a connection is 
fixed once and forever in the fiber bundle S(M,G IH). 

A. The bundle of vertical frames over S 

We call a vertical frame at the point s E S every basis r' 
= (XI, ... ,xm) in the vertical tangent space V., Xi E V. 
(i = 1, ... ,m). The set FV(S) of the vertical frames has a struc-
ture of a principal fiber bundle with base S and typical fiber 
GL(m). 

In the following we shall use the same notations as in 
(3.1) and (3.2) for the right action of GL(m) and for the in
duced natural action of G on F V(S), respectively: 

~~Ra~' aEGL(m), (3.4a) 

rV~Lg~, gEG, rVEFV(S) (3.4b) 

[see also Sec. II for the identification of GL(m) with the in
vertible linear maps Wl ~ Wl]. 

Lemma 3.2: The restriction FV(S)ISo of FV(s) to the 
points of So is a trivial fiber bundle. 

Proof Let {ej } (i = 1, ... ,m) be the fixed basis from (2.5) 
in Wl. The fundamental vector fields 

d 
Ej(So) = dt exp(tej) ,solt=o, So ESo, (3.5) 

define a vertical frame 

1/V(So) = {EI(So), ... ,Em(So)} EFV(S)ISo, (3.6) 
at every So E So and we obtain a global section 

1/v:So ~ FV(S ) ISo· 
Lemma 2.1 states that G X So is the total space of a prin

cipal N (H) bundle with base S. One easily verifies the follow
ing connection with the vertical frame bundle. 

Proposition 3.3: There exists a fiber bundle homomor
phismj of the principal bundle G XSo ~ Sinto the principal 
bundle FV(S) ~ S, 
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j': G XSo-+F"(S), j ":N(H)-+GL(m), 

defined by 

(3.7) 

j'( g,so) = L g1/"(so), (g,so) e G XSo, 

and 

j"(n)=A(n), neN(H) 

[see (2.5) for the subgroup A (N) C GL(m)]. 
Remark 3.1: The content of this proposition means that 

the image of G XSo under j is a subbundle of FV(S) and, 
therefore, the structure group GL(m) of the latter admits a 
reduction to A. (N). 

This statement contains a generalization of the particu
lar case when S = G / H, and, instead of G X So we have only 
G. Then the bundle of vertical frames coincides with the 
bundle of linear frames over G / H and the latter can be re
duced to a subbundle with structure group A. (H) (see, e.g., 
Ref. 6, Chap. 10, §2). 

It follows from the definitions of 1/v and of A: 
N(H) -+ GL(m) that for he He N(H) we have 

Lh 1/V(so) = R,t (h I1/V(sO)' V h e H, SO e So, (3.8) 

so we derive that for all points 1/V(so) one has the same repre
sentations A.: H -+ GL(m) of the isotropy group (cf. Ref. 6, 
Chap. 10, § 1). 

WedefinealeftactionofthegroupGv = G XGL(m)on 
FV(S) by 

r" 1---+ g. r" = LgRa-' r, for g = (g,a) e G v. (3.9) 

Every point 1/V(so), So e So, is left invariant under the action 
of the subgroup jj v of G v, defined by 

jjv= {(h,A(h))eGv:heH}, (3.10) 

as follows from (3.8) and (3.9). Next, it is easily seen that with 
respect to the left action of the group G v on the manifold 
F vIS ) the isotropy groups of all points are conjugated to jj v. 
!her.::fore, the G v orbits in F V(S) have the same orbit type 
GV/Hv. 

Let N v be the subgroup of G v defined by 

NV = {(n,A (n)) e G": n eN(H)}. (3.11) 

Here H v is a normal subgroup of N v and the factor group K " 
= NV/HvisisomorphictoK = N(H)/H dueto the mapping 

i: k = (n,A (n))HV eKvl---+ k = nHeK, n eN(H). 
(3.12) 

The action of N v restricted to 1/V(So) gives a free action of 
K V

: 

k '1/V(so) = ii '1/V(so) = LnR,t (n-'I 1/V(so), VsoeSo, (3.13) 

for k = iiHv, where ii = (n,A (n)), n e N(H). From (3.5) and 
(3.6) we obtain 

k '1/V(so) = 1/V(kso)' with k = i(k). (3.14) 

Lemma 3.4: The map 1/v: So -+ FV(S) ISo defined by (3.6) 
endows 1/V(So) with a structure of a principal K v bundle with 
baseM. 

Proof: A set of local sections {1/~} a E I for the natural 
projection 1/V(So) -+ M is determined by means of the local 
sections 0' a: Wa -+ So of So(M,K ), where the { Wa 1 a E I form 
an open covering of M, namely 
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1/~ (x) = 1/V(O' a (X)), X e Wa' 

For x e Wa () Wp we have, from (2.12), 

1/~(x) = 1/V(kaP(x)O'p(x)) = kap(x)1/p(x). 

B. The bundle of horizontal frames over S 

We call a horizontal frame at the point s e S every basis 
~ = (XI, ... ,xd) in the horizontal tangent space Hs, Xi e Hs 
(i = l, ... ,d). The setFh (S) of horizontal frames is a principal 
fiber bundle with base S and typical fiber GL(d). Similarly, 
the set Fh (So) of horizontal frames over So is a principal 
GL(d) bundle with base So. 

Remark 3.2: The vectors Xi (i = 1, ... ,d), which form a 
horizontal frame ~ (so) at So e So, are horizontal lifts of d 
vectors Yi = 1T(Xi ) tangent to x = 11'(so) eM. We shall say 
that ~ (so) is the horizontal lift to So of the linear frame 
r(x) = (YI ,. .. , Yd ) at the point x = 11'(so) and we will write 

~(so) = hor r(x)lso' (3.15) 

For the right action of GL(d) on Fh (S) and for the in
duced natural action of G on Fh (S), we shall use the same 
notations as in (3.1) and (3.2), respectively: 

~ 1---+ Ra~' a e GL(d), 

~I---+Lg~, geG, ~eFh(S). 

(3.16a) 

(3.16b) 

We define a left action of the group G h = G X GL(d) on 
Fh(S)by 

~ I---+g. ~ = LgRa-'~' for g = (g,a) e G. (3.17) 

The points from F h (So) are left invariant by the subgroup H h 

~ H X idoL(d I :::::,H of G h. The restriction of G h to F h (So) is 
l! h = l! (H 1 X GL(d ) and provides a free action of the group 
Kh = N h /Hh:::::,K xGL(d): 

k: ~(So) 1---+ k. ~(so) = ii· ~(So) = LnRa-'~(sO)' 
(3.18a) 

for k = izH \ it = (n,a) e N h. Since the left action ~ (so) 
1---+ Ln ~ (so) of N (H) on F h (So) is identical to the transforma
tions ~ (so) 1---+ L k ~ (so) induced from the action of K on So, 
we can write (3.18a) in the form 

~(so) 1---+ k . ~(so) = LkRa-, ~ (so), (3.18b) 
- -h for k = (n,a)H and k = nH. We also note that in terms of 

the notation (3.15), the frame ~(so) = hor r(1T(SO)) I ,trans-- - ~ 
formed by k = (n,a)H\ becomes 

k. (hor r(x)U = R a-, (hor r(x)lksJ, x = 11'(so). (3.19) 

Lemma 3.5: The manifold F h (So) admits a structure of a 
principal fiber bundle over M with typical fiber K h. The 
restriction F h (S) ISo coincides with F h (So). 

Proof: Let {Wa laEI be an open covering ofMby coordi
nate neighborhoods and let {~l (p = 1, ... ,d)beasetofcoor
dinate functions on some Wa; we choose a family of local 
sections 0' a: Wa -+ So of So(M,K). The horizontal lifts 
hor(a /ax!') (p = 1, ... ,d) at the points O'a(x) e So of the tan
gent vectors a/ax!' e Tx (M) define a horizontal frame at ev
eryO'a(x): 

1/: (x) = ( hor C~l ). ... ,hor (a~d) ) (3.20) 
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and we get a smooth mapping 

71!: Wa -F"(So)' 

If the {xl-"j are coordinate functions in Wa' and 
x E Wa () Wa·, we have O'a'(x) = ka·a(x)O'a(x) with 
ka·a: Wa' () Wa - K and so 

71!(X) = Lkaa.(X,Ra;;;..'(X' 71!'(X), (3.21) 

where 

aaa' (x) = (;;. ) E GL(d). (3.22) 

c. Reduction of the linear frame bundle F(S) 

Let us denote by F (m,d) the subset of linear frames on S 
which at everys ESareoftype(XI'"'' Xm,Xm+, , ... , Xm+d), 
with (XI'"'' Xm) forming a vertical frame and 
(X m + I , ... , X m + d) forming a horizontal frame at s. In other 
words, considered as a linear isomorphism Rm + d _ T. (S), a 
frame rats belongs toF(m,d) ifan only ifitmaps Rm onto V. 
and Rd onto H •. The manifold F (m,d ) is a subbundle of the 
principal fiber bundle F (S) with base S and typical fiber the 
subgroup GL(m)XGL(d) ofGL(p). 

Convention: For sake of brevity and to avoid ambiguity 
we shall identify P' X ido~d' with P' and ida~m' xP " with 
P", where P' !; GL(m), pIt !; GL(d); e.g., every element 
(A.(n),ida~d,)EGL(p) [nEN(H)) is identified with 
A. (n) E GL(m). 

We define a bundle homomorphism r: F(m,d) 
_FV(S) by 

r(r) = (X ..... ,Xm), for r= (XI, ... ,Xm+d)EF(m,d), 
(3.23) 

corresponding to the natural group homomorphism 
GL(m)XGL(d)-GL(m). Clearly, FV(S) is isomorphic to 
F (m,d )/GL(d). 

Analogously, corresponding to the natural group ho
momorphism GL(m)xGL(d)-GL(d), there is a bundle 
homomorphismfh: F(m,d) _Fh(S) defined by 

f"(r) = (Xm+ " ... ,Xm+d) 

for r = (XI'"'' Xm+d) EF(m,d). (3.24) 

Therefore, the bundle F"(S) is isomorphic to F(m,d)1 
GL(m). 

For every frame rEF (m,d ) at the point s, we shall write 
for simplicity 

r = (rv,r"), (3.25) 

where rV and r" are a vertical and a horizontal frame at s, 

respectively. Denoting by FV(S) XF h (S) the fibered product 
s 

over S (see, e.g., Ref. 6, Chap. 2, §6) of the bundles FV(S ) and 
F" (S) we immediately check the first part of the following 
proposition. 

Proposition 3.6: (a) The map 

f:F(m,d)_FV(S) X F"(S), (3.26) 
s 

defined by 

where r and I" are given by (3.23) and (3.24), respectively, 
is a fiber bundle isomorphism. 

(b) The structure group GL( p),p = m + d, of the princi
pal fiber bundle F (S) admits· a reduction to the subgroup 
A. (N)XGL(d). 

Proof of part (b): Follows from remark 3.1 and the fact 
that F(m,d) - S is a reduced subbundle of F(S) with struc
ture group GL(m)XGL(d). 

Proposition 3.7: The structure groupGL(p) of the prin
cipal fiber bundleF (S )jSo admits a reduction to the subgroup 
GL(d). The total space of the reduced subbundle is 

Fo = ((71V(So), r"(so)) EF(S)jSo: 

So E So, r" (so) E F" (So) J. 
Proof: Follows from Lemma 3.2 and from Proposition 

3.6(a). 
Every point 1'(so) = (71V(So),r" (so)) E Fo is invariant under 

the action of the subgroup H of G defined by 

H = {(h, A. (h )) E G: h E H J. (3.28) 

The restriction of G to Fo reads 

if = {In, A. (n)a) E G: n EN(H), a E GL(d)J (3.29) 

and provides a free action of the group X = if IH on Fo: 

k: 1'(so) f--+ k . 1'(so) = n . 1'(so) = L"R.A("-')a-' r (so), (3.30) 

for k = nH, n = (n, A. (nja) E if. Note the group isomorphism 
X 'ZK X GL(d) given by 

(n,...t (n)aW EX f--+ (nH,a) EK xGL(d). (3.31) 

Proposition 3.8: The manifold 

(3.32) 
has a structure of a principal fiber bundle over M with typi
cal fiber X, it:Fo - M. 

Proof: From (3.30), (3.13), and (3.18), 

k . (71 V(So),r" (so)) = (k v • 71V(So),k h . r" (so)), V k EX, 

where k v E X v and k hEX h are uniquely determined by the 
element k. Then the statement follows from Lemmas 3.4 and 
3.5. 

Using (3.15) we can write every element from Fo in the 
form 

(3.33) 

for some linear frame 1'(x) at the point X = 17'(so) EM. Now we 
note that factorizing Fo with respect to the action of K [cf. 
(3.31)] one gets the isomorphism of fiber bundles 

FoIK~F(M,GL(d)), (3.34) 

whereF(M,GL(d)) denotes the bundle of linear frames over 
M. In (3.34) the K orbit passing through 1'(so) E Fo is identified 
with the frame 1'( 17'(so)) atthe point 17'(so) E M following (3.33). 
In an analogous way the factorization of Fo with respect to 
the action of GL(d ) gives the bundle isomorphism 

FoIGL(d)~o(M,K), (3.35) 

namely the orbit ofGL(d ) passing through 1'(so) E Fo is identi-
fIr) = ( f"(r),fh (r)), (3.27) fied with So' 
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With respect to the G action onF (S) the isotropy groups 
of all points are conjugated to iI. Therefore, the G orbits in 
F (S) have the same orbit type G I H. 

Proposition 3.9: The manifold F (S) has a structure of a 
fiber bundle over M with typical fiber G IiI associated to the 
principal fiber bundle Fo(M,K). 

Proof; We have a right action of K on G IH given by 

k.: (g,b)Ii ~ (g,b)Ii . k. = (gn,baA (n))Ii, 

fork. = nH,n = (n, A (nja), with a e GL(d),n eN(H),ge G, 
and b e GL(p).1t gives rise to an equivalence relation - in 
GIH XFo: 

( gH,r(so)) - ( g' H,r' (sb )) 

iff g' H = gH • k., r' (sb) = k. . r(so), 

for some k. e K. Factorizing with respect to -, we obtain 

F(s) = (G IH XFo)IK, 

where the equivalence class [gH,r(so)], determined by the 
pair (gH,r(so)) e G IH XFo, is the linear frame 

r = g • r(so) = LgRa-' r(so), g = (g,a) e G, (3.36) 

at the point s = gso. 
Remark 3.3: In an analogous way one can show that 

FV(S) and Fh (S) admit a fiber bundle structure with a typi
cal fiber GVIH v and G IH XGL(d), respectively: 

FV(S) = (GvIHVxr((So))IKV, 

Fh(S) = ((G IH XGL(d))XFh(SO))/Kh. 

Remark 3.4: We can interpret the last two propositions 
in the following way. We obtain that the principal fiber bun
dleF(S)overSwithstructuregroupGL(p), whereSis a fiber 
bundle with base M, structure group K, equipped with a 
connection T, becomes completely determined (via the G ac
tion) by its submanifold Fo C F (S), which itself has a struc
ture of a principal bundle over M. In that sense we can say 
that the principal GL( p) bundle F (S) ---+ S is dimensionally 
reduced to the principal bundle Fo ---+ M with a structure 
groupK::::;K xGL(d), GL(d) C GL(p). 

IV. G-INVARIANT FIELDS ON S 

Let the group G act as a group of automorphisms on the 
fiber bundle p: Q ---+ B: 

u~g·u, p(u)~g·p(u), VueQ, geG (4.1) 

(we use the same notation for the action of G on Q and the 
induced G action on B). By means of the action (4.1) every 
cross section <p: B ---+ Q is mapped into the cross section {} g <p: 
B ---+ Q, where 

{}g<p (u) = g . <p (g-l . u), (4.2) 

so that the diagram 

Q~Q 
t g t {}g<p 
B-B 

(4.3) 

is commutative. We say that a cross section <p of Q, i.e., a Q-
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valued field <p on B, is G invariant if 

{}g<p = <p, Vg e G, 

or, equivalently, if 

<p (g. u) = g. <p (u). 

(4.4a) 

(4.4b) 

In what follows we shall describe the G-invariant sec
tions of the fiber bundles associated to the bundle of linear 
frames F (S ) over the manifold S. 

Let Y be a manifold equipped with a left actionp of the 
group GL(p): 

f~p(a)J, feY, aeGL(p). (4.5) 

Let E = F(S)XY IGL(p) be the fiber bundle associated to 
F (S) by the representationp of GL( p) in Y. There is a left G 
action on E induced from the action of G on F(S): writing 
every element from the fiber Es over s e S as the equivalence 
class [r(s),j], where (r(s),j) eF(S)XYandr(s)denotesalin
ear frame at s, we have 

g: [r(s),j] eEs ~g. [r(s),j] = [Lgr(s),j] eEgs ' 

VgeG. 

Let q:;: S ---+ Ebe a G-invariant field onS. In terms of the 
GL( p)-equivariant map cP: F (S) ---+ Y, which corresponds to 
the field q:; by the formula 

q:; (s) = [r(s),cP (r(s))], 

cP (Rar(s)) = p(a-1)cP (r(s)), a e GL(p), 

the property (4.4b) translates into 

cP (Lgr(s)) = cP (r(s)), g e G. 

Considering (4.5) as a representation of the group 
G = G XGL(p) given by 

p(g,a)=p(a), geG, aeGL(p), 

we see that the G-invariant field <p: S ---+ E is equivalently 
described by the map 

cP: F(S) ---+ Y 

with the transformation property 

cP ( g . r(s)) = p(a)cP (r(s)), g = ( g,a) e G. 

Then it follows from Proposition 3.9 [see Eq. (3.36)] that the 
map cP is completely determined by its restriction cP !Po' The 
latter has to satisfy cP (r(so)) = ptA (h ))cP (r(so)) for every h e H 
and 

cP (k. . r(so)) = ptA (n)alcP (r(so)), 

Vk. = (n, A (nja)Ii e K. 

Thus, denoting the subspace of A (H )-invariant points from 
YbyYo, 

Yo = {fe Y:p(A (h ))f= J, Vh eH J, 
we obtain a K-equivariant map cP !Po: Fo ---+ Yo' Here the 
representation of K in Yo is given by 

k. == (n,A (n)a)Ii ~ ptA (nja). (4.6) 

The K-equivariant map cP !Po determines uniquely a cross 
seciton ~ of the fiber bundle (Po X Yo)1 Kover M associated 
to Fo(M,K) via the representation (4.6) of K in Yo' Here ~ is 
defined by the formula 

~ (1T(So)) = [r(so),cP (r(so))]', r(so) e Fo, 
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where the equivalence class [ , ]' is taken with respect to the 
action of the group K in Fo X Yo' From here we obtain the 
following proposition. 

Proposition 4.1: Given a connection in the principal fiber 
bundle So(M,K), the G-invariant fields on S, 

rp: S -E = (F(S)XY)/GL(p), rp (s) = [r(s)~ (r(s))], 

are in one-to-one correspondence with the fields q;: 
M - Eo = (Fo X Yo)/K on M defined by 

q; (1I"(so)) = [r(so),~ (r(so)))'· 

We say that the G-invariant fields rp on S admit dimen
sional reduction to the fields q; on M, constructed according 
to Proposition 4.1 (cf. Remark 3.4). We call q; a dimensional
ly reducedfield, corresponding to the G-invariant field rp. 

Examples: (a) G-invariant vector fields on S: In this case 
we have a section 

rp: S - T(S) = (F(S)XRP)/GL(p), rp(gs) =g. rp(s) 

[Y = RP and pia) = a, a e GL(p)]. According to Proposi
tion 4.1 the G-invariant vector field rp is determined by a field 
q;: M - To = (FoX(R9 e Rd))/K on M. We can split the 
corresponding K -equivariant map ~ 1F0: Fo - R9 e Rd to a 
sum of two mappings since 

~ (r(so)) = prR" 0 ~ (r(so)) + prRd 0 ~ (r(so)), 

(4.7) 

The first mapping, prR" 0 ~ 1F0, is invariant with respect to 
the action of the subgroup GL(d ) of K and due to the bundle 
isomorphism (3.35): FoIGL(d )~o, it determines a K-equi
variant map ~ v: So _ Rq by 

~ V(so) = prR " 0 ~ (r(so)). 

Identifying Rq and the subspace st C @ (see the beginning of 
Sec. II) we obtain a cross section rp v of the vector bundle 
(So X st)/ K associated to So(M,K) by the Ad action of K on its 
Lie algebra. Then rp v is given by the formula 

rp V( 1I"(so)) = [so,~ V(so)] . 

The second map in (4.7), prRd 0 ~ IFo, is invariant with 
respect to the action of the subgroup K of K, and the bundle 
isomorphism (3.34): FoIK-:::::F(M) leads to a GL(d )-equivar
iant map ~ h: F(M) _ Rd by 

~ h (r(x)) = prRd 0 ~ (r(so)) [x = 1I"(so)] , 

where r(so) = (7t(so),hor r(x)lsJ, [see (3.33)]. The map ~ h de
termines a unique cross section rp h of the vector bundle 
E = (F(M)XRd)/GL(d) isomorphic to T(M) [sinceEis as
sociated toF(M) by the natural action ofGL(d) on Rd]. We 
have, for each x E M, 

rph(X) = [r(X),~h(r(X))]. 

Thus one finds that the G-invariant ~ector fields on S 
are in one-to-one correspondence with the pairs of fields 
(rp v,rp h), where rp v is a cross section rp v: M _ (So X~)/ K and 
rp h: M _ T(M) is a vector field on M. 

(b) Vector-valued tensor fields on S: Let T~(S) denote 
the bundle of /-L times covariant and v times contravariant 
tensors over S. If V is a vector space, the tensor product E ~ 
= T~(S) ® V is a vector bundle over S with typical fiber 
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Y = L ((RPr,(RPt; V). The space Y is endowed with the 
induced representation ofGL(p), 

p(a):I ..... /o ((a-Ir ® (ta)'1, 'tJa e GL(p), Ie Y (4.8) 
(ta is the transposed matrix of a), i.e., 

(p(a)1 )(51'''',51' ;'1/1>'''''1/1') 

I( -I f:o -I f:o t t) = a ·~I'· .. ,a ·~I';a·'1/I, ... ,a·'1/1', 

where (51,,,,,51') == 5 e (RPr, ('1/1""''1/1') = '1/ e (RP)". We can 
consider E ~ as the fiber bundle 

E = (F(S)XY)/GL(p) (4.9) 

associated to F(S) by the action (4.8) ofGL(p). 
We say that a cross section rp: M _E~, rp: 

s ..... L (T~ ... ; V), is a G-invariant tens6r field on S of type 
VL,V;V) if 

rpgs( g . €\, ... , g. ~I';( g-I)* . 1]1'''''( g-I)* . 1],,) 

= rpS(tI' .... ~I';1]I' ... '1]"), (4.10.) 

(t1""'~I';1]I .... ,1]1') == (t;1]) e T~,.. g e G. s e S, 
or in a compact notation, 

rpgs = rps 0 g-I. (4. lOb) 

Writing the elements from E~ as equivalence classes of 
the GL(p) action inF(S)XY, we have 

rps = [r(s)'~r1sd, s E S, 

where r(s) E F (S)s is a frame at the point s and ~ is a mapping 
F(S) - Y, which obeys 

- -I -
rpR,.rl.s) = pia lffJr18» (4.11) 

and. from (4.10), 

rpg. lis) = rpr1s)' (4.12) 

If (5;'1/) E (RPrX(RPt are the coordinates of the element 
(t;1]) E T~.s in the frame r(s), i.e., 

(t;1]) = [1'(S),(5;'1/)], 

we have 

rps(t;1]) = ~1is)(5;'1/) eV. (4.13) 

According to Proposition 4.1, the field rp admits dimensional 
reduction. The dimensionally reduced field is a cross section 
of the fiber bundle E ~.o = (Fo X Yo)/X, where Y ois the sub
space of L ((RPr ,(RPt; V) consisting of the A, (H I-invariant 
points, i.e., I E Yo iff 

10 ((A, (h -I)r ® (tA, (h))") = I, 'tJh EH. 

(c) G-invariant metrics on S: For a description see Refs. 2 
and 4. 

V. G-INVARIANT PSEUDOTENSORIAL FIELDS AND 
LINEAR CONNECTIONS ON S 

A. Pseudotensorlal fields 

Let Vbe a vector space and p a linear representation of 
GL(p) in V:v ..... p(a)v, 'tJvEV,aEGL(p). WewriteT"(F(S)) 
for the direct product 

T(F(S))X'" X T(F(S)) (v factors). 

Denote by V" the tensor product fiber bundle V1' 
= T"(F(S))* ® V; its fiber over every r E F(S) is 
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V~ = (T~)· ® V=L(T~;V). 

We say that a cross section f/J of the fiber bundle V V
, 

f/J: r ~ f/Jr E L (T~; V), 

satisfying 

f/JR)SI""'Sv) = p(a-1)f/Jr(Ra-·sl,. .. ,Ra-·sv)' (5.1) 

for every a E GL(p), (51""'Sv) E T~." in other terms, apseu
dotensorialfield of type (v, p; V) onS (cf. Ref. 6, Chap. 2, §5) is 
G-invariant if 

f/JLgr!LgS1, ... ,LgSv) = f/Jr(SI>""sv)' 'Vg E G. (5.2) 

In terms ofthe group G = G XGL(p) denoting the in
duced representtl.tion of G in VV by p, 

p( g)1 = pta) 0 10 (RaLg-. t, (5.3) 

for every IE VV and g = (g,a) E G, we write Eqs. (5.1) and 
(5.2) in a unified form: 

f/Jg. r = p( g)f/Jr' (5.4) 

The last formula means that every G-invariant pseudoten
sorialfieldf/J:F(S) ~ VVoftype(v,p;V)onSisaG-invariant 
tensor field of type (v; V) on F (S) with the G action on VV 
given by the representation p. 

lt follows from Proposition 3.9 that f/J is determined by 
the restriction f/J 1F0, which takes values in the subbundle V~ 
of VV with total space consisting of the p (ii I-invariant 
points, i.e., those for which [see (3.28)] 

p(iz )f/Jrl,So) = f/Jrl,so» 'Vh E H. (5.5) 

The subbundle V~ of VV is a fiber bundle over Fo whose fiber 
over each r(so) E Fo consists of the ii-invariant linear maps 
from T~sodF(S)) into V, i.e., 

V~,rl,So) = {I E V~So): 

pIA (h)) 0 10 (RA(h)Lh -. t = I, 

'Vh eN J. 
Let us denote by p(k) the natural representation of kin 

V~ obtained from the restrictionofp(N) to V~ [see (3.29) for 
the definition of the subgroup N]: 

p(k)1 = pIA (n)a) 0 10 (RA(n)Ln-. t, (5.6) 

for every I E V~, le = (n, A (n)a)H. Then as a consequence of 
(5.4), we obtain that f/J 1F0 is aX-invariant field with values in 
the fiber bundle V~ ~ Fo: 

f/J 1F0: Fo ~ V~, f/Jk. rl,so) = p(le )f/Jrl,So» 

or in full notation 

f/J(n,A (n)a)rl,so) (SI'''''Sv) 

=p(A (n)a)f/Jrl,So) (RA(n)aLn-,SI>· .. ,RA(n)aLn-' sv)' (5.7) 

Summarizing, we find the following proposition. 
Proposition 5.1: Given a connection in the principal fiber 

bundle So(M,K), the G-invariant pseudotensorial fields of 
type (v, p; V) on S are in one-to-one correspondence with the 
K-invariant fields on Fo with values in the subbundle V~ 
~FoofVv. 

Remark 5.1: Although Fo is a principal X bundle over 
M, we note that aX-invariant field onFo, in general, does not 
define a field on M (cf. Sec. V B). 
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B. G-Invarlant linear connection on 5 

A G-invariant linear connection on S is distinguished by 
the property (see, e.g., Ref. 6, Chap. 2, §6) that under the 
action of every g E G the horizontal subs paces satisfy 

LgHr =HLr, 'VrEF(S), 

or, equivalently, the corresponding connection form obeys 

L ;w = w. (5.8) 

Due to the equivariance property with respect to the action 
of the structure group GL( p), 

R:w = Ad(a- 1). w, 'Va E GL(p), (5.9) 

and the G invariance, the connection form w is a G-invariant 
pseudotensorial field of type (1, Ad; @I(p))onS (in the nota
tions of Sec. V A). Putting this in other terms, w is a G
invariant tensor field of type (1; @I(p)) on F(S): 

w: F(S) ~ T(F(S))· ® @I(p), 

wg.rl,So)(S) =w(g,a).rl,So)(5) = Ad a· wrl,So)(RaLg-. S ), 

for every r(so) E Fo, S E Tgrl,So) (F (S)), and g = ( g,a) E G. The 
representation ofG in T(F(S))· ® @I(p) is given by 

p(g)1 = Ada·1 0 (RaLg-.), (5.10) 

for each IE T(F(S))· ® @I(p),g= (g,a) E G. 
Following our previous discussion, W is completely de

termined by the restriction W 1F0, which takes values in the 
subbundle g' ofT(F(S))· ® @I(p)consistingofthep(ii)-in
variant points 

g' = {lEL(Trl,So)(F(S));@I(p)): 

p(h )1 = I, 'Vh E ii, r(so) E FoJ. 

For w 1F0: Fo ~ g', we have 

wrl,So) =p(h)wrl,So) ==Ad(A(h))wrl,So) oRA(h)Lh -., (5.11) 

for every h = (h, A (h )) E ii. In this particular case the repre
sentation (5.6) of the group X in g'reads 

p(le)1 = Ad(A (n)a)1 0 (RA (n)aLn _ 1)' 'V 1 E g', (5.12) 

le = (n, A (n )a)ii E X. With respect to the X action in g' real
ized by (5.12) the mapping wlFo: Fo ~ g' is a X-equivariant 
field onFo: 

Wk.rl,So)(5) = Ad(A (n)a)wrl,so)(RA(n)aLn-'S)' (5.13) 

foreachsE Tkrl,So)F(S)). _ 
Since, for every vertical fundamental vector field A gen

erated by some A E @I( pI, we have 

w(A)=A, (5.14) 

it is sufficient to specify the values of w only for the natural 
lifts to the points from Fo (see, e.g., Ref. 6, Chap. 6, §2) of the 
vector fields defined on neighborhoods U C S of the points 
So E So. Every such vector field t is uniquely decomposed 
into the sum 

(5.15) 

where X is the horizontal lift with respect to the connection T 

(see the beginning of Sec. III) of a vector field X on 
17'( U) C M, Yis a vector field generated by some Y E ~ C @, 
and Z is a vector field generated by some Z E 2 C @ [recall 
that T~.!S)::::!!n = ~ E9 2]. 
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Due to the linear property, it follows from (5.15) that the 
natural lift t of the local vector field t = X + Y + Z decom
poses uniquely into the sum 

(5.16) 

of the natural lifts of the vector fields X, Y, and Z, respective
ly. Thus for the study of w, it is sufficient to specify the values 
appearing in the right-hand side of the equality 

W1jso) (X + Y + Z) = Wr(So) (X) + wr(so)(Y) + wr(sodZ), 
(5.17) 

Vr(so) e Fo. In (5.17) and below we shall keep the following 
notations: X for a vector field in a neighborhood of 
n-(r(so)) eM, Y for the elements from ~, and Z for the ele
ments from 2. We recall that m = ~ E9 2 is identified with 
R m

, and ~ and 2 with Rq and RI, respectively; these identifi
cations will be used in what follows. 

For the vector fields X, Y, and Z we have 

X;c. r(so) = LnRAln-')a-,Xr(sol' (5.18) _ J 

Y;c.r(So) =LnRAln-l)a-I(A(n-ljY)rjSol' (5.19) 
_ r'" 

Z;c'r(So) = LnRAln-')a-,(A (n-I)Z)r(Sol' (5.20) 

Vr(so) e Fo,k = (n, A (n)aW eK. Soitisclearfrom(5.11)that 
the restriction of W 1F0 to the vector fields of the type X + Y 
takes values in the commutant 8H of A (H) in @I(p), 

8H = (/e@I(p):Ad(A(h))/ = f, Vh eH}, (5.21) 

or 

Wr(so) (X) e 8H' wr(so)(Y) e 8H' for every r(so) EPo. 
(5.22) 

Further, using the properties of 2, it is an algebraic exercise 
to show that 

(5.23) 

for every vector field of the type Z. 
For our further analysis it is convenient to introduce the 

direct sum decomposition of RP of the form 

Correspondingly, we have the following block-matrix forms 
for the matrices from A (H) and A (N) X GL(d ): 

f-A (h) 

A (h ) e A (H) -- \ idoL1q) 

(AI(n) 

A (n)a eA (N)XGL(d)--\ 

(5.24a) 

(5.24b) 

where k = nH e K and we have used the notation from Eq. 
(2.8). We shall also use the direct sum decomposition ofthe 
Lie algebra @I(p) of the type 

~<!l[(/1 A 0 

(5.25) 
DO) 
c" 

@I(d) 
@I(p) = A' @I(q) 

B' C' 
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Now the commutant 8H of A (H) in @I(p) has the form 

CO~ 
where CHis the commutant of A (H) in @I(/ ). 

We introduce an Ad(A (N))-invariant complement J of 
CHin@I(/)withrespecttosomeAd(A(N))-invariantmetricin 
@I(/): 

(5.27) 

Then for the Ad(A (N))-invariant complement / of 8H in 
@I(p), we have 

(5.28) 

Denote by Lo(2;1) the subspace ofL (2;1 ) consisting of the 
linear maps I with the property 

Ad(A (h))./ 0 A (h -I) = /, Vh eH. (5.29) 

From (5.11) and (5.23) we see that wlFo, restricted to the 
natural lifts Z of the vertical vector fields Z generated by 
elements Z from 2 (::::RI), defines a mapping v: 
Fo -- Lo(RI;/) by the formula 

vr(So)(Z)=wr(SodZ), Vr(so)eFo. (5.30) 

The mapping v is K equivariant with respect to the represen
tation of Kin Lo(RV) given by 

p(k): /.- Ad(A (n)a).1 0 A (n- I
), (5.31) 

VI e Lo(RI;1), k = (n, A (n)aW e K. Indeed v satisfies 

v;c'r(so)(Z) = AdA (n)a)· Vr(So) (A (n-I)Z), (5.32) 

(a) The representation of the subgroup GL(d) C K in the 
subspace Lo(RI;J E9 A' E9 A ") of Lo(RI;I) is trivial. There
fore the projection prJ ... A .... A. 0 v, which is a K-equivariant 
map Fo -- L (RI;J E9 A' E9 A "), is constant on every GL(d) 
orbit in Fo. Now by virtue of the bundle isomorphism (3.35), 
FoIGL(d k::::~So(M,K), v induces a K-equivariant map v: 
So(M,K) -- Lo(W;J E9 A' E9 A ") by 

v(so) = prJ ... A • ... A • 0 v1jsol' 

Vr(so) e II-I(SO) nFo, 

with 

v(kso) =p(k)V'(so) = Ad(A (n)). v(so) OA (n- I
), 

(5.33) 

k = nH [see(5.31)]. TheK-equivariantmapv defines a cross 
section v of the vector bundle EI = (SoXLo(R/;J E9 A' 

E9 A "))1 K with baseM associated to So(M,K) by the restric
tion of the representation p to the group K and to J E9 A ' 

E9 A ": 

v:M--E1, v (1I"(so)) = [soov(so)], (5.34) 

where [ , ] denotes the equivalence class in 
SoXLo(R/;J E9 A' E9 A ") with respect to the action of K. 
The field V over M is given locally by mappings v!: 
Wa --Lo(R/;J E9 A' E9 A ") satisfying v!(x) =p(ka,8(x)) 
X ~(x) for x e Wa n Wp, where ka,8: Wa n Wp --K are the 
transition functions for So(M,K) corresponding to the open 
covering (W a J of M. 
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(b) The projection pr B' e B" ° v: Fo ~ Lo(Rl;B I Ell B") is 
a K -equivalent map of the principal bundle Fo(M,K) into a 
subspace of Lo(Rl;!). So it defines a cross section YI of the 
vector bundle E2 = (FoXLo(Rl;B I Ell B "))IK over M asso
ciated to Fo(M,K) by the restriction of the representation 
(5.31) to Lo(Rl;B I Ell B"): 

Y1:M~E2' Y1(1T(so)) = [r(so),prB'eB" oVr(Sod, 
(5.35) 

where r(so) e "-I(S) n Fo and [ , ] denotes the relevant equiv
alence class. The field YI over M is given locally by mappings 
v!: Wa ~ Lo(Rl,B I Ell B ") satisfying v!(x) = p(kap(x)) 
XV:(x),forxe Wa n Wp,wherek : Wa n Wp ~K are the _ all 

transition functions for Fo(M,K ). 
(c) Summarizing, we find that the restriction of wlFo to 

vector fields of the type Z is completely determined by the 
pair (V,Y1) of fields (5.34) and (5.35) defined on M. 

According to (5.22) the restriction of wlFo to the natural 
lifts Y of the vertical fields of the type Y generated by ele
ments Y from st' (Rq) defines a mapping x: Fo ~ L (Rq;8H) by 
the formula 

(5.36) 

The mapping x is K-equivariant with respect to the represen
tation p' of K in (Rq;8H) given by 

p/(k): /1--+ Ad(A. (nja) ·1 ° A. '(k -I), (5.37) 

'd/eL(Rq;8H),k=(n,A.(n)a)HeK [we use the notation 
from (2.8)]. Indeed, it satisfies 

Xk'r(so)(Y) = Ad(A. (nja). Xr(So) (A. '(k -I)y), 

due to (5.13) and (5.19). 
Taking into account (5.24H5.26), we split the space 

L (Rq;8H) into a direct sum of the following K-invariant 
subspaces L (Rq;8H) = L (Rq;C H Ell ®I(q)) Ell L (Rq,®I(d)) 

Ell L (Rq;C), where C = C I Ell C". Then x decomposes into 
a sum of K-equivariant mappings from Fo into the corre
sponding subspaces of L (Rq;8H): 

xr(So)(Y) = prCH e ®I(q) (xr(So) (Y)) 

+ pr®l(d) (xr(Sod Y )) + prc!xr(So) (Y)), (5.38) 

for every 1'(so) e Fo, Y e~. [Of course, the K-equivariance is 
with respect to the relevant restriction of the representation 
(5.37).] We proceed to analyze the different projections ap
pearing in (5.38). 

(a) The first term in the decomposition (5.38) is the map 

prc
H 

e ®I(q) ox: Fo ~ L (Rq;CH Ell ®I(q)), (5.39) 

which is constant on every Gl(d ) orbit in Fo since this group 
acts trivially on L (Rq;C H Ell ®I(q)). Applying the bundle iso
morphism F oIGl(d )~o(M,K), we obtain that the mapping 
(5.39) induces a mapping xq: So ~ (Rq;CH Ell ®I(q)) by the 
formula 

x~ = prCH '" ®I(q) ° xr(soi' r(so) e "-I(SO) nFo. (5.40) 

The mapping xq is K equivariant with respect to the repre
sentationp' of the groupKinL (Rq;CH Ell ®I(q)), which fol
lows from (5.37): 

p/(k)1 = Ad(A. (n)) . / ° A. '(k -I), 
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k = nH, Ie L (R.q;c H Ell ®I(q)). (5.41) 

In fact, we have, for every Y e R.q( ::::st'), 

Xk.o(Y) = Ad(A. (n))· x~(A. (k -I)y). 

Therefore, it defines a cross section xq of the vector bundle 
E3 = (SoXL (Rq;CH Ell ®I(q)))IK with base M associated to 
So(M,K) by the representation (5.41): 

(5.42) 

The field xq is given locally by mappings Wa 
~ L (Rq;CH Ell ®I(q)): for x e Wa n Wp they are related by 
the transition functionsp/(kaP(x)). 

(b) The mapping 

pr®l(d) ox: Fo ~ L (Rq;®I(d)) 

defines 

Xd: Fo ~ L (Rq;®I(d )), 

-d -xr(So) = pr®l(d) ° xr(so)' 

(5.43) 

The map Xd is equivariant with respect to the representation 
of Kin L (Rq;®I(d)) induced from (5.37): 

p'(k)/ = Ad a·1 ° A. '(k -I), 'dk = (k,a) e K. (5.44) 

Indeed, Xd satisfies 

xir(so) (Y) = Ad(a- I
) • x~(SodA. I (k -I) Y), 

for every Ye Rq. Thus Xd determines a cross section xd of the 
vector bundle E4 = (FoXL (Rq;®I(d»))IK with baseM as
sociated to Fo by representation (5.44) of K: 

xd: M ~ E4, X
d(1T(So)) = [r(so),x~(So>1. (5.45) 

The field xd over M is given locally by mappings Wa 
~ L (Rq;®I(d)) with transition functions p/(kap(x)). 

(c) Finally, the mapping 

prcox: Fo~L(Rq;C), C=C ' Ell C", 

defines a cross section xc: M ~ Es = {FoXL (Rq;C))IK of 
the vector bundle Es with base M associated to Fo by the 
representation p' of K [see (5.37)] restricted to L (Rq;C): 

XC(1T(so)) = [r(so),prc ° xr(so) ]. (5.46) 

The field XC on M is given locally by maps Wa ~ L (Rq;C) 
with transition functionsp/(kap(x)) for x e Wa n Wp. 

(d) A summary of the results obtained in this subsection 
shows that the restriction of w IFo to the vector fields of the 
type Yis uniquely described by the set (xq,xd,xc) of fields on 
M given by (5.42) (5.45), and (5.46), respectively. 

At the end we have to consider the values of w 1F0 for the 
vector fields X, each of which projects into a local vector field 
X defined in some open set U eM [see (5. 16) and (5.22)]. We 
note that every vector field of the type X defined on a neigh
borhood in F (S) ISo is a local vector field on Fo. Then the 
restriction of wlFo to the vector fields X defines a 8H-valued 
andK-equivariantone-formji on T{Fo) in the following way. 
We write each local vector field Von Fo as the sum 

(5.47) 

where the (local) vector fields X, Y, are defined as earlier in 
this section [cf. (5.16)] and A, A. '(A ), are fundamental vector 
fields generated by the elements A e ®I(d), A. '(Y) e ®I(q). 
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Then we define a one-form,u on Fo by the formulas 

,u>1So'(X) = al1js.,(X), (5.48) 

(5.49) 

(5.50) 

,u>1So'(Y') = 0, 

,u>1So,(A) =A, 

v r(so) E Fo, So E So. The splitting of,u( V) in accordance with 
(5.26), 

,u( V) = prcH II> Q)l(q, (,U(V)) + prQ)[(d' (,u(V)) 

+ prc' II> C" (,u(V)), (5.51) 

gives rise to a set of fields and a linear connection on M. They 
are determined in the following way. 

(a) The mapping 

prc
H 

II> Q)[(q, 0,u: Fo - T{Fo)· ® (C H ED @I(q)) 

is a K-equivariant one-form on the principal fiber bundle 
Fo(M,K), which is horizontal due to (5.49) and (5.50). Since 
this mapping is constant on every GL(d) orbit inFo, the bun
dle isomorphism FoIGL(d)~o allows one to determine a 
horizontal [by virtue of (5.49)] one-form fi on the principal 
fiber bundle So(M,K) with values in C H ED @I(q) by 

fisJf) = pr
CH 

II> Q)[(q' (,u1js., (X)), 

fi...(Y) =0, 

(5.52) 

(5.53) 

whereX,X and Yare defined as in (5.15) and (5.16). Owing to 
the K equivariance, 

fiks. = Ad(A. (n)). fi So , Vk = nH EK, 

the horizontal formfi determines a unique one-formp' onM 
by the formula 

p~(X)= [so"us.!X)], SoE1T- 1(X), (5.54) 

where X is the local vector field on M whose horizontal lift to 
So is X and [ , ] denotes the equivalence class determined in 
So X (C H ED @I(q)) with respect to the action ofthe group K 
[K is acting on C H ED @I(q) by Ad(A. (N))I Ad(A. (H)). So we 
obtain that p' is a cross section of the fiber bundle 

T(M)· ® [(SoX(CH ED @I(q)))/K]. 

(b) For the projection 
-d -P = prQ)l(d' ° p, 

using the K equivariance, we find from (5.13) and (5.18) that 

-d Ad-d PTc.1js., = a 'P>1So" 

Vr(so) E Fo, k = (n, A. (n)a)H E K, (5.55) 

since A. (n) commutes with @I(d). Taking into account the 
property (5.55) and the bundle isomorphism FoIK~(M), 
we obtain a@I(d )-valued one-formpd onF (M) of type Ad: for 
every linear frame r(x) at the point x EM we set 
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p~x, (A ') = ,u>1So' (A ) = A, (5.56) 

where r(so) = (1J"(so),hor r(x)I So ), So E 1T- 1(X) [see (3.33)] and 
A ' is the fundamental vectpr field on F (M) generated by the 
element A E @I(d)[cf.(5.50)];further.forthenaturalllftX'to 
F (M) of the local vector field X on M we put 

P~x,(X') = fi>1So,(X), (5.57) 

where X is the natural lift of X toFo C F(S)[see (5.15) and 
(5.16)]. From the above we deduce that the one-form pd is a 
linear connection form on M. 

(c) The projection 

,uc=prc0,u. C=C' ED C", 

is a K-equivariant horizontal one-form on the principal bun
dIe Fo(M,K ). It induces a one-formpc on M with values in the 
vector bundle (So XC)I K associated toSo(M,K) by the action 
Ad(A. (N))/ Ad(A. (H)) of K on C. Herepc is defined by [see Eq. 
(5.47)] 

p~(X)=[so"u~So,(X+Y'+A)]', SoE1T-l(X), (5.58) 

i.e., pC is a cross section: M _ T(M)· ® ((SoX C)/K). In 
(5.58) [,]' denotes the elements of(SoXC)/K. 

The full description of any G-invariant linear connec
tion on S is contained in the following proposition. 

Proposition 5.2: Given a connection in the principal fiber 
bundle So(M,K), the G.invariant linear connections on S are 
in one-to-one correspondence with the set (J,td,v',,,s.xq,xd, 
p' ,/1/), where pd is a linear connection on M; 11', vB, x q

, Xd, 
and XC are fields over M defined by (5.34). (5.35), (5.42), (5.45), 
and (5.46), respectively, andp', pC are one-forms on Mwith 
values in vector bundles over M and defined by (5.54) and 
(5.58). 
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The different geometrical properties of Majorana, "even," Dirac, and Chevalley spinors in the 
Clifford algebra approach are investigated. 

I. INTRODUCTION The real algebra isomorphism 

Recently there has been increased interest in different 
kinds of spinors that can be related to a given model of space
time. It appears that the different physical theories are based 
on a different kind of spinor representation, which deter
mines the basic properties of a physical description of inter
actions. For example, some kinds of spinors admit a mass 
term but some of them do not, this depends on the possibility 
of the construction of "Lorentz" invariants bilinear in the 
spinor fields. Also, supersymmetry theories impose a strong 
restriction on the possible properties of spinors, etc. 

r: R3,l -- EndR tE' u -- r(u), VUE R 3,l' (2.5) 

The main purpose of our investigation is to give the full 
classification of all the spinor representations of any space
time, to show their consequences on the physical theories 
based on them, and to explain their geometrical significance 
as well as constraints and obstructions related with any con
crete spinor bundle over a space-time manifold vii. In this 
paper we shall consider only the case of a four-dimensional 
space-time of signature (3,1). In Ref. 1 we are considering the 
general case of n-dimensional pseudo-Riemannian mani
folds. Although the four-dimensional case is thought to be 
known completely, we hope that we are able to give some 
additional new facts, which have never been introduced be
fore. 

II. MAJORANA SPINORS b€ 
Let us consider the Minkowski vector space-time R 3.' 

together with a set of unit vectors! e"e2,e3,e4 J, which form 
an orthogonal basis € for R 3." 

ef =e~ =e~ = -e~ = 1. (2.1) 

Its universal Clifford algebra R 3., has a matrix representa
tion given by an algebra of 4 X 4 real matrices R (4) (see Ref. 
2). The underlying vector space for the faithful representa
tion of the Clifford algebraR 3" is given by its minimal left (or 
right) ideal3 

b = R 3" f (or; = f R 3.,)· (2.2) 

Here f is a primitive idempotentf2 = f of R 3,' ' It can be seen 
that t is a four-dimensional real vector space, which we shall 
call the Majorana spinor space for R 3". Let us take, for ex
ample, an idempotent f of the form 

(2.3) 

It allows us to build the concrete left minimal ideal be The 
basis {S"S2,S3,S4J of b€ can be taken as follows: 

S, =1: = e,f€, S3 = e3 fE = e4 f€, 

(2.4) 

is defined by relation 

(2.5') 

and is determined by r(ep ). We shall denote r(ep ) by Yp' 

Hence to construct the matrix representation of R 3,l it is 
enough to fix a matrix form of Yp 'so We can choose them in 
such a way that the elements of Sk will be given by matrices 

o 
o 
o 
o 

o 
o 
o 
o 

~) o . 
o 

For this we should take 

r,~(~ ° ° f} -I 0 

0 -1 
0 ° 

r,~(~ ° ~} 0 0 

0 0 

0 -1 

r,~(! ° 

V' 
0 0 

0 0 

° 
r,~(! ° -1 

~} 0 0 

0 0 

0 

Using the Pauli matrices 

u, = (~ ~), U2 = C -i) C ° ' u3 = 0 

we have for (2.7) 

(u3 
y,= 0 _Ou)' (u, 

Y2= 0 _Ou). 

Y3 = (~ ~). Y4 = G -1) o . 

(2.6) 

(2.7) 

~J 
(2.8) 

(2.7') 

Thus our spinor space b€ contains the matrices of the form 
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o 0 0) } 000 
o 0 0 ; t/Ji ER . 

000 

(2.9) 

In the general theory of the Clifford algebras one constructs 
a subring F of any minimal left ideal b = R s,t I as a division 
ring with a unity given by 

F= fRs,J. (2.10) 

In our case we obtain 

o 0 0) } 000 
o 0 0 ; JER . 

000 

(2.11) 

Now, the scalar products on the spinor space ~ are defined as 
themaps~X~ _ F. Namely, the identity land thereftection 
- Ion the Minkowski space-time R 3,1 induce anti-involu

tions of the Clifford algebra R 3,1' They are usually denoted 
by /3+ and/3_, respectively. The scalar products 

(.,.)± :~eX~e -FE (2.12) 

will be defined according to the following formulas: 

(t/J,lp) ± = CtJ ± /3 ± (t/J)lp, 'r/ lp,t/J E ~€' (2.13) 

The above definition uses some elements CtJ ± E R 3,1 • Thus to 
make it clear we have to make precise which elements cu ± 

are taken. The CtJ ± should have the property 

CtJ ± /3 ± (I.)CtJ ± I = fE' (2.14) 

Then CtJ± /3± (ufe)u'fe =J:CtJ± /3± (u)u'J: EFe (here ulE 
= t/J and u'le = lp for appropriate u,u' E R 3,1)' Let us con

sider the product ( ., . )+. We have 

( 

0 0 0 

/3+(lp) = ~ ~ ~ 
- lp 4 lp3 - lp2 

(2.15) 

Thus CtJ + would transform the fourth row into the first one. 
For example, as CtJ+ we can take the product Y3Y2' i.e., 

( 
0 0 

UEF<' 
-I 0 0 0 

(lp,t/J)- = cu _ /3-(lp)t/J = ~ 0 0 

0 0 

(2.21) 

with 

b = lplt/J3 + lp2t/J4 - lp3t/JI - lplt/J2' (2.22) 

Let G + and G _ be Lie groups that preserve the scalar pro
ducts ( , )+ and ( , )_, respectively. From (2.17) and (2.21) we 
see that both these groups are isomorphic to Sp(4,R ). It is 
easy to see that the G ± are realized as subsets of invertible 
elements of R3•1 given by the following properties: 

G± = {sER 3,1: /3± (s)s= 11. (2.23) 

The Lie algebras? ± corresponding to them are determined 
by 

?± ={bER3,tI/3±(b)+b=Oj. (2.24) 

Thus we see that 

?+ ~R L IJ) R ~,I' ?_::::::R ~.I IJ) R ~,I (2.25) 

(here R L is the subspace of R 3,1 formed by k vectors space). 
It is easy to see that, for example, the scalar product ( , ) + can 
be written as 

(lp,t/J)+ = lpT Jt/J, (2.26) 

where 

J=(~ 
0 0 -) 0 1 o 2 

-1 0 ~ , J = -1. 

0 0 

(2.27) 

In this way we see that if we determine the scalar product 
( , ) + on~. then we also determine the almost complex struc
ture on;e described by the matrix J. Thus, the four-dimen
sional real spinor space ~ e can be treated as a two-complex 
dimensional space. 

Because 
J 

(lpl,lp2,lp3,lp4)--( - lp4,lp3, - lp2,lptl, (2.28) 

CtJ+ = e3e2. (2.16) this complex vector space can be spanned by elements 

Now 

(" 
0 0 

VEF<' 
-I 0 0 0 

cu + /3 + (lp)t/J = ~ 0 0 
0 0 

with 

a = lplt/J4 + lp3t/J2 - lp2t/J3 - lp4t/J2' 

Similarly, for /3- we have 

P-I",I = ( ~ 
0 0 

~} 0 0 

- lp3 - lp4 lpl 

0 0 0 
hence w _ can be taken as 

cu_=e3 =w=1 

and 
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(2.17) 

(2.18) 

(2.19) 

(2.20) 

PI = SI + is4, P2 = S3 + is2· (2.29) 

Of course spinSpin+(3, 1)~SL(2,q preserves the scalar pro
ducts, hence SL(2,q is also the symmetry group of two-di
mensional space {PI,P21. 

We have built our concrete spinor space bE starting from 
some fixed orthonormal base E = (e)Je2,e3,e4 ) as well as from 
the fixed primitive idempotent J:. Obviously we could fix 
another orthonormal base E' and take I~, which has the 
same form as Ie' or change its form. 

Let I~ denote the general form of the primitive idempo
tent, which, in base E', can be written as 

I~ = 1(1 + e;,)(1 + e;,), (2.30) 

where the S 1,s2 are appropriate multi-indexes. It determines a 
concrete minimal left ideal ~~(I'). 

Now we can choose such a matrix representation of the 
universal Clifford algebra R 3,I such that be' (/') = R 3,I I;. 
will be given by matrices of the form 
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o 0 
o 0 
o 0 

(2.31) 

o 0 
Hence all properties will be the same as for ~E(f). 

Now let us define some isomorphism x:~ E ® ~ E ~ R 3.1 
by the following formulas: 

(2.32) 

wherew+ is an element of R 3•1 given by (2.13) and (2.14). To 
show this isomorphism let us recall that our Clifford algebra 
R 3.1 is the simple sum off our left minimal ideals 

4 

R 3•1 = EB~i, 
ill 

(2.33) 

where the Ii are pairwise annihilating primitive idempo

tents PP = 0, for i=/=j, ~P = I, and ~i = R 3.1 Ii. Let us 
denote our primitive idempotent i. = !(l + el )(1 + e34) by 
II and 

12: =!(l + el)(1 - e34 ) = /3+(fI), 

13: =!(1 - ed(1 + e34) = a(fl), (2.34) 

14: = !(l- ed(1 - e34) =/3-(fI). 

We shall introduce the following notation for the basis ele
ments of ~E: 

SI=IE:=ul/ l, s3=e3IE=u3/ 1, 

S2 = e2i.: = u2/ 1, S4 = e3e2i. = u4/1. (2.35) 

Because the U i are not uniquely determined we fix 

(U I,U2,U3,U4) = (l,e2,e3,e3e2). (2.36) 

We can check that 

IIU4 = u4/2, 1 2u3 = u3/ 3, 

1 2u2 = u2/ 4, /3+(w+) = w:;: 1= - U4. (2.37) 

Hence we obtain 

and 

X(SI ® sd = u4/2, X(SI ® S2) = u3/ 4, 

X(S2 ® SI) = - u3/ 2, X(S2 ® S2) = - u4/4, 

X(S3 ® sd = u2/ 2, X(S3 ® S2) =/4, 

X(S4 ® sd = _/2, X(S4 ® S2) = - u2/ 4, (2.38) 

X(SI ® S3) = - u2/ 3, X(SI ® S4) =/1, 

X(S2 ® S3) = -/3, X(S2 ® S4) = u2/ 1, 

X(S3 ® S3) = - u4/ 3, X(S3 ® S4) = u3/ 1, 

X(S4 ® S3) = - u3/ 3, X(S4 ® S4) = u4/1. (2.38') 

The above relations show us that the image of elements 
Si ® S I lies in;2 and spans it. Similarly the X(Si ® S2) span ~ 
and soon. 

Let us find the elements of;E ® ;E =;1 ® ;1 that pass 
onto basis elements of R 3.1 ~ R 3•1 • We have 
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el =11 + 12 - P _/4 

= X [(s I ® S4 - S4 ® S tl + (S2 ® S3 - S3 ® S2)], 

e2 = U2(f I + 12 + 1 3 + 14) 

= X [(S2 ® S4 - S4 ® S2) + (s I ® S3 - S3 ® S tl]' 
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e3 = u3(f1 + 12 + 1 3 + r) 
= X[(S3 ® S4 - S4 ® S3) + (SI ® S2 - S2 ® sdl. 

e4 = U3(f I - P + 1 3 - 14) 

=X[(S3 ® S4- S4 ® S3) + (S2 ® SI-SI ® S2)]' 

(2.39) 

When we introduce the map cp = X 0 s1', where 

s1'(¢ ® ¢') = ¢ ® ¢' - ¢' ® ¢, 

we obtain 

e l = CP(s1 ® S4 + S2 ® S3)' 

e2 = CP(S2 ® S4 + SI ® S3)' 

e3 = CP(S3 ® S4 + SI ® S2)' 

e4 = CP(S3 ® S4 + S2 ® SI)' 

III. EVEN SPINOR SPACE 

(2.40) 

(2.41) 

In the previous section we mentioned that the universal 
Clifford algebra R 3•1 has its faithful matrix representation 
given by the algebra of 4 X 4 real matrices. Hence we can 
identify R 3,I with the algebra of the linear endomorphism of 
some real four-dimensional vector space. As we have seen, 
this space can be given by any minimal left ideal of the Clif
ford algebra itself. Moreover, any such ideal is also among 
others the underlying space of the vector representation of 
the Spin(3,1) group. However, this group is contained in the 
even subalgebra R ~~II of R 3.1 . This suggests that we should be 
interested in the matrix representation of the even subalge
braR ~~II as well as in its minimal left ideals ~E' (['). As usual, 
to fix any minimal left ideal, it is enough to choose some 
primitive idempotent. The idempotent 

(3.1) 

of the Clifford algebra R 3,1 is a primitive in the even subalge
bra. Thus 

~E(f) = R ~~i I~ol. (3.2) 

Let us define the linear map 

R 3,1 +-' R 3.0 ~ R ~~II 

by the correspondence 

(3.3) 

(3.4) 

Because of e;2 = e; and the set! e; J generates the whole even 
subalgebra R ~~II of R 3•1 , hence we have 

R ~~II ~R3,O ~q2), (3.5) 

Indeed, the product eJ = e: e~ e~, which commutes with all 
elements of R ~~II and the square of which is equal - 1, can be 
identified with a pure imaginary unit i'. It implies 

(3.6) 

As a real vector space, ~ is a four-dimensional one and can 
be spanned by elements 

(PI' P2' P3' P4) = (f~I,e; 1~I,e; 1~I,e; e; I~I). (3.7) 

We can find its matrix representation using the correspon
dence (2.7). In this base we have 
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r; = -(~3 ~), r; = -(~I 
ri = _ (~l ~), 

whereas 

( 

0 
of -1 

rir2ri = ~ 

o 
o 0 
o 0 
o 1 

~ ) !J'. 
-1 

o 

(3.8) 

(3.9) 

Using (3.6) we see that P3 = i'P2 and P4 = i'PI' Hence the 
spinor module :IE (f) has the naturally defined structure of a 
complex vector space spanned by { PI' P2}' It is obvious that 
the groups G ± cannot be the symmetry groups of the spinor 
module :IE(/) [see (2.25)] and that only their common sub
group isomorphic to SL (2,C) will survive. Thus we can intro
duce in :IE(/) only the scalar product determined by the 
skew metric tensor 

-1) o . 
Now let us return to the map (3.4). It allows us to define the 
vector isomorphism between the left minimal ideals of the 
R ~~~ algebra and the left minimal ideals t 3,0 of the whole 
Clifford algebra R 3,o "+ R3,1' However, it can be seen that 
the complex character of the t 3,0 ideal corresponds to the 
matrix 

A (~ J= 
1 
o 

° o 
o 

-1 

o 
o 

° 
~1) 
o ' 
o 

(3.10) 

belonging to the algebra R (4). BecauseJ =l=J' they define two 
inequivalent complex structures on the space tE(f). It im
plies that when we pass [by (3.5)] to the left minimal ideal of 
R 3,o "+ R 3,I' then the SL(2,C) symmetry of :IE (f) is broken 
to SU(2). We can see this immediately when we recall that 
the group SI(2,C) can be treated as the complexification of 
the SU(2) group. In other words, the Lie algebra sl(2,C) is 
spanned by the set {ui,r ui } with i' related to the matrix J' 
(3.9), whereasthecomplexstructureoft3,O ~ R30 "+ R31 is 
related to another pure imaginary unit i determi~ed 

A 

byJ. 
The nonequivalent character of e1e2e3 and e; e;ei 

playing the role of pure imaginary units in R 3,o and R ~~il 
algebras, respectively, can be seen also when we consider the 
mapp+. Namely we have 

p+(e1e2e3) = - e1e2e3, 

whereas 

P + (e; e2 ei) = e; e2 ei . 

(3.11) 

(3.12) 

Similarly as in the previous section we can define the isomor
phism 

x::IE ® :I .. - R ~~)I , 

given by 

X(I// ® t/I) = 1//(iJ+ P+(t/I), \:J t/I,t/I' E :IE' 
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(3.13) 

(3.14) 

with 

IV. DIRAC SPINORS"~ 

Although we have constructed two different "spinor 
spaces" tE(/) and :IE (f) for the Minkowski space-timeR 3,1, 
it is not enough from the physical point of view. Namely to 
describe the electron in relativistic quantum mechanics we 
have to use the function", from R 3,1 to four-dimensional 
complex vector space \{I3,1=\{I, usually called the Dirac 
spinor space. This space is reducible with respect to the 
SL(2,C) group, and decomposes onto two two-complex di
mensional Weyl spinor subspaces. The simplest way to ob
tain such a space is to pass to the complexification R f.1 of the 
Clifford algebraR3,I and to (related to this) complexification 
of the spinor spaces. 

However, we shall define the Dirac spinors for R 3,1 as 
elements of the left minimal ideal of the universal Clifford 
algebra R 4,I • In other words, we shall treat R 3,1 spanned by 
{ e l,e2,e3,e4} as a subspace of R 4,1 spanned by { eO.el.e2.e3,e4}. 
The additional element eo. e~ = + I allows us to introduce 
an imaginary unit i and, as a matter of fact, leads to the 
Clifford algebra isomorphic to the complexified R f.1 S!!C(4). 
Nevertheless the properties of such an introduced Dirac 
space \{I are different than the complexification of Majorana 
spinors. Let (eO,e!>e2.e3,e4) be the canonical basis of R 4,1 ob
tained by adding the orthogonal complement eo to the basis E 

of R 3,1 "+ R 4,1 fixed by (2.1). It is obvious that IE given by 
(2.3) is also a primitive idempotent of R4,1' However, in this 
case the division ring F = IER4,I I.. can be identified with the 
complex field C with eJ = eOele2e3e4 playing the role of the 
pure imaginary unit i. The Dirac space \{I will be, by defini
tion. the space 

'I' = 'l'E(f) = R4,I IE' 

with a basis 

(4.1) 

(SI,S2,S3,s4) = (f..,e2/ ... e3/ .. ,e3eziE)' (4.2) 

Again, as in Sec. II, we can take the matrix representation of 
R4,I in which the Si are given by the matrices (2.6). It is easy 
to see that eo acts on the elements Si in such a way that it has 
to be represented by a matrix ro = 1'(eo) of the form 

(U
2 

ro= ° _OuJ (4.3) 

(we have used i = eoe 1e2e3e4). Thus 

~.(/I={(~~ ° ~ V;¢,ec} ° ° ° 
(4.1') 

and 

F={(1 
0 0 

V;Aec} ° 0 

0 0 

0 0 

(4.4) 

The difference between ~(f) and 'I' .. (I) will appear when 
we start to introduce scalar products on these spaces induced 
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by the anti-involutionsp+ andp_, respectively. For (""rp)+ 
E F, ""rp E IIJ E(f), we havep+(i) = i. Hence we should obtain 
the same results as for the complexification ~(/) of ;E(/). 
Indeed 

(""rp)+ = w+ P+("')rp~"'lrp4 + "'3rp2 - "'2rp3 - "'4rp2' 
(4.5) 

with w + = e3e2• This means that the group G + of the auto
morphisms of IIJE(f), which preserve the scalar product 
( , )+, is isomorphic to Sp(4,q. 

Now let us consider the product (, )_. We can check 
that 

o 0 
o 0 

- "': ",r 
(4.6) 

o 0 

Thus we see that the group G _ is isomorphic to U (2,2), i.e., it 
is completely different as obtained for complexified space 
;~(f). This fact has the following explanation. Namely, for 
the R ~ 1 algebra we have 

/J+(i) =/J_(i) = i, (4.7) 

whereas for the R4,I algebra 

/J +(1) = - P _(I) = i, i ~ eoe1e2e3e4. (4.8) 

Hence ;~(/) can be equipped with Sp(4,q, SO(4,q, and 
their subgroups as the possible symmetry groups, whereas 
the Dirac space IIJ E (I) has additionally the U (2,2) symmetry. 
Thus, when we take the spinor function ",:R 3,1 -IIJE(/), 
this spinor function can undergo some U(2,2) transforma
tions. 

Using the canonical embedding (e l,e2,e3,e4) 
'-+- (eO,el,e2,e3,e4)' we can construct the projection operators 

of R4,1' These are built from the element eo and have the 
matrix representation 

(4.9) 

By means of these operators (Weyl operators) we can decom
pose the Dirac space IIJ = IIJE(/) onto its proper subspaces 
IIJ ± : 

{( ¢. -i¢, 
0 0 

m W IIJ. = IIJ = i"'l + "'2 0 0 
(4.10) 

+ I + "'3 + i"'4 0 0 

- ;"'3 + "'4 0 0 

and 

{( ¢,+i¢, 
0 0 m 14.11) W IIJ. = IIJ = - i"'l + "'2 0 0 

- I - "'3 - i", 4 0 0 

i"'3 + "'4 0 0 

From (4.10) and (4.11) we see that any element", ± 

can be written 

C 
0 0 

u' C' 
0 0 

"'+ = iXI 0 0 
"'_ = ~:X2 0 0 

SI 0 0 0 0 

iSI 0 0 iS2 0 0 
(4.12) 
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Equivalently, employing the basis (SI,S2,S3,S4) ofllJ, we obtain 

W+s l =PI' W+s3 = 0'1' 

(4.13) 

i.e., PI and 0'1 span the subspace IIJ +. We obtain a similar 
result for W _ and IIJ _. In the physical literature the sub
spaces IIJ + and IIJ _ of the Dirac space IIJ are called the Weyl 
spinor spaces. Because 

(4.14) 

we see that we can construct appropriate Weyl operators 
W ± in; ~(f) with ro = - irlr2r3r4' Similarly as above we 
obtain the decomposition of ; ~(f) onto the proper sub
spaces of W ±. However for the Dirac space IIJ==IIJ,,(/) we 
obtain some new surprising pictures. It appears that the 
Weyl subspaces IIJ ± C IIJ are the totally isotropic subspaces 
of the Dirac space with respect to the scalar product (, )_: 

("'+,rp+)_ = 0, \:;/ ",+,rp+ E IIJ +, 

("'_,rp_)_ = 0, \:;/ ",_,rp_ E IIJ_. (4.15) 

By definition the construction of our concrete Dirac spinor 
space IIJ E (I) for the Minkowski space-time R 3,1 is based on 
the fixed decomposition of the vector space R 4,1 onto R 3,1 

spanned by [e l ,e2,e3,e41 and R 1,0 spanned by eo. In other 
words, another concrete Dirac space IIJ E' (1') is obtained 
when we choose the primitive idempotent/, of R 3,1 using 
another orthonormal basis (e; ,e~ ,ei ,e~) or R 3,1. Hence we 
can identify the set of concrete Dirac spinor spaces as the 
family of minimal left ideals of R 4, I determined by all primi
tive idempotents of R 3,1 '-+- R4,1' Thus we see that we can 
treat any concrete Dirac spinor space IIJ e(f) as a complexifi
cation of the appropriate Majorana spinor space ~(f). All 
differences between them came from the different behavior 
of the appropriate pure imaginary units under the mapsp ± . 

So the Weyl operators W ± will be exactly the same for all 
concrete Dirac spaces and, as a matter of fact, they will have 
a rigid nature. Hence, the natural question will appear: 
which subgroups G +, G _ of G + and G _, respectively, ob
tained after the action of the Weyl operators, will survive on 
IIJ + and IIJ _ ? Again, because the Clifford algebra R 4, I is sim
ple, the groups G ± are realized by the set of elements of R 4, I 

that satisfy conditions (2.23) and (2.24). Thus 
A 

G_(IIJ+)= [SE W+R 4•1 ; P_(s)s= I}, (4.16) 

and similarly 

G_(IIJ_)= {SE W_R 4•1 ; P_(s)s= l}. (4.17) 

But we see immediately that the conditions 

P-(!(l + ro)s)(1 + ro)s = 1 (4.18) 

and 

P-(!(l - ro)s)(1 - ro)s = 1 (4.19) 

cannot be fulfilled. It means that the scalar product ( , )_ 
does not induce any proper symmetry on the Weyl subspaces 
IIJ + and IIJ _. It is a consequence of the fact that the IIJ ± are 
~tally isotropic with respect to the ( , )_ product. To see 
G +(IIJ ± ), it is better to consider the Lie algebra approach. 
Namely, for IIJ + the condition 

P+(~(I + ro)b + MI + ro)b) = 0 (4.20) 
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gives 

/3+(b} + b = - (/3+(b }ro + rob), (4.21) . 

which can be satisfied by t1J.e spin (3,1) subalgebra of? +. We 
obtain the same result for G +('1' _I. Thus the decomposition 
of the Dirac space 'l'e(/) onto two Weyl subspaces can be 
viewed as a decomposition onto two totally isotropic sub
spaces with respect to SU(2,2) symmetry [related to the ( , )_ 
product), each of which inherits SL(2,Q symmetry [related 
to the (, )+ product). Because /3+ (eoe1e2e3e4) = eOe1e2e3e4, 
we have that the map 

X:'I'e(f) ® 'l'E(/) -R4,1 (4.22) 

is given by (2.38)-(2.41) completed by relations 

X(isk ® sr} = X(Sk ® isr } = ix(Sk ® sr} (4.23) 

and 

= iX(s2 ® S4 - S4 ® S2 + SI ® S3 - S3 ® sd 

= hp(S2 ® S4 + SI ® S3)' (4.24) 

V. CHEVALLEY-CRUMEYROLLE SPINOR SPACE VE 

We have already shown that the complexification R ~.I 
of the real Clifford algebra R 3,1 is isomorphic to the real 
Clifford algebra R4,I and that they both have matrix repre
sentation given by (;(4), Because the complexification R L of 
R 3,I can be identified with the Clifford algebra for the com
plexified Minkowski space-time we shall consider spinor 
spaces as consequences of passing from 

R 3.1.- (R 3,I)C~C4 (5.1) 

instead of embedding 
R 3,1 '-+ R 4,1 (5.2) 

as in Sec. IV. Employing the complexification (5.1) we can 
introduce an isotropic basis of C4 (see Ref. 3) 

XI = ~(el + ie2), YI = ~(el - ie2)' 

X2 = !(e3 + e4), Y2 = ~(e3 - e4), (5.3) 

with (e l ,e2,e3,e4 ) given by (2.1). 
Let us take the minimal left ideal V" of R ~ I of the form 

Ve = R ~IYIY2. (5.4) 

Let us denote the isotropic bivector YI Y2 by v, the maximal 
isotropic subspace determined by [YI'Y2J by Nand its trans
verse, spanned by [X I ,X2 J, by P. If we choose the base 
(V I,V2,V3,V4) of VE as 

VI = ele3v = XIX2V, V3 = elv = XIV, 

V2 = V, V4 = e3v = X2V, (5.5) 

then the space of Chevalley-Crumeyrolle spinors VE can be 
identified with the vector space of the exterior algebra /\ P. 

Using the matrix representation (2.7) of the generators 
el ,e2,e3,e4 we have 
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v.~(~ 
0 0 ;} 0 0 
0 -1 

0 -i -1 

v,~(~ 
0 -i) 0 -i -1 

0 0 o ' 
0 0 0 

"'~(~ 
0 

~) 0 i 

0 0 o ' 
0 0 0 

v,~(~ 
0 0 

lJ 0 0 
0 -1 

(5.6) 

0 -i 

Let us write elements Vk of VE as 

Vk =.xIk + i!?/Jk' (5.7) 

with .xl k ,!?/J k real 4 X 4 matrices given by (5.6). Because the 
matrices !?/J k cannot be obtained by any linear combination 
of .xl k matrices, hence Vk cannot be expressed by any com-
plex combination of any basis (s; ,S2 ,s3 ,s~) of the Dirac space 
'I' E' (/'). Hence using isomorphism of algebras R ~I et,R4,1 

induced by correspondence 

(5.8) 

we see that the space of Chevalley-Crumeyrolle spinors Ve 
can not be identified with any Dirac spinor space 'I' E' (/'). 

This can be seen immediately when we write V = YIJl2 as 

V = ele3!(1- ie le2H(I- e3e4) = ele3fE' (5.9) 

Since to any primitive idempotent f of R ~.I corresponds, by 
(5.8), a primitive idempotent I of R 4•1 , we have 

R c 1.- A-
3,1 3 E"'" h ER4,1' (5.10) 

according with 
A-

Il' = A( 1 + e034)( 1 - e34)· (5.11) 

Thus we have 
c 1.- c A- A 

VE = R 3.1 e = R 3,1 V ¢:> Ve = R 4,I Ie (5,12) 

as vector spaces. Nevertheless it is obvious that Ve cannot be 
given as any Dirac spinor space 'I' e' (/'). The basis elements 
ViE VE can be written as 

V I = -I, v3 =e3/, 

V2 = ele3/, V4 = - ell, (5.13) 

where I IE for shortness. Thus we have 

Vi = UiV, with (U I,U2,U3,U4) = (x lx 2,1,x l ,x2)' (5.14) 

as well as 

Vi = ui/, with (U I,U2,U3,U4) = (- 1,e l ,e3,e3, - el)' 

(5.15) 

So any element", E Ve can be written as 

(5.16) 
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Now let us consider the map X: V. ® V. ~ R ~.I • As usual, 

(5.17) 

with OJ + determined by f and given, for example, by 
OJ+ = e 1e3 = u2• Now 

xlv; ® Vk) = udOJ+ /3+(f)/3+(ud 

= udOJ+ /3+(uk) 

= - u;OJ + VOJ + /3+(Uk) 

= u;V/3+(Uk)' 
This implies immediately that the map X can be considered 
as 

(5.18) 

where U = I/I;uj> u' = 1/1; U; E 1\ P are uniquely determined 
by elements 1/1,1/1' E V •. Thus we have obtained that (5.17) is 
equivalent to Chevalley's isomorphism of the form (5.18). 

VI. CONCLUSIONS 

We have defined the different concrete spinor spaces t., 
:I., 1/1., and V. for the Minkowski space-timeR 3.1 by the left 
minimal ideals of appropriate Clifford algebras. We have 
seen that when we are interested only in the real Clifford 
algebras then automatically our Majorana spinor space t. is 
equipped with two inequivariant almost complex structures 
J andJ', respectively. We can check that their product gives 
another almost complex structure J " , 

JJ'=J", (6.1) 

and that 

JJ' +J'J=O. (6.2) 

In other words we obtain the quaternion algebra Q on the 
vector space tE' It is given by an algebra of linear transfor
mations {J, J', J" j of t. isomorphic to the algebra of real 
quaternions and whose unit element is the identity transfor
mation of tE' So we may view t. as a quaternionic vector 
space over Q. 

Now let us consider the space-time manifold 1. It is 
known4 that the spinor structure in the sense of Milnor
Lichnerowicz does exist if we can construct a global field of 
orthonormal tetrads on 1. But this gives us the possibility 
of construction of any concrete algebraic spinor bundles 
yo 1, :I1, \II 1, and V 1. These bundles are determined 
by global fields of primitive idempotents, which, with re
spect to a fixed global field of tetrads :I(x), have the form 
(2.3), (3.2), or (5.9), respectively. We have seen that one of the 
differences between Dirac and Chevalley-Crumeyrolle 
spinor spaces lies in the fact that they are not related to r(3, I) 
equivalent primitive idempotents (2.3) and (5.9), respective
ly. [r( 3, I) is the Clifford group of the quadratic form 
(+ + + - ).] The second difference is that the imaginary 
units of the corresponding division rings (4.2) and complexi
fied (2.11) have different properties with respect to anti-in
volutions /3 ± . This implies that the Weyl decomposition of 
the Dirac space is related to the Penrose correspondence 
between the totally isotropic two-subspaces of twistor space 
and points of Minkowski vector space.5 
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Let us consider, for example, the subspace \11+. It con
tains the Dirac spinors 1/1, which, in the base (4.4), have the 
components 

(1/11,1/12,1/13,1/14) = (a l,ia l,a2' - ia2), a1a2 E C. (6.3) 

Making an appropriate linear transformation of the basis 
elements (4.4), after which 1/1 and ({J have components 
1/1= {X;j,({J= {p;j,i= 1, ... ,4,weobtain 

(6.4) 

This formula suggests the interpretation of these new com
ponents as the Penrose components (OJA,1TA') of any twistor 
Za,5 i.e., 

(xl>X2,X3,X4) = (OJo,0J\1To·,1T1,)· 

We see that although the Dirac spinor space \II. can be 
equipped with the SU(2,2) symmetry, the decomposition of 
\II. onto the Weyl subspaces is different than the decomposi
tion onto the Penrose OJ and 1T subspaces. By Penrose corre
spondence we have that with any totally isotropic two-sub
space of \II. we can relate a point of the real Minkowski 
space, the components of which can be given as 

xI'~' = (ltB,lTB')-I(OJAItA' -A. A~'), 

where 1/1 = (OJA,1TA')' ({J = (A. A,ltA') are any elements of \II +. 
The simple calculation shows that the subspace \II + is related 
to the point xl' = (0,0, - 1,0) E R 3.1 [in the base (2.1)]' 

Making some SU(2,2) transformation s of our concrete 
Dirac spinor space \II. we obtain another decomposition re
lated to the projector!(l + sYoS- 1

) 

\II. = s\ll + $ s\ll _: = \11'+ $ \11'_ . 

In the case of the Chevalley-Crumeyrolle spinors we 
have also the natural possibility of the decomposition of V. 
onto the half-spinor spaces. Because V. ~ 1\ P, the natural 
decomposition of the exterior algebra 1\ P onto even and 
odd parts implies the decomposition V. onto subspaces Ve 
and Vo spanned by 

Ve = {X IX2V,Vj, Vo = {X IV,x2Vj, 

respectively. Making use of the correspondence (5.9) we can 
build the Weyl operators if' ± also for Chevalley's spinor 
space 

if' ± = !(I + iYIY2Y3Y4)' 

It appears that V + = Vo and V _ = Ve but now neither V + 
nor V _ are totally isotropic subspaces of V.. Besides, we 
have also the difference between the geometrical properties 
of elements of V ± and \II ±. Namely, any half-spinor 
1/1 E V + determines a maximal totally isotropic subspace of 
(R 3,I)C~C4, which crosses the real slice R 3.1 of C4 along a 
light line given by X(I/I ® 1/1*). On the other side, any Weyl 
spinor 1/1 E \11'+ ,1/1= (OJA,1TA') determines a light line in R 3,1 
passing by the point a~ corresponding to \11'+ and given by 
1T ® 1T*. 

Now let us consider the space-time manifold 1. We 
have two ways to introduce the Dirac spinor spaces \II(x) in a 
smooth way. We can extend the structure group ofthe prin
cipal bundle of the orthonormal tetras to the SO+(4,1) 
group. Then we can take the associated vector bundle with 
the fiber equal to R 5. This bundle may be seen as a Whitney 
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sum of the tangent bundle T vii and a linear bundle Lvii. 
Now using the global field of primitive idempotents, which 
determines the Majorana bundle Y vii, we can repeat the 
construction of Sec. IV point by point. Let us notice that any 
decomposition of the spinor bundle \II vii onto Weyl subbun
dIes determines uniquely the same vector field tangent to the 
manifold vii. The second possibility of introducing the Dirac 
spinor bundle into the theory is to pass to some five-dimen
sional manifold E of signature (4,1) such that the observable 
four-dimensional space-time manifold is suitably regularly 
embedded into E. This case is considered in the next paper. 
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A new approach to the equivalence problem (in phase space) is presented. Given a Hamiltonian 
describing a system of particles with two degrees offreedom (and the corresponding Hamilton
Jacobi equation), it is shown how to find the most general family of Hamiltonian functions that 
generates a new Hamilton-Jacobi equation with the following (and essential) characteristic, here 
defined as equivalence: Every new solution is also a solution of the original Hamilton-Jacobi 
equation and vice versa. 

I. INTRODUCTION 

The usual approaches to the mechanical equivalence 
problem are based on Lagrangian formulation. 1-3 The prob
lem in phase space is an open one. The purpose of this note is 
to present a technique for solving this problem by using the 
Hamiltonian formulation. In order to achieve this aim we 
shall assume that the Hamilton-Jacobi equation describes a 
mechanical system and use the following theorem.4 

Theorem: Suppose we have the pair of first-order partial 
differential equations 

(1) 

and 

(2) 

where (a) x andy are independent variables; (b) z is the depen
dent variable; and (c) Zx = azlax and Zy = azlay. Suppose 
further that the Jacobian J = a (f,g)/a(zx,zy) is different 
from zero. The condition that the pair of equations [( 1) and 
(2)] should be compatible is 

[f,g]= a(f,g) + a (j,g) Zx 
a (x,zx) a (z,zx) 

+ a(j,g) + a (j,g) Zy = o. 
a (y,zy) a (z,zy) 

(3) 

II. EQUIVALENT HAMILTONIANS 

Suppose two Hamiltonians H(ql,q2,PI,P2) and 
il(ql,q2,PI,P2) yield, respectively, the following Hamilton
Jacobi equations: 

f=H(ql,q2,as, as)_a=o (4) 
aql aq2 

and 

(5) 

(a and f3 being constants of motion). 
By the use of the above theorem,J and g will be equiva

lent whenever 

J = a(f,g) #0 and [f,g] = o. 
a(PI,P2) 

The last condition implies [H,il] = O. This is the basic equa
tion and, since Hand il do not depend explicitly on S, it may 
be written as 

aH ail _ aH ail + aH ail _ aH ail = 0, (6) 
aql api api aql aq2 ap2 ap2 aq2 

which may be considered an equation for il (in fact a first
order partial differential equation). Its solutionS is the arbi
trary function G so that 

il(ql,q2,PI,P2) = G(U I,U2,U3 ), (7) 

where U;(QI,q2,PI,P2) = c; (c; being constants) are indepen
dent solutions of the subsidiary equations 

dQI dQ2 dpi dP2 _....!..-''---= 

aH lap 1 aH lap2 aH laQI aH laQ2 
(8) 

As a consequence, Eqs. (4) and (5) have the same solu
tions, provided il is given by Eq. (7). 

Definition: Hand il are equivalent if and only if Eq. (4) 
and (5) have the same solutions. 

Moreover, if there is another function il' equivalent to 
H, it belongs to the family defined by il since this is the 
general solution of the compatibility condition implied by 
Eq. (6). It is important to remark that Eq. (6) is a linear one 
and so it has no singular (envelope) solution. 

Finally, it is also worthwhile to mention that the tech
nique may be generalized to a higher-dimensional phase 
space. 

III. APPLICATION 

To clarify the procedure above, consider an isotropic 
and bidimensional harmonic oscillator described by the Ha
miltonian 

(9) 

where the Q; are the generalized coordinates and the P; the 
generalized momenta. 

Equation (6) now reads 

ail ail ail ail 
Q2- - P2- + Ql- - PI- = O. (to) 

api aQI ap2 aQ2 

This is a first-order linear partial differential equation, 
with a subsidiary system given by 

dQI dQ2 dpi dP2 dil 
-p;= -p;=q;=q:=o' 

Its independent solutions are 

U 1 =Qi +p~ =C1 , 

U 2 = Q~ + pi = c2 , 
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U3 = qlq2 + PIP2 = c3· 

Therefore Eq. (10) has the general solution 
- -.2 2-.2 2 
H = G ('II + P2' '12 + PI' qlq2 + PIP2)' (11) 

where G is an arbitrary function. 
The function given by Eq. (11) represents a family of 

Hamiltonian functions equivalent to H. 
As a final comment, we mention the configuration space 

counterpart of the above equivalence. 
The Lagrangian corresponding to the harmonic oscilla

tor described by Eq. (9) is 

L = iJih - Qlq2' 

This Lagrangian is equivalene to 

L' = !(~ + iIi) - !(t/t + ~), 
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which corresponds to the Hamiltonian 

iI' = !(Pi + p~) + !(t/t + ~). 
It is easy to see that iI' is a member of our (broader) 

family of Hamiltonians iI given by Eq. (11). 
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'Ian Sneddon, Elements of Partial Differential Equations (McGraw-Hill, 
Kogakusha, 1957), Chap. 2, Sec. 9. 

sA. R. Forsyth, A Treatise on Differential Equations (MacMillan, London, 
1903), 3rd ed., Chap. IX, Sec. 200; see also Ref. 4, Chap. 2, Sec. 4. 

Espindola, Teixeira, and Espindola 152 



                                                                                                                                    

Comment on an aspect of a paper by G. Thompson 
P. G. L. Leach 
Department of Applied Mathematics. The University of the Witwatersrand. 1 Jan Smuts Avenue. 
Johannesburg, South Africa 2001 
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G. Thompson [J. Math. Phys. 25,3474(1984)], by way of example ofageneral method, examined 
the existence of integrals of the form I = (YPx - Xpy)3 + A (x,yjpx + B (x,yjpy, for the 
Hamiltonian H = ! (P~ + p;) + V (x,y). The treatment was not complete. A complete solution is 
given here as well as indications for further development to integrals of higher order in the 
momenta. 

I. INTRODUCTION 

Thompson! investigated the existence of first integrals, 
which are polynomial in the momenta, and applied the re
sults to a variety of Hamiltonian systems. The Hamiltonian 
was the standard particle one of classical mechanics, 

(1.1) 

for an autonomous system. (The summation convention is 
adopted.) Thompson showed that, if one were seeking first 
integrals in involution with H and polynomial in the mo
menta, it was necessary and sufficient to consider only first 
integrals which were odd or even in the momenta. Thus one 
would posit either 

Ieven = f(q) + hj(qjp1l + fljk/(qjp1lpkj/ + ... , (1.2) 

or 

(1.3) 

as the structure for the first integral and determine the /'s 
and V from the Liouville equation 

i = [I,H ]PB = O. (1.4) 

It is appreciated that there are limitations on Thomp
son's method as it treats only autonomous systems and time
independent first integrals. However, there is considerable 
interest in autonomous systems2 and, in seeking integrals in 
involution with H, progress is made in identifying those sys
tems which are integrable. From the examples discussed by 
Thompson, it is evident that the calculation of first integrals 
of higher degree than quadratic in the momenta is feasible. 
This is the benefit gained by his restriction to autonomous 
systems. Even in the case of one-dimensional nonautono
mous systems, an integral of greater degree than quadratic in 
the momentum has not been possible when stated as a gen
eral problem. The reason is that the potential has to be deter
mined from a nonlinear integral equation.3

,4 It is surmised 
that the situation would be no better for systems of more 
than one degree of freedom. Indeed, the complexities of the 
calculation of quadratic first integrals for systems of twoS 
and three6 degrees of freedom for time-dependent systems 
are most daunting. 

In this paper! Thompson discussed seven examples. For 
the first six, explicit and interesting results were obtained. In 
the seventh example, specialized to the determination of a 
first integral of the form 

1= (YPx - Xpy)3 + A (x,yjpx + B (x,yjpy , (1.5) 

for the Hamiltonian 

H = !(P; + p;) + V(x,y) , (1.6) 

Thompson was unable to give an explicit result. Briefly stat
ed, forms for the first integral and the structure of the poten
tial were given in terms of two functions which were the 
solutions of a pair of coupled ordinary differential equations. 
It is the purpose of this short note to determine the explicit 
forms of the functions A, B, and Vin (1.5) and (1.6). Further, 
the case of the quartic analog of(1.5) is treated and a conjec
ture made for the structure of first integrals of higher degree 
in the momenta of the type (1.5). 

II. THE CUBIC INTEGRAL AND CORRESPONDING 
POTENTIAL 

When (1.5) and (1.6) are substituted into the Liouville 
equation (1.4), the left-hand side is a polynomial in third
order and first-order terms in the momenta. Equating the 
coefficients of independent terms to zero we obtain, after 
some rearrangement, 

aA = 3y2(Y4- _ x!...) V , ax ax ay (2.1) 

aA + aB = _ 6xy(y.!.... _ x!...) V , 
ay ax ax ay (2.2) 

: = 3X2~! -x~)V, (2.3) 

Aav +Bav =0. ax ay (2.4) 

For the moment we write 

U= (Y4--x!...)v ax ay (2.5) 

to simplify the right-hand sides of(2.1 )-(2.3). For these equa
tions to be integrable, the following condition must be satis
fied: 

a 2 (aA ) a 2 (aA aB) a 2 (aB) 
ay2 ax - axay ay+ ax + ax2 ay =0. (2.6) 

This implies that 

:.:(y2U) + ~2xyU) + a:(x2U) = O. 
v)' axay ax (2.7) 

We may rearrange (2.7) to obtain 

{(x! +1Y +5(X! +1)+6}U=0, (2.8) 
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so that V is a solution of 

( x...£.... + 4 + 2)(X...£.... + 4 + 3)(~ - X~)V = O. 
ax ay ax ay ax ay 

(2.9) 

Noting that the operators x(a lax) + y(a lay) and y(a I 
ax) - x(a lay) commute, we introduce new variables 71 and t 
by the definitions 

a a a a a a 
8TJ = x ax + Yay' at = y ax - x ay , (2.10) 

so that (2.9) becomes 

(...£....+2)(...£....+3)~V=0 (2.11) 
8TJ 8TJ at ' 

which has the solution 

V(7J,t) =K(7J)t -2 +L (7J)t -3 +M(t). (2.12) 

Given the form of V. it is appropriate to introduce the ca
nonical transformation 

71 = arctan(xly) , 

t = !log (x2 + y) , 
P., =yp" -xPy , 

P, =xp" +YPy ' 
(2.13) 

In terms of the new variables, we are studying the problem of 
the existence of a first integral of the form 

I =p~ +A (7J,tlP., + B(7J.tlP, ' (2.14) 

for the Hamiltonian 

H = !e-~(p! + p~) + V(7J,t) , (2.15) 

where 

V (7J,t ) = K (7Jlt -2 + L (7J)t -3 + M (t) . (2.16) 

Rather than transforming equations (2.1 H2.4) to the 
new variables, it is more appropriate to recalculate [I,H ] PB 

in the new variables, and so obtain a new set of equations. 
They are 

aB +B=O, (2.17) 
at 

aA + aB = 0 (2.18) 
at a7J ' 

(~ +B )e-2'-3K't-2_3L't-3=0, (2.19) 

-A(K't-2+L't-3) 

+ B (2Kt -3 + 3Lt -4 - M') = 0, (2.20) 

where' denotes differentiation with respect to the argument 
of the function. From (2.17) and (2.18) we obtain 

B = b (7J)e-', (2.21) 

A = a(7J) + b '(7J)e-'. 

Then, from (2.19) we see that 

K'=O, 

L'=O, 

K=a, 

L=P, 

a' =0, a=r. 
b /I + b = 0, b = /J sin 71 + v cos 71 • 

(2.22) 

(2.23) 

where a, P, Y, /J. and v are constants. Equation (2.20) be-
comes 

f.u sin 71 + v cos 7J)e - '(lot -3 + 3Pt -4 - M') = 0, 
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from which it is ~t that either /J = 0= v or 
M = - at -2 - Pt -3 to within an ignorable constant. 

Case (i): /J = 0 = v, i.e., B = 0, 

I=p~ +YPII' 

H =!e-2'(p~ +p~)+at-2-Pt-3+M(t), 

= ~e-2'(p~ + p~) + M(t). 

(2.24) 

(2.25a) 

(2.25b) 

We note thatthe potential is just of the form VIr), where r is 
the radial variable, and that the first integral is not truly 
cubic, but rather is a cubic function of a first integral linear in 
the momenta, the conserved angular momentum. 

Case (ii): M = - at -2 - Pt -3, 

I = P~ + YP., + /J(COS 7JP., + sin 7Jp,)e -, 

+ vi - sin 7JP., + cos 7Jp,)e-', 

H = ~e-2'(p~ + p~). 
(2.26) 

(2.27) 

Here I is not a true cubic first integral since P., is itself a first 
integral. The integrals associated with the constants /J and v 
are just the conserved momenta,p" andpy , of the free parti
cle which has the Hamiltonian (2.27). 

In contrast to the conclusion drawn by Thompson, there 
does not exist a nontrivial first integral of the structure (1.5) 
for the Hamiltonian (1.6). 

III. THE QUARTIC FIRST INTEGRAL AND 
CORRESPONDING POTENTIAL 

It is of interest to see for what potentials V(x,y) there 
exists a first integral of the general type of (1.5) which is 
quartic in the momenta, i.e., 

I = (yp" - Xpy)4 + A (x,ylP! + B (x,y}p"py 

+ C (x,y}p~ = D (x,y) . (3.1) 

The analysis is very similar to that in Sec. II and we merely 
highlight the results. The integrability condition on the ana
logs to (2.1 H2. 3) leads to the potential having the form· 

V(7J,t) =K(7J)t -2 + L (7J)t -3 +M(7J)t -4 + N(t), 
(3.2) 

where 71 and t are the coordinates defined in (2.13). If we 
rewrite (3.1) as 

I=p~ +A (7J,tlP~ +B(7J.tlP.,P, + C(7J,tlP~ +D(7J,t), 
(3.3) 

and apply the condition [I,H ]PB = 0 with H (2.5) and V 
(3.3), we find, after following the analysis of Sec. II. that 

K=k. L=I, M=m, 

A = a + IJ3cost - ysin 7J)e-' 

+ (15 - /J sin 21] - v cos 27J)e - 2, • 

B = (13 sin 71 + a cos 7J)e-' 

+ 2f.u cos 271 - v sin 27J)e - 2, , 

C = (15 + /J sin 271 + v cos 27J)e - 2, , 

(3.4) 

where the lowercase letters (apart from 71 and t) are aU con
stants. 
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The function D (1],t) is detennined by the two differen
tial relations 

aD + Be2(;(2kt -3 + 3/t -4 + 4mt -5 - N/) = 0, 
a1] 

(3.5) 

aD + 2Ce2, (2kt -3 + 3/t -4 + 4mt -5 - N/) = O. 
at 

(3.6) 

Writing the tenn in parentheses in (3.5) and (3.6) as X (t ), the 
integrability condition for D is 

(f3 sin 1] + r cos 1])e' (X + X') 

+ 2Vt cos 21] - v sin 21])(X' - 2X) = O. (3.7) 

We distinguish four cases. 
Case (i): /3 = 0 = r, f.l,v=lO. Equation (3.7) becomes 

X' - 2X= 0, X=Re2
', (3.8) 

whence 

N = - !Re2
' - kt -2 - It -3 - mt -4 , (3.9) 

and the Hamiltonian is 

(3.10) 

which we identify as a Hamiltonian of oscillator type. The 
first integral (3.3) is not a true quartic, as P., is itself a first 
integral. [This is immediately evident from (3.10).] 

Case (ii): /3, r=lO, f.l = 0 = v. Equation (3.7) becomes 

X I + X = 0, X = Re -, , 

whence 

(3.11) 

N = !Re-' - kt -2 -It -3 - mt -4 , (3.12) 

and the Hamiltonian is 

(3.13) 

which we identify as a Hamiltonian of Kepler type. Again 
the first integral (3.3) is not a true quartic, asp., is itself a first 
integral. 

Case (iii~' /3 = 0 = r = f.l = v, 8 =10. Equation (3.5) and 
(3.6) become 

aD =0, 
a1] 

~~ = 28(2kt -3 + 3/t -4 + 4mt -5 - N'), 

so that 

N(t) = - (1!28)D(t) - kt -2 -It- 3 - mt -4, 

(3.14) 

and the Hamiltonian is 

(3.15) 

which is just the Hamiltonian of a particle moving in a gen
eral radial potential. The first integral is, again, not a true 
quartic. 

Case (iv~' /3, r, f.l, v, 8 =10. The integrability condition 
(3.7) separates into two equations for X, 
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X'-2X=O, 

X'+X=O, 
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(3.16) 

(3.17) 

from which it is evident that X = 0, and the Hamiltonian is 
that of a free particle, 

H = !e-2'(p~ + p~). (3.18) 

Again, the first integral is not a true quartic. 
We do not bother to write down the various first inte

grals associated wth the different cases as they are very well 
known. 

IV. DISCUSSION 

We have looked at the nature of the cubic and quartic 
first integrals of the fonn 

i= (YPx _Xpy)3 +A (x,Y)Px +B(x,y)Py, (4.1) 

I = (YPx - Xpy)4 + A (x,y)p~ + B (x,y)PxPy 

+ C (x,y)p; + D (x,y) , (4.2) 

for the Hamiltonian 

(4.3) 

following the prescription of Thompson. Our results for (4.1) 
do not agree with this, which were, as we noted above, in
complete. It turned out that (4.1) was not a true cubic, nor 
(4.2) a true quartic. Furthennore, the existence of time-in de
pendent first integrals, apart from the energy ( = H) and the 
angular momentum, was limited to the free particle in the 
case of (4.1) and the oscillator, Kepler problem, and free 
particle in the case of (4.2). 

The clue to the successful analysis of both the cubic and 
quartic cases was the recognition of the commuting differen
tial operators 

a a a 
-=y--x-, 
a1] ax ay 

(4.4) 

which enabled the general fonn of the pennissible potential 
to be identified readily. Recasting the problems in tenns of 
the corresponding canonical coordinates considerably sim
plified the subsequent analysis. 

It is evident that, if one were to treat the problem for 
which 

1= (YPx -xPyt +A (X,y)p~-2 + ... (4.5) 

was the postulated structure of the first integral, the general 
fonn of the potential would be 

n-2 

V(1],t) = LK;(1])t -2-; +M(t). (4.6) 
;=0 

The analysis could then be undertaken in similar fashion to 
that in Sec. II. We would expect an increase in the complex
ity of the analysis in tenns of possible cases. However, 
whether new Hamiltonians with first integrals other than the 
energy and angular momentum would eventuate is an open 
question. 

'Gerard Thompson, "Polynomial constants of motion in fiat space," J. 
Math. Phys. 25, 3474 (1984). 

20ne needs only to consider the vast literature devoted to Henon-Heiles-
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The Lorentz group and the Thomas precession. II. Exact results for the 
product of two boosts 
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(Received 13 May 1985; accepted for publication 18 June 1985) 

The product of two Lorentz boosts in different directions is equal to the product of a pure boost 
and a spatial rotation. To second order, the resulting boost is simply the sum ofthe individual 
boosts, and the rotation is responsible for the Thomas precession. Here the resulting boost and the 
rotation correction are calculated exactly. The calculation of higher-order corrections to the sum 
of two finite Lorentz boosts is not usually done, and here previous exact results are critically 
compared. The complete expression is, to the best of the author's knowledge, a new result. 

I. INTRODUCTION 

The Thomas precession arises as a spatial rotation cor
rection to the product of two consecutive Lorentz boosts in 
different directions. 1-7 This rotational effect is physically im
portant because it is easily measurable in the laboratory. 
Mathematically, the correction arises because the result of a 
product of two Lorentz boosts is not itself a Lorentz boost, 
but contains a spatial rotation correction term. Even though 
this is obvious from the commutation relations of the Lor
entz Lie algebra (the commutator of two boosts is a rotation), 
it is not always referred to explicitly. 

Most calculations of the rotation correction to the pro
duct of two boosts are done to second order only. In a pre
vious paper,1 which is the predecessor of this paper, we de
termine what happens at the next order of approximation. 
The mathematical techniques used are formulas akin to the 
Baker-Campbell-Hausdorff formula, which correct the 
product of noncommuting exponentials in the Clifford alge
bra. There are an infinite number of correction terms to the 
product of two exponentials. The result of paper I (Ref. 7) is 
that the third-order correction is a correction to the Lorentz 
boost, and not a correction to the spatial rotation. 

In this paper, we employ more general mathematical 
techniques for evaluating exact products of exponentials, 
following the spirit of Ref. 8. We are thereby able to obtain 
the exact net Lorentz boost as well as the exact spatial rota
tion correction. 

Among related work on the Thomas precession, we 
mention Hestenes9 and Han, Kim, and Son. 10 The separate 
results of these authors are critically compared with our re
sults in the text. The net Lorentz boost is calculated and 
related to the standard result for the addition of nonparallel 
velocities. 

II. THE DIFFERENTIAL FORM REALIZATION OF THE 
LORENTZ GROUP 

The mathematical framework upon which all our re
sults are based is the Clifford algebra of differential forms of 
Kahler and the author."-'7 Article I (Ref. 7) includes 
enough of a review for the reader to follow the present paper. 
For more details, see Refs. 14-16. The key in the construc
tion is to use the basis differential forms uP = dx? of Lor-

entz-Minkowski space-time (u l = dx, ~ = dy, tT = dz, 
u4 = dt) with metric diag( - 1, - 1, - 1, + 1) to realize 
antisymmetric tensor fields. Elements of the algebra are real
coefficient differential forms called "tensor types." 

The product in the algebra is the associative and inverti
ble vee product of differential forms V. The vee product 
combines the totally antisymmetric exterior (Grassmann) 
product 1\ with the metric inner product by using the per
mutation group. Sample formulas for the vee product of ten
sor types are provided for reference in Tables I and II. Some 
of the multiplication rules are familiar from the rules for 
multiplying linear combinations of Dirac gamma matrices, 
which give a specific matrix representation of the Clifford 
algebra in Lorentz-Minkowski space-time (see, however, 
Ref. 18). 

The volume elements are used to define the duality in 
both three and four dimensions. For example, vee multipli
cation by the volume element 11 = u l 1\ ~ 1\ tT in three-di
mensional space gives the space dual tA of a spatial tensor 
type A. Similarly, vee mUltiplication by the volume element 
OJ = u l 1\ ~ 1\ tT 1\ u4 in space-time gives the space-time dual 
tB of any tensor type B. 

The reason for choosing to work with the Clifford alge
bra is that tensor types in the space M 1,3 have an intrinsic 
group of inner automorphisms, which is locally isomorphic 
to SO(1,3), the Lorentz group. Hence, working in the Clif
ford algebra automatically guarantees intrinsic Lorentz co
variance. The theorem responsible for this covariance de-

TABLE I. Vee products of vector types in Minkowski space-time. 

a = aid, (a· b) = aib i , lal = m, 
aVb= -(a·b)-7]V(aXb), 

ta = - 7] Va, a V q' = - q' Va, 7] V a = a V 7], w V a = - a V w , 

{ 

11 V 0" = w = - q'V 7] , 

w V q' = 7] = - q' V w , 

7]Vw=q'= -wV7], 

7]V7]=I, wVw= -I, 

7]Vd=dV7], i= 1,2,3, 

wVql'= -ql'Vw, 1'=1,2,3,4. 
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TABLE II. Exponentials of tensor types in Minkowski space-time. 

exp(a 1\ oA) = coshlal + [(al\oA)/lal]sinhlal. 

exP(t 8) = 008181 + (t 8/181)sin181 

= 008181 - [(1/ V 8)/181 ]sinl81 . 

fines the "twisted Clifford group," and is well known 
(Theorem 3 of Ref. 7). 

We give the differential form realization of the Lorentz 
Lie algebra using the basis two-forms in space-time. Define 
the Lorentz boost generators K I and the spatial rotation gen
erators L I as follows 7 : 

LI=Hd=wVKI=tKI, i= 1,2,3, 
(1) 

KI=!dA0'4= -!wVL I = -!f LI . 

The two sets of generators in the full Lorentz group are 
duals of each other. The commutation relations of SO(I,3) 
are realized by the basis (1) in the vee product 

[L I,L j] = E'jkL k , 

[L I,K j] = E'jkKk, 

[KI,K j] = - E'jkL k . 

(2) 

The origin of the Thomas precession correction is a con
sequence of the third commutator in (2): the product of two 
distinct boosts generates a spatial rotation. 

The exponential mapping takes the local Lie algebra 
into the corresponding Lie group. 19,20 The elements of the 
Lorentz group are therefore exponentials oflinear combina
tions of the Lorentz basis (1). We label a combination of the 
six basis two-forms as a tensor type two J: 

(3) 

This tensor type two may be decomposed via the space
time decomposition 14-16 in the same way that an electromag
netic field is decomposed into electric and magnetic vectors. 
We label two space vectors 0 and b as the spatial and space
time components ofthe tensor type (3) 

J = b A 0'4 - TO = b V 0'4 + 1] V 0; 
(4) 

b l =J I4 , (JI= _!E'jkJjk. 

The space-time decomposition identifies the three boost 
components b I, i = 1, 2, 3, and the three spatial rotation 
components (J I of the Lorentz group. We have the identifica
tion 

J= 2b lKI - 2(JILI. (5) 

The elements of the Lorentz group are the exponentials 
of the tensor type two J. It is instructive to consider boosts 
and rotations separately for the moment. The pure boosts are 
defined by the relative frame velocity V and the following 
equations (carets denote unit vectors): 

L(b) = exp( -! bA0'4) = exp( -bIKI) 

= cosh !Ibl - b A 0'4 sinh !Ibl , (6a) 

b = V, tanhlbl = lVI, r = (1 - IVI2)-1/2 = coshlbl . 

(6b) 
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In the Clifford algebra, the Lorentz boost operator I.. is a 
combination of a scalar and a space-time tensor type two, 
demonstrating that the exponential mapping is not type-pre
serving. Similarly, the spatial rotation operator is defined in 
terms of the rotation vector 0 as follows: 

R(O) = exp(! TO) = exp((J IL I) 

= cos !IOI -1] V 9 sin !IOI . (7) 

A tensor type A (or a combination of distinct tensor 
types) is transformed by the inner automorphisms as 

A' = L(b)VAVL( - b), 

A " = R(O) V A V R( - 0) . 

(8a) 

(8b) 

Using the forms for the exponentials, Eqs. (8a) and (8b) 
may be separately evaluated to give the general expressions 
for a Lorentz boost, and a three-dimensional conical rota
tion, respectively. An advantage over conventional treat
ments is the complete generality of the type A in (8) (in the 
usual treatments, A is a vector). In the Clifford algebra the 
same general equation (8) performs the inner automorphisms 
regardless ofthe rank ofthe field A (see Ref. 7). 

The most general element of the transformation group is 
the exponential of J (3,4,5) which combines both a boost b 
and a rotation O. 

III. THE PRODUCT OF TWO CONSECUTIVE BOOSTS 

The following statement is correct to second order: 
"The end result of two consecutive Lorentz boosts in differ
ent directions is a boost by the sum of the two individual 
boosts, accompanied by a spatial rotation correction." 

The infinitesimal transformations of first order do not 
include even the first rotation correction, which is of second 
order. We show here that when one includes all the higher
order corrections, they contribute to both the total boost as 
well as to the rotation correction. The infinitesimal treat
ments give the following approximation for the product of 
two boosts defined by the boost vectors a and b. 

First order: 

L(b) V L(a) ::::;L(a + b) . (9) 

The next-order approximation is the spatial rotation 
correction, which is responsible for the Thomas preces
sion.3,5,7 

Second order: 

L(b) VL(a)::::;R(O) VL(a + b), O::::;!aXb. (10) 

In paper I (Ref. 7) we compute the next-order correc
tion, which turns out to be a correction to the boost, and not 
to the rotation. 

Third Order: 

L(b)VL(a) = R(O)VL(d), (1Ia) 

O::::;! axb, (lIb) 

d::::; [1- !lal 2 - ~(a· b)]b + [1 + !lbl 2 + !(a' b)]a. 

(Hc) 

Note, in particular, the lack of symmetry between the 
two consecutive boost vectors a and b in the correction d 
( 11 c). It is the object of this paper to obtain exact values for 
the rotation correction 0 and for the net boost vector d. 
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IV. CALCULATION OF THE EXACT ROTATION 
CORRECTION 

We wish to solve the exponential separation (11 a) exact
ly. It is worthwhile noting why this is practicable in the 
framework of the Clifford algebra of differential forms. The 
separation follows after performing a space-time decomposi
tion of the product of exponentials as in (4). This is transpar
ent when using the differential form basis, but is extremely 
difficult to achieve within an explicit matrix representation 
such as the Dirac gamma matrices. 17 

Using the vee product rules, expand the left-hand side of 
(lla): 

L(b)VL(a) 

= exp( - ! b V u4
) V exp( - ! a V u4

) 

= cosh !Ialcosh ~Ibl + (a· b) sinh !Ial sinh !Ibl 

- (a sinh !Ial cosh !Ibl + b cosh ~Ial sinh !Ibll V u4 

- TJ V (aXb) sinh ~Ial sinh ~Ibl . (12) 

Similarly, the right-hand side of (lla) is 

JR(6)V L(d) 

= exp( - ! TJ V 6) Vexp( - ! d V u4
) 

= cos !161 cosh !Idl - (U(9. d) sin !16lsinh !Idl 

- [d cos !16lsinh !Idl 

+ (9Xd) sin !161 sinh !ldlJ V u4 

- TJ V 9 sin !161 cosh ~Idl . (13) 

Equating the scalar, vector, type two, and type four ten
sor types in (12) and (13) gives a set of equations that can be 
solved uniquely to give 6 and d in terms of a and b. An 
immediate result is the orthogonality of the rotation correc
tion vector 6 to the net Lorentz boost d. This follows since 
there is no tensor type four (scalar times (U, the four-volume 
elementl inJl2), hence the tensor type four term in (13) con
taining 6 • d must vanish identically. 

Comparing the spatial tensor type two in (12) and (13) (a 
space vector times the space volume element TJ) shows that 6 
is along aXb. From vector algebra, the direction of d is a 
linear combination of the directions of a and b. This is a 
result and not an assumption in our treatment. We have 

9· d = 0 , 9 = (aXb)/laXbl 

(14) 

Later, in Sec. V, we solve for the length of d and the 
scalar functions a and /3 in order to reconstruct the boost 
vector d = I did. At this point we wish to calculate the total 
angle of the rotation correction. Equating the scalar types 
and the spatial tensor type twos in (12) and (13) gives two 
equations 

cosh !Ial cosh !Ibl + (a· b) sinh !Ial sinh !Ibl 

= cos !16lcosh !Idl , (ISa) 

(aXb) sinh !Ial sinh !Ibl = 9 sin !161 cosh !Idl . (ISb) 

It is convenient to define an angle sbetween the individ
ual boost vectors a and b by 

(a·b) = coss, laXbl = sins. (16) 
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Since 6 is parallel to axb, we obtain a scalar relation 
from (ISb) as follows: 

aXb = 9 sin s-::::} sin S sinh ~Ial sinh !Ibl 

= sin ~161 cosh !Idl . (17) 

Dividing (17) by (ISa) and using (16) gives an expression 
for tan !161, which we label as <1>. The total correction angle 
then follows from (14). 

<I> = tan !161 = sin S /(coth !Ial coth !Ibl + cos s) (ISa) 

:::} 6 = 9161 = 2(aXb/sin s) arctan <I> • (ISb) 
This result is generally not referred to in the literature, even 
though it is given in Ref. 4 [an expression equivalent to (ISa) 
appears in problem 13, p. 336], and in Ref. 9 [Eq. (IS.29)]. 

Han, Kim, and Son lO obtain a similar, though entirely 
distinct, expression for the total rotation correction. We re
call that result from Ref. 10 [Eq. (11)], where the special case 
lal = Ibl is calculated (note that their angle between boost 
vectors is 1T - S ): 

OHKS = 2 arcsin [sins/(coth2!lal +coss)]. (19) 

This expression is to be compared to our expression (IS). 
Either expression for 6 reduces to zero when a is parallel to b. 
Also, it is easy to expand for a small angle S between a and b 
to obtain the first-order term 6::::! axb from (IS), and the 
same expression with lal = Ibl from (19). The case which 
distinguishes between (IS) and (19) is the orthogonal case 
where (a· b) = O. We can then compare our expression (IS) 
for lal = bl with (19) in the limit as lal becomes infinite. One 
has, for S = 1T /2, 

0= 2 arctan(tanh !Ial tanh !Ibl), 

OHKS = 2 arcsin(tanh2 !Ial) , lal = Ibl . 

(20a) 

(20b) 

When we examine the special case lal = Ibl in the limit 
as I a I becomes very large, we find that the corresponding 
expressions differ by a factor of 2: 

lim 0 = 1T/2, 
18 1_00 

lim OHKS = 1T • 
181_00 

(21a) 

(21b) 

From the physical picture of a boost by equal vectors at 
an angle 1T/2 to each other, one would intuitively expect the 
rotation correction to approach 1T/2 and not 1T. 

V. THE EXACT BOOST CORRECTION 

In this section we calculate an exact expression for the 
net boost d which is the result of two consecutive boosts a 
and b. We solve (17) for cosh! I d I and then square the result 
to obtain coshldl [substitute sin !161 from Eq. (ISa)]. With 
the Lorentz factors defined by (6b), one obtains 

coshldl = coshlalcoshlbl + cos S sinhlalsinhlbl (22a) 

:::}Yd = YaYb(1 + (Va· Vb))' (22b) 

This is a standard result. 1,4,6,9 The magnitUde ofthe rela
tive frame velocity V d is easily obtained by converting Eq. 
(22)totanhldl = IVdl: 

IVd I = (IVa + Vb 12 - IVa XVb 12)1/2/[1 + (Va· Vb)] . 

(23) 
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This is also a standard result [Ref. 6, Eq. (11.32) or Ref. 
4, problem 7, p. 335]. 

One may obtain the length of the net boost vector I d I 
from (22) as 

Idl = 2 arcsinh£!(cos2~ cosh(lal + Ibl) 

+ sin2~ cosh(lal-lbl) - IJr/2. (24) 

We compare this result with the corresponding result in 
Ref. 10, which gives the length of the net boost vector in the 

I 

R -1(0) V L(b) V L(a) = L(d) 

special case lal = Ibl [Ref. 10, Eq. (10) (note that their angle 
iS1T-s)]: 

Idl = 2 arcsinh[cos(s /2) sinhlal] , lal = Ibl . (25) 

This agrees exactly with expression (24) for lal = Ibl. 
When we directly calculate the direction of the net boost 

vector, we obtain a result that is entirely distinct from that 
obtainable by the standard methods. We proceed to calcu
late the direction of the net boost vector by solving Eq. (11a) 
for the net boost and expanding. Comparing the (vector) V q4 

terms gives 

A [ - sin !I0i(csc S sinh !Ialcosh !Ibl + cot s cosh !Ialsinh ~Ibl)] 
=>b + cos !IOlcosh !Ialsinh !Ibl 

A [ + sin !I0i(cot s sinh !Ialcosh !Ibl + csc s cosh !Ialsinh !Ibl)] 
+ a + cos !IOlsinh !Ialcosh !Ibl 

= d sinh !Idl . 

It is convenient to define two variables x and y as fol
lows: 

x = sinh !Ialcosh !Ibl 

= ~(coshlal coshlbl + coshlal - coshlbl - 1)1/2 

= !(ra rb + ra - rb - 1)1/2, (27a) 

y = cosh ~Ialsinh !Ibl 

= !(coshlal coshlbl - coshlal + coshlbl - 1)1/2 

= !(ra rb - ra + rb - 1)1/2. (27b) 

These variables satisfy the identities 

x2 + y2 = !(coshlalcoshlbl- 1) = !(rarb - 1), 

xy=!sinhlalsinhlbl =!rarbIVaIIVbl. (28) 

We have already determined that the net boost vector d may 
be decomposed as (14): 

d=ai+.Bb 
=>a2 + fJ2 + 2afJ cos s = 1 . 

(29a) 

(29b) 

Using x and y in (26) enables us to write the net boost 
vector in the decomposition (29a) exactly, since the coeffi
cients are 

_ x cos !IOI + sin ilOl(x cot S + Y csc s) a- , 
sinh !Idl 

fJ=YCOSiIOI-sin!IOI(xcscs +ycots). 
sinh !Idl 

(30) 

In order to simplify the expressions for the a and fJ 
coefficients (30) we use the combination 4> (18a), and also 
coshldl (22), which is equal to rd' We rewrite 4> in terms of 
the frame velocities, 

160 

4>= rarblV"xVbl =tan!IOI (31a) 
1+ ra + rb + rd 

{
sin !161 = 4>(1 + 4>2)-1/2, 

=> cos !161 = (1 + 4>2)-1/2, 
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(3Ib) 

rd = coshldl = rarb(1 + (Va· Vb)) 

=>sinh ildl = (!(rd - 1))1/2. 

(26) 

(31c) 

(31d) 

We finally have the following expJ;"essions for the a and 
fJ coefficients: 

x + 4>(x cot s + Y csc s ) a = --..:......--,-=----=--~ U(l + 4>2)(rd - 1)] 1/2 ' 

y-4>(xcscs +ycots) 
fJ = [!(l + 4>2)(rd _ 1)] 1/2 . 

(32) 

Here, sis the angle between the two boost vectors a and 
b; x and yare given by (27); and 4> and rd are given in (31). 
The a and fJ coefficients can thereby be written in terms of 
Va and Vb' 

Equations (29a) and (32) give the direction for the net 
boost vector d, which is the result of two successive boosts by 
a and b. The magnitude of d is given by Eq. (24). It is easy to 
verify the identity (29b) directly from (32) using (28), thus 
demonstrating the consistency of our derivation. 

We examine some special cases for the net boost direc
tion. First, for b = 0, we have 4> = 0, rd = ra' 
x = (!(ra - l)tI/2 , and y = 0, which implies that a = 1, 
fJ = 0, hence d = i as expected. 

Second, the parallel case becomes the usual velocity ad
dition law, since there is no rotation correction. One has the 
result (a + fJ )2 = l=>(a + fJ) = 1:::>d = a, from identity 
(29b). With Va parallel to Vb' Eq. (23) is the velocity addition 
law. . 

We now address the reasons why the direction of the net 
boost vector d is different from that obtained by the standard 
methods. The standard result is [Ref. 1, Eq. (2.55'), or Ref. 6, 
Eq. (11.31)] 

V _ Va + (lIra)Vb + (1 - lIra)(Vb • ValVa 
standard - 1 + (Va. Vb) 

'" '" 
= 

Va + Vb + (l-lIra)(VbXVa)XVa 
(33) 
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[Note that the corresponding expression in Ref. 9, Eq. 
(IS.27) has a sign mistake.] The standard expression for the 
net velocity vector Vs (33) can be written in the form (29a) 
with the following coefficients, using (23): 

a s = 
IVa I + IVb 1(1 - lIra)cos s 

[IVa +VbI 2 -IVaXVbI 2
]1/2' 

(34a) 

IVbllra 
/3s = [IVa +VbI 2 -IVaX VbI 2r/2 

(34b) 

The a and /3 coefficients derived via the usual method 
(34) are entirely distinct from those obtained in this paper 
(32). This is true even though they both separately satisfy 
identity (29b). The reason for this discrepancy is that the 
usual derivation fails to take into account the finite rotation 
correction to the product of two boosts. 

The magnitude of the net boost vector d is not in ques
tion; that is given by both methods as (23) or (24). Neverthe
less, the correct direction ofthe net boost vector, which is the 
result of two arbitrary boosts, poses a problem. The two 
methods give entirely distinct expressions, which agree only 
in the parallel case. We feel that one definitely needs to take 
into account the finite rotation correction, which rotates the 
net boost towards the direction of the second boost. 

Since the magnitude of the net velocity vector is the 
same whether obtained by the usual method or in the deriva
tion of this paper, the relationship is some spatial rotation. 
Denote the rotation parameter by t/J. It follows from (29a) 
that this rotation is in the plane defined by the individual 
boosts a and b. To analyze this rotation, define a boost vector 
s, which corresponds to the standard net velocity Vs (33). 
Both s and d and, correspondingly, V s and V d' have the same 
magnitude: 

h '" 

s=asi+/3sb=Vs ' 

lsi = Idl, IVsl = IVdl = tanhlsl = tanhldl, (35) 

As noted above, there is a spatial rotation which trans
forms s into d, or, equivalently, Vs into V d: 

Vd = R(cI»)VV. VR-I(cI»), cf, = 9 = iXbcscs 

:::::} d = lR(cI»)VsVlR-l(cI») 

=>ai +!3b = lR(cI»)V (asi +/3sb)VlR- l(cI»). 

(36) 

Perform the spatial rotation using (Sb) or the formula for 
a conical rotation of a vector4

•
7 to obtain the following rela

tions for the a and /3 coefficients: 

a = as coslcl»l- sinlcl»l(as cots +/3s cscs), 
(37) 

/3=/3s coslcl»l +sinlcl»l(as cscs +/3. cotS)· 

Comparing (37) with (32) allows us to solve for tanlcl»l, 
which turns out to equal the combination ct>[(ISa), (31a)]: 

tan I cI» I = - ct>~ = - 0/2 . (3S) 

The net boost vector V d is therefore obtained from the 
standard net boost vector Vs by rotating through one-half 
the rotation correction angle a. With this result, we can write 
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the net effect of two consecutive Lorentz boosts as follows 
[remember that R-I(O) = R( - a)]: 

L(b) V L(a) = R(O) V L(d) 

= R(O) V qR( - !O) v s v R(!O)] . (39) 

Now apply theorem (5.1) or Ref. 19and use Lemma (3.4) 
from Ref. 7 to write (39) in terms of the boost vector s: 

L(b) V L(a) = R(O) V H( - !O) V L(s) V R(!O) 

= R(!O) V L(s) V R(!O) . (40) 

This is our final result. Equations (39) and (40) express 
the decomposition of two consecutive Lorentz boosts into a 
net boost and a spatial rotation. To the best of our knowl
edge, this exact decomposition does not appear elsewhere in 
the literature. We discuss the physical consequences of this 
result in the following section. 

VI. SUMMARY AND DISCUSSION 

In this section we review the usual arguments concern
ing the composition of two boosts and relate them to the 
results of the previous sections. The standard net velocity Vs 
is obtained by Lorentz transforming the velocity vector Vb 
back into the frame of a. Use the four-velocities Ub and Us to 
perform the transformation in the usual manner: 

Ub = rb(Vb + 0-
4
), Us = rs(Vs + 0-

4
), 

Us = I. -1(a)VUb VL(a) 

{

r. = rarb(1 + (Va· Vb))' 

:::::} Vs = Va + (lIra)Vb + (1 - lIra)(Vb • ValVa 
1 + (Va ·Vb ) 

(41) 

If we are boosting a tensor type A first from the rest 
frame to the a frame, and then from the a frame to the b 
frame, it is tempting to assume that this is equivalent to a 
direct boost from rest to the s frame, where s is the boost 
corresponding to the combination of the two frame velocities 
(41). Even though some authors caution that the transforma
tion of a velocity is not the same as the composition of boosts, 
this point is not always emphasized. It is, therefore, very easy 
to be led to the false conclusion that L(b) V L(a) is equal to 
L(s). The actual result of combining L(a) and L(b) involves the 
rotation correction in an intrinsic manner. In the above sec
tions, we have shown that the following decompositions are 
unique: 

L(b) V L(a) = R(O) V L(d) = R(!O) V L(s) V R(!O) , 

a = [(Va xVbJlIVa XVb I] 2 arctan ct>, 

(42a) 

(42b) 

ra rb IVa XVb I 
=, (42c) 

1 + ra + rb + r. 
wheres is given by(35)and(41),dby (23), (24), (29a), and (32), 
and IVs I = IV d I by (23). 

We wish to see what a general tensor type A looks like 
after it has been boosted first by a, and then by b. Or, rather, 
what the result ofthe two successive boosts A ' looks like in 
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the original laboratory frame. We have the relations 

A ' = JL(b) V JL(a) V A V JL -I(a) V L -I(b) , (43a) 

A = JL -1(a)VL -l(b)VA' V L(b) V L(a) . (43b) 

Using the result (42a) with JL -I(a) = JL( - a) in (43) gives a 
transformation as our final result for the decomposition of 
the product of two boosts: 

A ' = R(!9) V JL(s) V R(9) V A V R( - !9) 

V JL -I(S) V R( - !9) , (44a) 

A = R- I(!8)VL( - s)VR- 1(!9)VA 'VR(!9) 

VL -iI - s)VR(!9). (44b) 

The physical picture is the following. The net effect of 
two consecutive nonparallel boosts is equivalent to rotating 
around aXb by one-half the correction angle (42b) then 
boosting by the standard combination of velocities (41), and 
then rotating once more by one-half the correction angle in 
the same sense. The total net rotation is through the entire 
correction angle. Alternatively, one can perform a boost ac
companied by a single rotation in one step, but in that case, 
one cannot use the standard velocity combination (41), but 
must use the boost vector d and the velocity V d derived in the 
preceding section. 

There is considerable confusion as to the precise de
scription of the combination of two boosts. To the best of our 
knowledge, the literature does not explicitly resolve this 
problem, but, as shown above, the result follows directly 
from the Lorentz group. This analysis suggests that it is mis
leading to speak of "addition" of nonparallel velocities, since 
one cannot "add" nonparallel velocities without generating 
a spatial rotation as well. 

VII. CONCLUSION 

In this paper we have discussed two components of the 
product of nonparallel Lorentz boosts. First, we calculated 
the exact spatial rotation correction to the product of two 
boosts. This effect is responsible for the well-known Thomas 
precession in the infinitesimal case. The finite result is not 
widely known, even though it is given in 'Refs. 4 and 9. 
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Second, the net Lorentz boost, which results from two 
consecutive boosts, was calculated exactly .. The magnitude 
of the net boost vector is a standard result. The direction of 
the net boost vector is, however, a problem. We obtained a 
result that differs entirely from that obtainable by the stan
dard methods. The direction of the net boOst vector, or 
equivalently, the net frame velocity, is the usual result rotat
ed through one-half the finite correction angle calculated 
previously. The reason for this discrepancy is that the usual 
method cannot account for the finite rotation correction to 
the product of two boosts. 

Note added in proof; The exact finite rotation angle [Eq. 
(18)] is also derived in Ref. 21, Eqs. (13) and (28). Professor 
Ben-Menahem calls this the "Wigner angle." 
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In an invariant formulation of pth-grade continuum mechanics, forces are defined as elements of 
the cotangent bundle of the Banach manifold of C P embeddings of the body in space. It is shown 
that forces can be represented by measures which generalize the stresses of continuum mechanics. 
The mathematical representation procedure makes the restriction offorces to subbodies possible. 
The local properties of the stress measures are examined. For the case where stresses are given in 
terms of smooth densities, it is shown that the structure of forces agrees with the form of forces one 
assumes in the traditional formulation, and the equilibrium differential equations are obtained. 

I. INTRODUCTION 

It is well known that the laws of continuum mechanics, 
the mechanics of deformable bodies, cannot be deduced 
from the laws of mechanics of material points and rigid bo
dies. Additional assumptions are introduced and new no
tions such as internal forces, external forces, stresses, and the 
eqUilibrium equation emerge. 

The geometric framework in which the classical theory 
of continuum mechanics is developed is the three-dimen
sional Euclidean space. The following paragraphs review the 
basic structure of the theory. 

The first basic assumption made in continuum mechan
ics regarding the nature offorces is that the total force acting 
on a body B is of the form 

f = r b dv + i t da, 
JB aB 

(1) 

where b is a continuous vector field, called the body force, 
defined in the body, and t is a continuous vector field, called 
the surface force, defined on the boundary of the body. The 
basic problem of continuum mechanics is encountered when 
we try to restrict a given force on B to a subbody. Consider
ing a subbody P of the body B, the total force fp acting on it 
should also be given in terms of a body force and a surface 
force as in Eq. (1). In general, the fields band t associated 
with the subbody P are different from those given on B. In 
particular, physical experience shows that even if P is dis
joint from the boundary of B, a surface force acts on the 
boundary of P. This newly emerged surface force is tradi
tionally termed internal force or traction as it may be inter
preted as the force that is applied on P by its complement in 
the body. Thus, the values of band t at a point X E P will 
depend in general on the subbody P under consideration and 
we write 

b=b(X,P), t=t(X,P). 

The next assumption, called Cauchy's postulate, deals 
with the dependence of band ton P. It states that b does not 
depend on P so that b = b (X), and that the surface force de
pends on P only through the unit vector n perpendicular to 
the boundary of P at X, i.e., t = t (X,n). Clearly, this last hy
pothesis does not provide all the necessary information need
ed in order to determine t. 

Assuming that the total force on each subbody of the 
body B vanishes, it is possible to prove the following results. 

There exists a tensor field u in the body such that 

t(X,n) = u(X)(n(X)). (2) 

The tensor field u is the stress field, and it has to satisfy the 
differential equation 

divu+b=O inB. (3) 

If we assume in addition that the total moment on each 
subbody of B vanishes, we find that u is symmetric. 

From Eqs. (1) and (2) it is clear that if u is given, one can 
associate a unique body force field and a unique surface force 
field with each subbody. However, the differential equation 
(3), known as the equlibrium equation, and the boundary 
condition (2) cannot determine the stress uniquely for given b 
and ton B. This lack of uniqueness in the determination of 
the stress field means that the force on a body cannot be 
restricted to subbodies in a unique fashion. In order to deter
mine the stress field, constitutive relations are introduced. 
The constitutive relations, obtained by physical experi
ments, relate the stress with the configuration of the body 
and supply all the necessary information so that the stress 
can be determined uniquely. Clearly, using Eq. (2), u can be 
determined uniquely if t is given for every subbody P of B. 

Modem attempts to axiomatize the theory offorces and 
stresses can be found in Gurtin and Williams, I Gurtin and 
Martins;2 and Truesdell.3 The authors postulate a system of 
axioms describing the properties of forces in general. In ad
dition, they assume equilibrium and they assume that exter
nal forces are composed of body forces that are absolutely 
continuous with respect to the volume measure, and surface 
forces that are absolutely continuous with respect to the sur
face area of the body. With these assumptions the authors 
prove that forces are given in the form of Eq. (1) and that 
Cauchy's postulate holds. Marsden and Hughes4 have gen
eralized the theory to Riemannian manifolds using an invar
iance principle for an assumed form of a balance of energy 
where they assume the transformation rules for the various 
variables including b and t. 

During the 1960's, in an attempt to formulate theories 
that would account for interactions that are more complicat
ed than those afforded by the classical theory, the theories of 
couple stresses and the theories of materials of grade p > 1 
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were developed. A historical account of the subject together 
with a review of the various approaches can be found in 
Truesdell and Nolls (pp. 389-401). For a variety of applica
tions one can consult Mindlin6 and references cited therein. 
Unlike Cauchy's theory, the theories of materials of grade p 
are based on energy principles in which the potential energy 
density is assumed to depend on derivatives of order p of the 
deformation. 

In this paper we propose a theory of forces and stresses 
based on the principle that forces should be defined as ele
ments of the cotangent bundle T *Q of and appropriate con
figuration manifold Q. Specifically, we show that pth-order 
continuum mechanics corresponds to the case where the 
configuration space is the set of all p-times differentiable 
embeddings of the body in space equipped with the C P topol
ogy. It turns out that in this case forces can be represented by 
measures on the pth jet bundle over the body where the 
representing measures generalize the stresses. For example, 
it follows that in first-order continuum mechanics and the 
case of three-dimensional Euclidean geometry [where the 
first jet bundle can be identified with B X R 3 $ L (R 3, R 3)] 

any force can be represented in the form 

I(u) = L uidPI + L u:i dpil' 

where PI' and pi I are the components of a measure over B 
valued in R 3 $ L(R 3, R 3). The first three components 
vanish if a Euclidean symmetry requirement is imposed and 
the P i I correspond to the stress. If these measures are differ
entiable with respect to the volume measure, their densities 
are the components of the stress field. In the more general 
case where a connection is specified on the space manifold, 
any force can be represented in the form 

I(u) = kto L Vku dUk' 

where Vk is the k th covariant derivative and the { Uk } are the 
representing measures. 

The resulting structure has the following features. 
(a) The theory applies in the general geometry of differ

entiable manifolds. 
(b) The definition of a force extends the definition given 

in the case of finite-dimensional classical mechanics by Ar
nold7 and Tulczyjew8 to the infinite-dimensional case. Thus, 
it clarifies the point of departure of continuum mechanics 
from analytical mechanics. 

(c) Some assumptions made in the classical construc
tion, such as the form (1) of the forces on bodies, are obtained 
mathematically as results of the definition of forces. 

(d) The theory links the properties offorces and stresses 
with the axiom of impenetrability. 

(e) The theory allows stresses which are as irregular as 
measures, while the classical theory deals with continuous 
stresses only. 

(f) The theories of materials of grade p are generalized to 
differentiable manifolds. The suggested formulation is free 
of any energy considerations and the relation between the 
theory of materials of grade one and materials of a higher 
grade is clear and simple. The grade of a material is a conse-
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quence of the choice of a topology on the set of configura
tions. 

(g) A generalized form of the equilibrium equation is 
obtained as a result of the mathematical procedure, and the 
origin of the nonuniqueness in the relation between stresses 
and forces is explained. 

(h) A simple constitutive theory is suggested in which 
body self-determinism and continuity imply jet locality. 

II. THE BASIC STRUCTURE 

Definition 2.1: A body is a compact differentiable mani
fold with comers. A typical body will be denoted by B and its 
dimension will be denoted by m. 

Definition 2.2: The physical space is a differentiable 
manifold S without a boundary. 

Definition 2.3: A configuration 01 class p is a C P embed
ding of a body B in the physical space for p> 1. 

The requirement that a configuration of a body into 
space is an embedding is a result of two traditional princi
ples: the principle of impenetrability stating that one portion 
of the matter never penetrates within another, and the prin
ciple of permanence of matter stating that no region of posi
tive finite volume is deformed into one of zero or infinite 
volume (cf. Truesdell and Toupin,9 pp. 234-244). 

For a fixed body B and a given p, the configuration space 
Q is the set of all configurations of class p of the body in 
space. 

We recall 10-13 that the set CP(B,s) ofCP mappings of B 
into S can be given the structure of a Banach ~old. For 
any K E C P(B,s), the tangent space TC P(B,s)K can be identi
fied with C P(K*l' s), the Banachable space of C P sections of 
the pullback of the tangent bundle l's by K. The Banach space 
topology of C P(K*l' s) is given as follows. Let v:K _ R n be a 
C P mapping defined on a compact set K. We use the notation 

IIvllp = max sup {iDiv(x)i J, O<.j<.p. 
j xeK 

Clearly, 1111 P is a norm for the space of all such C P mappings. 
Now, let B1, ... ,Br be a covering of B by compact sub

manifolds of the same dimension as B such that each BI is 
contained in the domain of a vector bundle chart 1/11 of K*l's' 
Then for u E C P(K*l' s) define 

lIuli = max 1If:41 II, i = 1, ... ,r, 
I 

where f:41 is the local representative of u in the chart 1/11' 
Again, II II is a norm on C P(K*l' s) and any other norm in
duced by another covering will induce an equivalent topol
ogy on C P(K*l' s). 

The tangent space TC P(B,s)K can also be identified with 
the vector space of vector fields along K, i.e., 
(u E CP(B,TS); l'soU =K}. 

In addition, we recall that since p> 1, the set ofCP em
beddings is an open subset l4 of CP(B,S). Hence, Q is a Ban
ach manifold and we have 
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TQK ~CP(K*'TS)~ {U E CP(B,TS); 'TSOU = K}. 

An element of TQ is a virtual displacement, a term moti
vated by the second interpretation we gave of TQK' 

Definition 2.4: Aforce (of grade p) is an element ofthe 
cotangent bundle T *Q. 

Let fE T*QK and U E TQK for some configuration K. 
The evaluation flu) is traditionally called the virtual work 
performed by the force f on the virtual displacment u. 

The basic structure, as defined in this section, has been 
given for the finite-dimensional configuration space by Ar
nold7 and Tulczyjew.8 In the infinite-dimensional case con
sidered here, the specification of the class of admissible con
figurations and the topology chosen will determine the 
nature of forces. It is our aim to study the consequences of 
these choices and to show that the basic properties of forces 
and stresses in continuum mechanics can be obtained natu
rally in the suggested framework. 

III. THE REPRESENTATION OF FORCES BY STRESSES 
AND THE PRINCIPLE OF VIRTUAL WORK 

Given K E Q, the identification of TQK with C P(K*'T s) 
allows us to identify the forces in T*QK with section distri
butions in C P(K*'T s)*. Thus, the problem of restriction of 
forces from a given body to its subbodies means mathemat
ically that we have to study the restrictions of C P section 
distributions. 

Consider the jet extension mapping 

jp: C P(K*'T s) ---+ C O(JP(K*'T s)). 

We note that jp is linear, injective and if we use natural 
charts on both K*'TS and JP(K*'Ts) and norms induced on 
CP(K*'Ts) and CO(JP(K*'Ts)) by these charts, we observe that 
jp is also norm preserving. It follows that every force in 
CP(K*'Ts)* is of the form j;(u) for some uE CO(JP(K*'Ts))*, 
where 

f;: CO(JP(K*'Ts))* ---+ CP(K*'Ts)* 

is the adjoint of the jet extension mapping. The elements of 
CO(JP(K*'Ts))* are called stresses. Hence, if f = j;(u), we 
have flu) = u (jp(u)) for every virtual displacement u and 
we say that the stress u represents the force f. This is a 
generalization of the principle of virtual work in continuum 
mechanics which states that the virtual work performed by 
the force on a virtual displacment is equal to the virtual work 
performed by the stress on the derivative of the virtual dis
placement. 

IV. LOCAL PROPERTIES OF STRESSES 

By their definition, forces are special types of section 
distributions or currents (Choquet-Bruhat et al. I5 pp. 400-
406, DeRham,I6 SchwartzI7) and stresses that belong to a 
simpler class of distributions (measures) represent them. In 
this section we consider the local properties of stresses. 

Let BI,. .. ,B, be compact submanifolds of B of the same 
dimension as B whose interiors cover B and let tPI'''''tP, be a 
C '" partition of unity such that supp tPi Cinterior Bi. It can 
be shown that if 1T is a vector bundle over B, then 
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CO (1T) = {(WI, ... ,W,) E i~ I CO(1TIBi); 

wilBinBj = wjlBi nBj } 

is isomorphic to CO(1T). The isomorphism is given by 
W t---+ (wIBI, ... ,wIB,) and its inverse given by 
(wl, ... w,) t---+ "I.iWi> where Wi E CO(1T) is given by 
wilBi = tPiWi and Wi = OoutsideBi (foracompleteproofsee 
Palais,t° pp. 10 and 11). 

Given vector bundle charts 

'l'i: 1TIBi _K XR N, KCR m 

(assuming that B is m-dimensional and that the fiber of 1T is 
N-dimensional) and denoting by t/Ji the first component of 
'l'i> CO(1TIBi) can be identified with CO(t/Ji(Bi ))N, the space 
of N-tuples of continuous real valued functions on t/Ji(Bi) for 
each i. Thus, CO(1T) is isomorphic with IO 

{(lYw .. ,IY,) E i~ I CO(t/Ji(Bi))N; 

'l'i-lolYi0t/Ji = '1'; IOlYj0t/Jj on BinBj } 

via W t---+ (lYi,""IY,), where lYi = 'l'iowIBi0t/Ji- I, and the in
verse is given by w = "I.iWi, where WiE CO(1T) are given by 
Wi IBi = tPi ('I'i-IOlYi°t/Ji) and Wi = 0 outside Bi· 

We conclude, therefore, that given a partition of unity, a 
vector bundle atlas, and It E CO(1T)*, there exists a collec
tion {~J, i = l, ... ,r, ~i E CO(t/Ji (Bi ) )N*, such that 

, 
It(w) = L ~i('I'iowIBi°t/Ji-I). 

i=1 

Identifying CO(t/Ji(Bi))N* with CO(t/Ji(B;))*N and observing 
that CO(t/Ji(Bi))* is the space of Radon measures on t/Ji(Bi)' we 
conclude that each,ui is a collection of N measures on t/J;(Bi ). 

Let {Ua,'I' a,t/J:} be a vector bundle atlas of 1T, and let 
C~(t/Ja(Ua)) denote the Banach space of continuous func
tions with compact support in t/Ja(Ua) equipped with the 
usual topology so that C~(t/Ja(Ua))* is the space of Radon 
measures on t/Ja (Ua ). Assume that for each a there is a given 
,ua E C~(t/Ja(Ua))*N, such that for each pair of indices, 
~a('I'aowot/J.;I)= ~(3('I'{3ow0t/Jpl), for each WECO(1T) 
whose support is contained in UanU n' We now define 
,u E CO(1T)* by 

,u(w) = L ~i('I'i°tP;W°t/Ji- I), WE CO(1T), 

where {tPi} is a finite partition of unity such that 
supp tPi C Ua. It can be shown that ,u is independent ofthe 
partition of unity so that any collection of local measures 
that satisfies the transformation rule define an element of 
CO(1T)*. 

Having reviewed the local properties of elements of 
CO(1T)*, we extend them to a wider class of sections, the inte
grablesections. We say that a function !J;: t/J;(U;) _ R N is 
integrable with respect to the collection of measures 
{ ,uik }, k = 1, ... ,N, if each component is integrable with re
s~t to all the ~;k' i.e., if 

II~;IILI = s~p i I~ijl d I ~Ik 1< 00. 
"k ",,lUi) 
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It can be shown that for a section u of tr with support in 
U;nUf and measures If; and Iff on ",;(U;) and "'f(Uf)' re
spectively, satisfying the compatibility condition given 
above, ",;ouo",;-I is If; integrable if and only if'" f Ouo", f- I 

is If j integrable. Thus, we say that a section of tr is integrable 
with respect to I' e CO(tr)* ifits local representatives are inte
grable with respect to the local representatives of 1'; of 1'. 

Let X T be the characteristic function of a subset T of B. 
If TnU/ is If; measurable, X ThU, is integrable with respect to 
each of the I';k' k = 1, ... ,N, and we can restrict 
If; to TnU; by If; i TnU; = X ThU, If;· In case the family [ If; 1 
satisfies the compatibility condition on the intersections of 
domains of charts so that it contains local representatives of 
some I' e CO(tr)*, the same holds for the collection 
[ 1'; I TnU; 1 which will represent 1'1 T = X T 1', the restric
tion of I' to T. In particular, if P is a subbody of B, i.e., a 
compact m-dimensional submanifold of B, I' can be restrict
ed toP. 

Applying the foregoing results to the case where tr is the 
vector bundle JP(K*(1's)), we conclude that a stress is repre
sented locally by a collection of N Radon measures that 
transform according to the rule given above, where N is the 
dimension of the fiber of JP(K*(1's))' Conversely, any such 
collection of measures satisfying the transformation rule 
represents a stress. 

We denote the evaluation of the stress measure 
U e C O(J P(K*1' s))* on a section w by S B W du, and for a sub
body P, we denote the evaluation of ulP on a section u of 
JP((KIP )*(1' s)) by S pU duo 

V. THE CASE OF A CONNECTION 

We now assume that connections are specified both on 
the vector bundle 1's: TS - S and the vector bundle l' B: 
TB - B. The connection on 1's induces a connection on 
K*1'B and we recall that given a connection on both 1'B and 
K*1' B we have an induced connection on the vector bundle of 
p-multilinear mappings LP(1'B,K*1's): LP(TB,K*TS) _ B, 
such that we have covariant derivatives 

V;u e CP- ;(L ;(1'B,K*1's)), O<i< p, 

for u e CP(K*1's) (see Eliassonll for details). 
Consider the mapping 

given by 

u...-. (u, Vu, ... , V Pu). 

Again, this is a linear continuous injection with a closed 
image, and since 

co( ;~o L ;(1'B,K*1'S)Y = (;~o COIL ;(1'B,K*1'S))Y 

P 
= ED COIL ;(1'B,K*1's))*, 

;=0 

we have a representation of forces by collections of tensor 
measures (UO,ul, ... ,up), U; e COIL ;(1'B,K*1'S))*' in the form 

f(u) = ;~oL V;udu;. 
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Thus, in case connections are specified on 1'B and 1's, 
forces can be represented by tensor valued measures. We 
note that the case p = 1 corresponds to classical continuum 
mechanics, where U l is the tensor measure which corre
sponds to the stress tensor. In this case we do not need the 
connection on l' B' as it is not required for the first covariant 
derivative. 

VI. THE RELATION TO PREVIOUS WORKS 

In this section we review some ideas suggested in pre
vious works,18-20 and relate them to the formulation given 
here. 

In Refs. 19 and 20 it was suggested that vector bundles 
over Band S can serve as mathematical models for the local 
properties of both body and space so that the vector space 
attached to each point represents mathematically the neigh
borhood of this point. A local configuration was defined as a 
vector bundle morphism between the two vector bundles. 
The local configuration space, local virtual displacements, 
and local forces were defined for this new model, termed the 
local model, in analogy with the previous set of definitions 
which will be referred to henceforth as the global model. The 
local configuration space is the Banach manifold of all local 
configurations, local virtual displacements are elements of 
the tangent bundle, and local forces are elements of the co
tangent bundle of the local configuration space. It was 
shown that local forces generalize the stresses of continuum 
mechanics, and the principle of virtual work was obtained as 
a result of a requirement for compatibility between these two 
models. The particular case where l' Band 1's represented the 
body and space in the local model was studied. In this case 
the local configuration space is the collection of vector bun
dle morphisms l' B - 1's which can be identified with the 
collection of sections of the jet bundle trl: J lIB, S) _ B. 

Using the language of jet bundles and the properties of 
manifolds of sections of jet bundles, 10 the following obvious 
generalization can be made. A local configuration of order p 
is a continuous section of trP: J P(B, S) - B. The local config
uration space is the manifold of sections C O(trP). A local vir
tual displacement is an element of the tangent bundle 
TCO(tr P), and a local force u is an element of the cotangent 
bundle T*CO(tr P). 

Since both the global model and the local model repre
sent the same physical phenomenon they are related by com
patibility conditions in the following way. 

Consider the jet extension mapping 

jp: CP(tr°)-CO(trP). 

We say that a local configuration X e CO(trP) is compatible 
with a global configuration K e CP(nP) if X = j p(K). A local 
virtual displacement w e TC O(trP) is compatible with a global 
virtual displacement u e TCP(nP) if w = TUp)(u). We say 
that a global force f e T *C P(.,r» is compatible with the local 
force ueT*CO(trP)limasefp if f=T*Up)(u). These defini
tions can be summarized by saying that the two models are 
related by the jet functor J p. 

The relation between the formulation given in this sec
tion and the rest of this paper is established in the following 
proposition. 

Reuven Segell 166 



                                                                                                                                    

Proposition 6.1: (i) For any global configuration, 
K, T*CO(1TP)jp(Kl' the space oflocal forces at the local config
uration compatible with K, can be identified with the space of 
stresses representing forces at K. 

(ii) A global force f is compatible with a local force (T if 
and only if the stress that can be identified with (T by (i) repre
sents f. 

Proof: The proof of the proposition becomes obvious 
once the following results of Palais 10 on sections of jet bun
dIes are used. 

(a) Given K E CP(1fl), there is a natural isomorphism 

TC O(1TP) j J") ~ C O(JP(K*1" s)l· 

(b) For K E C P(1TO), the tangent to the jet extension map
ping 

T(j pI,,: TCP(1TO)" ---+ TCO(1TP)jp(") 

is given by u~jp(u), where UECP(K*1"s)~TCP(1TO)" and 
the identification of (i) is used. 

The assertions follow immediately. 

VII. FORCE SYSTEMS 

The representation offorces by stress measures provides 
an answer to the basic problem of restriction of forces to 
subbodies. Given a stress measure (T, a unique force fp is 
induced on every subbody P by 

fp(u) = L jp(u) d(T, U E CP((KIP)*1"s), 

or in other words, the force on P is represented by the restric
tion of the stress measure to P. 

We will use the termforce system for a set function as
signing a force fp E C P((KIP )*1" s)* to every subbody P of B. 
We will say that a force system is consistent if there exists a 
stress representation (T such that the force given on any sub
body P is represented by the restriction of (T to P. 

Since the jet extension map is not surjective we cannot 
expect that the representation of forces by stresses will be 
unique. This feature is well known in continuum mechanics 
and it is referred to as static indeterminacy. It is the static 
indeterminacy which forces the use of material properties or 
constitutive relations in order to be able to restrict forces to 
subbodies. However, as the next proposition shows, a force 
system can be consistent with at most one stress, i.e., if we 
know the force acting on each subbody we can determine the 
stress uniquely. This statement is a generalization of the 
principle in continuum mechanics according to which the 
stress at a point can be determined uniquely if the traction 
across every surface is given. In the classical case however, 
the result is stated for the case p = 1 only, and the stress 
tensor measure is given in terms of a tensor field whose value 
at a given point we want to determine. 

Proposition 7.1: If a force system is consistent with the 
stresses (T] and (T2 then, (T] = (T2' 

Proof: In order to show that (T] = (T2' it suffices to show 
that their local representatives in any given chart are equal. 
Let A be a subbody contained in the domain of a chart in B. 
For any subbody PofA, let fp be the force acting onPin the 
given force system which is consistent with both (T] and (T2' 
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We denote by ui the components of the local representative 
of u E CP(KIP)*1"s) and for the multi-index 
a = (a], ... ,am), we recall that the local representative of 
jp (u) is {Daui}, lal = a] + ... + am <po Let ILia and Via be 
the measures on ~-the image of P under the chart-that 
represent (T] and (T2' respectively. By the representation of 
forces by stresses we have 

fp(u) = i i. D aUi dILia = i i. D aUi dVia 
f lal = ° f lal = 0 

for every u E CP((KIP)*1"s) and every subbody P. 
In particular, for j E Il, ... ,n 1, where n is the dimension 

of S, let u satisfy ui = 8ij. By the equation above we have 

ILja(~) = Vja(~)' lal = 0, 

for every subbody P of A. Since the two measures agree on 
every subbody we have ILja = V ja' la I = O. 

Now, given j, /3, with 1/31 = 1, let u satisfy ui = 8ijx f3, 
where (Xk) are the local coordinates in the given chart. We 
have 

as the higher-order derivatives vanish. Since ILia = Via for 
lal = 0, and since D aui#O only for i = j, a = /3, we have 
IL jf3(~) = Vjf3(~)' for every subbody P and arbitrary j, /3, 
1/31 = 1. We conclude that that ILia = Via for all i and a, 
with lal = 1. 

We can continue the process evaluating the virtual work 
performed on the virtual displacements u such that 
ui = 8ijxa = 8ij(x])a'(x2 )a' ... (xnt", with lal = 2,3, ... ,p to ob
tainILia = Via for all a with lal < p. 

Proposition 7.2: Let a force system I fp 1 which is consis
tent with a stress (T, be given. Then, if A is a subbody con
tained in the domain of a chart on K*1" s with coordinates 
(x\u j ), the local representatives ILia of (T are given by the 
following inductive process. 

Let (8ijxa), be the section of CP((KIA )*1"s) whose local 
representatives satisfy ui = 8ijxa for given j and a. Then, 

ILja(~) = fp(8
ij

)', lal = 0; 

ILJ'a (P) = J.- fp (8ijxa), 
- a! 

~ 1 i a- f3 d 
- £... ( _ /3)' x f.L jf3' f3<a a . f 

0< lal<p, 

where /3 <a means that /3i<ai and 1/31 < lal· 
Proof: By hypothesis 

f p(8ijxa), = i ) Df3(8
ij
xa) dILif3· 

flf3~p 
Since, 

Df3xa = [a!/(a- /3)!]xa- f3 

for /3 < a, and D f3xa = 0, for a < /3, we have 
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The proposition suggests a procedure which enables one 
to determine whether a given force system is consistent with 
any stress, and to obtain the local representatives of this 
stress if it exists. Given any vector bundle atlas on K*r s' one 
has to evaluate Ip(~ij)' for all subbodies Pcontained in the 
domain of charts. Then, if for every chart, the set function 
P ~ Ip (~IJ)' for all subbodies contained in the domain of the 
chart can be extended to a measure on the domain of the 
chart, we can identify /tja (P), lal = 0, with Ip(~ij)' for the 
various charts. We - proceed by evaluating 
Ip(~ijxa)', lal = 1, and we use the relations of the last pro
position and the previously obtained It· (P), lal = 0, to ob
tain /tJa (~), lal = 1. We check that Ja/tj;, lal = 1, can be 
extended to measures and we continue the process for 
Ip(~ijxa)', lal > 1, until we reach a pth step such that 
/tJa = ° for allial > p. Next, we have to check that the It· 
satisfy the transformation rules on the intersections ~f 
charts. If the compatibility conditions are satisfied, we con
clude that the {/t ja}' lal <: p, obtained are the local repre
sentatives of a stress which is consistent with the given force 
system. 

VIII. CONSTITUTIVE RELATIONS 

As we mentioned in the introduction, the problem of the 
restriction of forces to subbodies, which was transformed 
into a problem of nonunique relation between forces and 
stresses, leads to the specification of the material properties 
as additional information. The material properties are intro
duced via the so called constitutive relations, which in classi
cal continuum mechanics, associate the stress at a point with 
the deformation gradient at that point. In this section we 
suggest a way by which constitutive theory may be incorpo
rated in the structure that we developed. 

We assume that the following two principles hold in 
continuum mechanics. 

Axiom 8.1. (the principle 01 body self-determinism): The 
force acting on a body is determined by the configuration of 
the body, i.e., for any body B there is a section 
FB : Q ---+ T*Q which we call the loading of B. 

Axiom 8.2 (the principle 01 consistency): Given any con
figuration K of the body B, the force system [Fp(KIP); Pis a 
subbody of B }, is consistent. 

Thus, by Proposition 7.1, the principle of consistency 
implies that any configuration of B determines a unique 
stress representation in T*CO(1T P ). The mapping 
\II B: Q ---+ T *C O(1TP) that associates stresses with the various 
configurations is called a constitutive relation for B. 

168 J. Math. Phys., Vol. 27, No.1, January 1986 

Given a force Ie T*Q and a constitutive relation \liB 
such that I = T*(j PX\IIB(K)), the measure \IIB(K) induces a 
unique force on any subbody and the problem of the restric
tion of the force is immediately solved. The general problem 
of continuum mechanics can be formulated now as follows. 
Given a loading FB of B and a constitutive relation \liB' de
!ermine the configuration K such that \liB (K) represents F B (K), 
I.e., FB(K) = T*(j p)(\IIB(K)). 

It should be noted that in the general geometric frame
work we use, any "force" is a "follower force" in the sense 
that a force has meaning only when it is associated with a 
configuration. Thus, rather than looking for an equilibrium 
configuration under a given force, a meaningless problem, 
one has to find the equilibrium configuration for a given 
loading. 

We can examine now the way in which the principle of 
local determinism restricts the constitutive relations. Let P 
be subbody of B and let \lip, \II B be constitutive relations on P 
and B, respectively. Since for any K, the principle of body 
determinism implies that the force on P and any of its subbo
dies is determined by KIP, we have \IIp(KIP) = \IIB(K)IP. 
Thus, we will omit the suffix and we will write \II when no 
confusion can arise. We also note that this principle implies 
that it is sufficient to examine the case where B is in R m 

• 

Moreover, assuming that the constitutive relations are con
tinuous, we can show that the constitutive relations are p-jet 
local in the following sense. 

Proposition 8.3: Let \II be a continuous constitutive rela
tion and let x E B. Then, for any E> 0, there exists a ~ > ° 
such th~t if a subbody P is contained in a ball of radius ~ (in 
the R m Euclidean metric) centered at x, then, 

II\II(K)IP - \II(j p(K)(x))IP II <E, 

where j p (K)(X) denotes the pth-order Taylor expansion of K 
aboutx. 

Proot Given any E> 0, the continuity of \II implies that 
there exists a ~I >0 such that if 11K - j p(K)(xlll cp <~I' then 
II\II(K) - \II(j p(K)(x))1I < E. By Taylor's theorem, given ~I > 0, 
there is a ~>o such that IIKIP - j p(K)(xllPllcp <~I if Pis 
contained in a ball of radius ~ about x. Thus, by locality 

II \II(K)IP - \II(j p(K)(x))IP II 
= II\II(KIP) - \II(j p(K)(x)IP)1I <E. 

Since there is no meaning to the value of a stress at a 
point, the classical locality assumption that the value of the 
stress at a point depends on the value of the deformation 
gradient at that point cannot be obtained or even conjec
tured. If stresses were continuous sections and if the space of 
stresses were given the C I topology, then the continuity ar
gument of the previous proposition together with the two 
principles would imply that the value of the stress at a point 
depends only on the value of the pth jet at that point. 

IX. STRESSES GIVEN BY SMOOTH DENSITIES 

In this section, in order to complete the analogy with 
classical continuum mechanics, we obtain the representa
tion offorces by surface forces and body forces, the equilibri
um differential equations, and the boundary conditions. 
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Since the procedure involves integration by parts, we assume 
that the stresses are given in terms of smooth densities. We 
also assume that a connection is specified onS and that Band 
S have the same dimension. It follows that the connection on 
S induces a connection on B. Keeping K fixed during the 
discussion, we identify the body with its image under K. 

We saw that if connections are given on Band S, any 
force can be represented in the form 

where Uk is the k th-order stress measure. Consider the vec-
m 

tor bundle L(Lk('TB,K*'Ts),A T*B). Assuming that B is 

orientable, a smooth section Sk of this vector bundle induces 
a k th-order stress measure Uk by 

1 Vku dUk = 1 Sk oVku, 

where Sk oVku is the m-form whose value at x e B is 
Sk (x)(Vku(x)). In particular, if a volume element (J is given on 
B, the collection of sections {.}k}, .}keCOO(Lk('TB,K*'Ts)*) 
will induce a stress representation 

where .}dVku) is the real function whose value at x e B is 
.}dx)(Vku(x)). More geometric structure is available in the 
case where both the connection and the volume element are 
derived from a Riemmanian metric. 

In order to perform the integration by parts in the gen
eral geometric framework, we generalize the definition of the 
divergence of a tensor field as follows. We have the isomor
phism 

m 

L (L k('TB,K*'Ts), A T*B) 

m 

~ A T*B®'TB ®L k-I('TB,K*'TS)* 

and we define 
m 

co: L(Lk('TB,K*'TS)' A T*B) 

m-I 

~L(Lk-I('TB,K*'Ts), A T*B), 

to be the mapping induced by the contraction of the first 
two factors in the tensor product above. Then, for 

m 

Ske C OO(L (L k('TB,K*'TS)' A T*B I), we define the divergence 
m 

div Ske C OO(L (L k-I('TB,K*'Ts), A T*B)) by 

div SdVk-1U) = d (co(sdVk- IU))) - Sk(VkU). 

Using local expressions it can be shown that the diver
gence is well defined and that it agrees with the usual defini
tion in the case of a Riemannian manifold. 

For the case p = 1, let the force f be represented by 
smooth densities in the form 
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m 

where Sie C OO(L (L i('TB,K*'Ts), A T*B)). Using the defini-

tion of the divergence and Stokes' theorem, one can show 
that f can be represented by two sections 

m m-l 

beCOO(L('TB' A T*B))andte COO(L (i*'TB' A T*BB))(i 

is the embedding BB ~ B ) in the form 

flu) = r btu) + r t(u), 
JB JaB 

where b and t satisfy div SI + b = So and t = i*oco(sJi. (We 
use i* for both the pullback of differential forms and the 
pullback of vector bundles.) 

In the case of Riemannian geometry we obtain for the 
three-dimensional case the usual result, i.e., if 

flu) = 1 (SOjU
j + S;j U {i) du 

(the vertical bar denotes covariant derivative), we have 

flu) = r 6.jUj du + r tjU j da, 
JB JaB 

where .};jli + 6. j = .}OJ' tj = ni .}L, and n is the unit nor
mal to the boundary. 

Remark: The term .}o vanishes and the term .} 1 can be 
shown to be symmetric in the Euclidean geometry if we re
quire that the force is invariant with respect to the Euclidean 
group (cf. Refs. 4, 21, and 22) . 

For the case p = 2, the case of second-grade continuum 
mechanics, we assume that the stresses are given in terms of 
the densities So, SI' and S2 such that 

flu) = 1 (so(u) + SI(VU) + S2(V2U)). 

It can be shown that f can be represented in the form 

flu) = r b (u) + r (t (u) + t '(Vu)), 
JB JaB 

where b, t, and t ' are in 
m m-l 

C OO(L ('TB' A T*B)), C oo(L (i*'TB' A T*BB)), 

and 
m-I 

C OO(L (L(i*'TB,i*(K*'Ts)), A T*BB)), 

respectively, and they satisfy 

b = div2 S2 - div SI + So, 

t = i*oco(sJi - i*oco(div S2)' 

t' = i*oCO(S2)' 

A further integration by parts of the term involving t ' is pos
sible only if we have additional geometric structure. Again, 
for the three-dimensional Riemannian geometry, the classi
cal results (see, e.g., Refs. 23 and 24) can be obtained. 
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Differential equations for all moments of the field of a wave propagating through a random 
medium are derived under the parabolic approximation and the Markov approximation, but 
including anisotropy in the random medium and a deterministic background refractive index. 
Mathematical equivalence is demonstrated between these moment equations and path-integral 
expressions for the moments obtained under the same approximations. A discussion of 
approximations that are weaker than Markov is given. 

I. INTRODUCTION 

Many problems in wave propagation through random 
media concern phenomena in which there is no significant 
backscatter, so that a parabolic approximation may be made 
to the wave equation. I In these cases a further approxima
tion, called the Markov approximation,2 leads to relatively 
tractable mathematical expressions for moments of the field 
that can be used for practical calculations. Two quite differ
ent formalisms have been used in this context: the moment
equation and path-integral techniques. 

A path-integral expression for a general moment of the 
field of a wave propagating through an inhomogeneous, an
isotropic medium in the presence of a deterministic back
ground refractive index has been derived,3 and the expres
sion has been used for specific calculations.4-6 

Moment equations in coordinate representation have 
been derived for homogeneous isotropic media in the ab
sence of a deterministic background.2 Treatments of in
homogeneity, anisotropy, and deterministic background by 
moment-equation techniques have heretofore been confined 
to special cases involving the first and second moments.7

,8 

We present here general moment equations in coordi
nate representation that account for inhomogeneity, anisot
ropy, and deterministic background, but require the Markov 
approximation, We derive these equations using the time
ordered-product method of Van Kampen,9 which also pro
vides a derivation of equations that are valid under condi
tions more general than the Markov approximation. The 
modified equations are more complicated than those that 
require the Markov approximation; a special case was de
rived by Besieris and Tappert. 10 

We also show that our new general moment equations 
derived under the Markov approximation are mathematical
ly equivalent to the path-integral expressions for the mo
ments that have been previously presented. Thus, the two 
popular formalisms, under the Markov approximation, are 
not different in content. 

The plan of the paper is as follows: In Sec. II we establish 
notation, present our new moment equations, and present 

alOn leave from the University of California. Santa Cruz. California 95064. 
bl Affiliated with the University of California, San Diego, California 92093. 

path-integral expressions for the moments in similar nota
tion. In Sec. III we establish the mathematical equivalence 
between the two techniques. In Sec. IV we present the deri
vation of our moment equations, and, along the way, derive 
the modified equations. In Sec. V, for completeness, we rede
rive the path-integral expressions for the moments. In Sec. 
VI we comment on the use of different coordinate systems 
(such as cylindrical or spherical) in the writing of moment 
equations. A summary concludes the paper. 

II. NOTATION AND MARKOV-APPROXIMATION 
RESULTS 

Consider waves traveling predominantly in the z direc
tion. Let x be a transverse coordinate (e.g., two-dimensional, 
but in fact general), and k be a reference wave number 
(k = wICo), where w is the wave frequency and Co is a refer
ence wave speed). Express the full wave field as 

u(x,z,t ) = tP(x,z)exp [ik (z - Cot)]. (1) 

Let the wave speed (a function of position only) be 

C(x,z) = Co[1 - 2Uo(x) - 2p(x,z)] -1/2 

::::;Co[1 + Uo(x) + It(x,z)], (2) 

where Uo represents the deterministic background and It 
represents the fluctuating random medium, assumed to be a 
realization of a zero-mean Gaussian process. 

Then, the parabolic equation (in rectangular coordi
nates) for the reduced wave function tP is 

ik az tP = - rV2tP + k 2UO(X)tP + k 21t(X,z)tP, (3) 

where V2 is the transverse Laplacian. 
A moment r is the ensemble expectation value of a pro

duct of tP's and tP*'s, where each tP or tP* is evaluated at a 
different position x j and wave number k j' We write, in ab
breviated form, 

r - (., .•.... , ... ,. . ... ,. ) 
mn - 0/1 'f'm 'Pm + 1 'f'm+n . 

Define an operator Lo such that 

m+n 1 ( 1 2 2 ) 
Lo= L ±- --Vj +kjUoj . 

j= I k j 2 

(4) 

(5) 

The terms that apply to the tP's use the plus sign and those 
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that apply to the 'I/I·'s use the minus sign. The subscript j 
requires that V~ operate only on x j and U OJ =Uo(x j)' 

Define the important combination of fluctuation quan
tities as 

m+n 

M(z) = L ± kj,u(xj,z). (6) 
j= 1 

Our general moment equation under the Markov ap
proximation can be written 

az r mn (z) = iLor mn (z) 

- ~fOO dz' (M (Z)Mshift (Z') r mn (z), (7) 
2 -00 

where Mshift (Zl) is obtained by evaluating M (z) with all the x J 

at z shifted by the transverse distance that a deterministic ray 
through (x j ,z) moves in traveling from z to z' (see Fig. 1). In 
other words Mshift (Zl) is evaluated at point B, i.e., 
x j = Xray (z') where the ray is forced to go through x j (z). The 
particular ray is determined not only by the local position 
(x j ,z), but also by the initial conditions on the moment; for 
example, the location of a point source, or the direction of a 
plane wave. lI The unphysical assumption of delta-correlat
ed medium fluctuations along the propagation direction 
would imply that Mshift (Zl) would be evaluated at point C, 
i.e., xj(z) (and Zl). In the isotropic case (or in the case of 
propagation along a principal axis of the anisotropy) the dif
ference between evaluating Mshift (Zl) at x j (z) and Xray (Zl) is 
negligible, and the delta-correlated assumption is adequate. 
In the anisotropic case, the necessity of defining the unper
turbed ray makes (7) somewhat complicated to apply for gen
eral initial conditions. However, since (7) is a linear equation, 
superposition can be used whether the source is a point, an 
incident plane wave, or an arbitrary coherent or incoherent 

(a) 

Z' Z 
(b) 

B 

Z' Z 

FIG. 1. (a) Moment-equation expression of the Markov approximation. The 
correlation should be taken between a point at z (point P) and an arbitrary 
point at z' (point A). Instead it is taken with the point B. obtained by extra
polating along the unperturbed ray from P. The assumption of delta-corre
lated medium ftuctuations leads to the incorrect formulation of correlations 
between points P and C. The dashed lines indicate the idea of a scattering as 
a function of angle from point P. (b) Path-integral expression of the Markov 
approximation. The general path at z' (point A) is approximated by the path 
at z extrapolated along the unperturbed ray (point B). 
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sum of point sources. Equation (7), which is one of the princi
pal results ofthis paper, is derived in Sec. IV. 

We now tum to the path integral method. Equation (3) 
has the formal solution 

'1/1 = J Dx(Z)eiS, (8) 

where f Dx(z) means integration over paths, x(z) is a trans
verse vector indicating the position of the path at z, and 

S = k iR 

dZ( ~ ( ~: r -Uo(x) - ,u(x,z)). (9) 

In order to obtain a given moment, expressions like (8) (or its 
complex conjugate) are multiplied together, and the ensem
ble average is taken: 

r mn = J:Ij:DxJ(Z)(exp(~ ± iSj )). (10) 

The Markov approximation yields (see Sec. V) 

r mn = J:Ij:DxJ(Z) 

Xexp iRdZ[~±ikj(!(~:r -UOj ) 

- ~Joo dz' (M(Z)Mshift(Z')]' (11) 
2 - 00 

We show in Sec. III that the moment equations (7) and the 
path-integral expressions (11) are mathematically equiva
lent. 

III. EQUIVALENCE OF PATH INTEGRAL AND MOMENT 
EQUATIONS UNDER THE MARKOV APPROXIMATION 

We follow the technique that Feynman12 used to show 
that his path-integral expression for nonrelativistic quantum 
mechanics is equivalent to the SchrOdinger equation. The 
key to this demonstration is an understanding of how the 
important paths behave transversely as they move inz from a 
particular point. Feynman found that these paths resembled 
random walks in that 

IX(ZI) - x(Z)I-(Z' _Z)1/2 (12) 

as z' gets close to z. Given this behavior, it is easy to expand 
(11) in a Taylor series and obtain a differential equation 
which will tum out to be (7). We give the demonstration of 
(12) in the Appendix. 

The path integral is defined as the limit of an integration 
over a set of "phase screens." These screens are at values 
ZN = NlJz. The derivative dx/dz at z = ZN is defined as 
(X(ZN + lJz) - X(ZN ))/lJz = 8x/lJz. The limit 8z-o is taken 
after the integrals are evaluated. The differential equation is 
obtained by considering the integral over the very last phase 
screen. The last integral in (11) can be written in terms of 
Xj '= xj(R - lJz) and Xj = xj(R). Also, we define 
8x j =x j - x j I. Then r mn can be expressed as 

r mn({xj,R) 

=Nf IJdx~ exp(8Z[ ~ ± ikJ( ~ (8:: r -UOj ) 

- ~ f dz' (M (R )Mshift (Z') Dr mn ({ X'},R - 8z), 

(13) 
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where {xj denotes the set of(m + n) Xj's. The first term in 
the exponent, ± (ik j/2)[(l5x j )2/&], is 0 (1) for small &, be
cause of (12). The exponent of the remaining terms can be 
expanded, since they have an explicit &, as well as higher
order terms. This results in 

f ( { + ikJ(l5xJ )2}) 
r mn({xj,R) = N I) dl5xJ exp - 2& 

X [1- &(~ ± ikjUoj(R) 

+ ~ I: co dz' (M (R lMshift (z') ) ] 

xr mn({x'j,R - &) + 0(&3/2). (14) 

We now have a relationship between the moment at R 
andlhe moment at R - &, which we derived from our path
integral expression. But since the moment is a differentiable 
function we can find another relationship by Taylor expan
sion as follows: 

r mn({x'j,R - &) 

= [ 1 - & aR - ~l5x j • V j + ~ (~I5X j • V j r] 

Xr m .. ({xj,R) + 0(&3/2). (15) 

Substituting (15) into (14) we find 

f ( { ik J(l5xJ)2}) 
rmn({xj,R)=N I) dl5xJ exp ± 2& 

X { 1 - ~I5Xj • V j 

+ ~ (~I5Xj 'Vjr -&aR 

-&(~ ± ikjUoj(R) 

+ ~ I: co dz' (M(R lMshift(Z'))} 

xr mn({xj,R) + o (15z3 /2 ). (16) 

The term linear in 1: jl5x j • V j is odd in I5x j and therefore 
gives 0 due to the I5x j integral. The term that is quadratic in 
I5x j can be integrated by parts, yielding, to order & 

r mn({xj,R) = NIl) ( dl5xJ exp{ ± i~J~~XJ)2}) 

X{1 +&[ -aR -~L_l._V~ 
2 j ± lk j 

- L ± ikjUoj(R) 
j 

- ~ f: co dz' (M(R lMshift(Z') ]} 

Xr mn({xj,R). (17) 

The only way (17) can be true for all & is for the coeffi
cient of & within the curly brackets operating on r mn to give 
zero. Therefore, setting R---+z, 
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azr mn({xj,z) 

= - iL ± +.( - ~V~ + k~UOj)r mn({xj,z) 
] 

- ~Jco dz'(M(zlMshift(Z')r mn({xj,z), 
2 - co 

(18) 

which is identical to (7), as required. Thus, we have derived 
the moment equation (7) from the path-integral expression 
(11). This shows that the path-integral expression (11) is a 
solution of the moment equation (7) and hence the two tech
niques are equivalent. 

IV. MOMENT EQUATION DERIVATION 

We derive our moment equations by the method of Van 
Kampen.9 The advantage of his method is that the physical 
basis for each approximation is readily apparent. He bases 
his method on techniques that were developed for quantum 
mechanics. 

We shall find that the Markov approximation requires 
that the dimensionless number L ;M; be small where Lp is 
the medium correlation length in the direction of the wave 
propagation, and M t is the "typical" value of M, defined by 
(6) and called the "interaction strength." For the first mo
ment M = kll' but for higher moments M is the sum and 
difference of a number of kll 's at different positions, and with 
different values of k. 

We start with the parabolic wave equation (3) and the 
definition of Lo and M, and write 

i az f/ift/1"''''m + n = (Lo + M )"'T"'!''''''m + n' 
The "interaction representation" is defined by 

(f/if"'!"''''m + n h = eiLoz"'T"'!"''''m + n 
and 

M[(z) = eiLozM(z)e-iLoZ. 

With these definitions, (19) becomes 

i az("'T"'!"''''m + n h = M[(z){"'T"'!"''''m + n h· 

(19) 

(20) 

(21) 

(22) 

This equation is linear and has the formal solution 

(f/if"'!"''''m+nh = Texp( - ifM[{Z'Jdz,)r mn(O), (23) 

where r mn (0) is the initial condition. The "time-ordering" 
symbol T requires explanation. One notices that M[ is an 
operator, not just a function of space. Thus, M[{zl) and 
M[ (Z2) do not, in general, commute. If they did the solution 
of (22) would be given by (23) without the T symbol. The T 
symbol means that a product of operators to the right is not 
applied in the usual order, but in such a way that operators 
with smaller values of z' are to be applied first. Thus there is 
an ordering in z. (The T symbol was invented for solving 
problems in quantum mechanics where the analog of the 
longitudinal direction z is the time.) For example, 

Texp( - ifM[{Z')dZ') = [Texp( - ifM[{Z'JdZ')] 

X [Texp( - if'M[{Z')dZ')] , 

(24) 
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for O<;z I <;z. Another example is 

T( ~:)k[fM[(Z')dZJ 

= (- i)kf M[(zd···M[(Z2)M[(ztldz l dz2···dzk, (25) 

where the integration region on the right side of (25) is 
o <ZI <Z2 < ... <Zk <Z, whichisk !timessmallerthan that of 
the left side, canceling the factor of k!. Using either (24) or 
(25), one readily checks that (23) is a formal solution of (22). 

We are assuming that M is a Gaussian process. The re
sult that the expectation of the exponential of a zero-mean 
Gaussian random variable is the exponential of half the vari
ance follows from combinatorial factors and remains true for 
a time-ordered exponential. Thus 

{r mnh = Texp [ - ~ ((fMAZ')dzJ)]r mn(O). (26) 

Although this is a formal expression for r mn , it is not imme
diately useful for calculations, since there is no simple algo
rithm for evaluating a time-ordered exponential (in contrast 
to a normal exponential). Van Kampen proceeds by differen
tiating (26): 

az{r mnh = - T(M[(Z)fdZ' M[(Z')) 

xexp[ - ~ ((fMAZ")dz'J)]r mn(O). 

(27) 

The M[(z) has the largest z, so it is written in the proper 
ordered position. The M[ (z') that it is correlated with, how
ever, might occur anywhere relative to the M[(z")'s in the 
exponential. If L ~ M; < 1, very little error is made by assum
ing that the first two M[ 's are in the proper order, so that the 
Tsymbol can be brought through the first expectation value, 
yielding 

az{r mnh = - (M[(Z)fdZ' M[(Z')){r mnh. (28) 

This may be shown by expanding the exponential opera
tors in (26) or (27) and discussing the order of M's in each 
term. The Nth term in the expansion has 2N occurrences of 
M[, and is of a magnitude 

(29) 

where typical eigenvalues of the operators are implied. The 
terms beyond 

(30) 

become negligible compared to the original exponential in 
(26), so we have to deal with at most N pairs of M[ 's from 
source to range z. The two M[ 's in a correlated pair must be 
within Lp of each other to give a nonzero correlation. The 
number of pairs may be estimated as 

N-::::;4LpzM;, (31) 

where M; is a typical value of M;. (See Fig. 2 for a schematic 
representation.) Our approximation reduces to saying it is 
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(a) 

(b) 

FIG. 2. (a) Typical z values of the interactions from a Taylor series term in 
(9) are indicated by X 's. Dashed lines show which interactions are correlat
ed. It is assumed that L ;M: < 1. (b) A portion of a contribution to (9) which 
is improperly ordered in "first-order perturbation theory." Such contribu
tions are small if L ;M: < 1. 

unlikely to find a third occurrence of an M[ in between a pair 
that are within Lp of each other. This probability is roughly 

Probability-::::;LpN /z-::::;L ~M;. (32) 

Thus if the fluctuations are weak enough (LpM, < 1), the ap
proximation is valid, and (28) is justified. 

We call (28) "first-order perturbation theory." In typical 
situations, Z is much larger than L p, and the lower limit can 
be replaced by - 00, making the equation independent of 
the source position. Moreover, the integral from - 00 to Z 

can be replaced by half the integral from - 00 to 00, when 
the correlation is a much slower function of !(z + z') than of 
Z - z'. The result is used, not in the interaction representa
tion, but in the original representation. The exponentials of 
(20) and (21) are removed, giving 

azr mn(z) = - iLor mn(z) - f: 00 dz'(M(z)e-iLo(Z-z') 

XM(z')eiLo(Z-z')r mn(z). (33) 

For the second moment, this equation is related to an expres
sion of Besieris and Tappert. 10 Although their work was for 
the second moment, we can generalize it directly; therefore 
in the rest of our comments we treat the general moment 
r mn where Besieris and Tappert treated only r 11' Their 
equation (3.2) was expressed in a Fourier transformed do
main, but can be expressed in our notation as 

az r mn (z) = - iLor mn (z) 

- f: 00 dz' (M (z)e - iL.,(z - z'IM (z') r mn (z'). 

(34) 

This equation is equivalent to (33) to order L ~ M;, and it 
should be noted that both (33) and (34) are invalid ifL ~M; is 
not small. Unlike (33), (34) implies a "memory" effect in 
which the gradient of the moment depends explicitly on the 
moment at all previous z's. The Markov approximation 
leads to (7), which eliminates the memory effect and requires 
only a correlation function of the medium along a specified 
(shifted) direction. Besieris and Tappert pointed out that a 
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weaker approximation, called the "long-time Markov" ap
proximation leads to a local (nonmemory) equation (their 
Eq. 3.3), that in our notation is expressed as 

azr mn = - iLor mn(z) 

- {J~ co dz'(M(Z)e-iL.JZ-Z')M(Z')}r mn(z), 

(35) 

where the Lo operator acts only on M (z'), not on r mn (z), in 
the last term. We have derived (35) by use of the Wigner
function notation of Besieris and Tappert. We are only con
sidering situations in which the parabolic wave equation is 
valid. It has been shown that in that case the long-time Mar
kov approximation is valid, 10 and therefore (35) is as valid as 
(33). 

Because Lo is an operator, the integrals in (33)-(35) in
volve the medium correlation function in all directions, or, 
in the Fourier-transform domain, require a scattering kernel 
as a function of scattering angle. The Markov approximation 
to (33) consists of simplifying the deterministic propagation 
operator e - iLo(z - %') for z - z' on the order of L p. Instead of 
correlating M (z) with all possible transverse positions of 
M (z'), the Markov approximation corresponds to choosing 
only one transverse position for M(z'). (See Fig. 1, where 
point A represents an arbitrary transverse position.) If the 
wave represented by r mn (z) were the unperturbed solution, 
then deterministic propagation would move the phase in the 
direction of the unperturbed ray. If the wave energy is travel
ing close to the unperturbed ray this operator retains its be
havior to first approximation. As a result, deterministic 
propagation approximates a shift along the unperturbed ray 
to point B, i.e., x(z') = Xray (z'), where the ray is forced to go 
through x(z). Hence e - iLc,(z - z') M (z')eiLc,(Z - z') can be approxi-
mated by Mshift (z'). This is the appropriate definition of the 
Markov approximation (rather than assuming the medium is 
delta correlated along thez axis) and it immediately yields (7) 
from (33). In practice, instead of using the actual unper
turbed ray, the tangent to the ray at z is often used. 

If the delta-correlated assumption were made, it would 
correspond to evaluating Mshift (z') at point C, which is strict
ly valid only if there is a single unperturbed ray traveling 
along the z axis. If the medium fluctuations are isotropic, the 
correlation of any point atz' with the pointPatz will give the 
same result because of the parabolic approximation, and 
hence the delta-correlated assumption is as good as any oth
er choice. However, for an anisotropic medium it is impor
tant that point B [and hence (7)] be used, even when the 
Markov approximation is invoked. Note that (7) can be used 
in the presence of a deterministic background refractive in
dex. 

The difference between (33) and (7) can be caused by 
directions different from the unperturbed ray becoming im
portant. It is in this sense that (33)-(35), which never refer to 
unperturbed rays, are more general than (7), which does. A 
transverse wave number kr' coming, for example, from M, 
causes the angle to change by {j(J = kr/k. A transverse error 
in position of about krLp/k is made by assuming the direc
tion of the unperturbed ray. Thus, in order for the Markov 
approximation to be valid, it is required that krLp/k<Lr' 
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whereLr is the transverse scale of concern. SinceL r ::::: lIkt, 
the Markov approximation fails at sufficiently small k:::::L p / 
L}. The parameter a = kL }/Lp introduced by Beran and 
McCoyl3 and discussed further in Flatte4 reflects these con
siderations. For small a, one can use (33) or its equivalent. 

V. PATH-INTEGRAL DERIVATION 

We recapitulate the derivation of the path-integral 
expression (7) from (10). Using the assumed Gaussian behav
ior ofthe fluctuations, we obtain from (10) 

r mn = J IT DxAz)exp(~ ± iSoj)e
V

, (36) 
J= I ] 

where So is the part of Sin (9) that does not involve p" and 

V= - ~JdZdZ'(M(Z)M(Z'). (37) 

The expression (36) is an exact representation of the moment 
of the solution of the parabolic equation with Gaussian fluc
tuations. It is not used in practice as it stands because V 
depends on the paths at two values of z, namely z and z'. 

The Markov approximation for the path integral comes 
from assuming that the paths do not stray far in transverse 
space over a distance L p; they all move approximately paral
lel to the unpertubed ray. Thus, in the Markov approxima
tion 

V = - ~ J dz dz' (M(z)Mshift(Z') (38) 

which only requires knowledge of the path at z. The final 
result (11) follows directly. 

VI. COORDINATE SYSTEMS 

Moment equations can be formulated in a variety of co
ordinate systems, while path integrals require a rectangular 
coordinate system. There has been a fair amount of effort 
expended on using polar coordinate systems, especially for 
point source problems. 

The same results (for point sources among others) can be 
obtained in either polar or rectangular coordinates. Thus, 
the results ofShishovl4 on the intensity correlation, derived 
in spherical polar coordinates, can be seen to be identical 
(after an appropriate transformation) to the results of Co
dona et al., 15 derived in rectangular coordinates. It was nec
essary for Shishov to make small-angle approximations in 
addition to the parabolic approximation of dropping the sec
ond derivative in the propagation direction, whereas Co
dona et al. only require the single parabolic approximation. 

VII. SUMMARY 

We have derived moment equations in coordinate repre
sentation under the Markov approximation that apply in 
anisotropic, inhomogeneous media with deterministic back
ground. The derivation shows the relationship between these 
moment equations and modified equations that are valid un
der approximations weaker than Markov; the second-mo
ment equation of Besieris and Tappert is a special case of 
these modified equations. 

In a hierarchy of approximations we begin with the 
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parabolic wave equation itself. A path integral with nonlocal 
exponent can be written as an exact solution, although it is 
not yet useful in practice. The next level is the approximation 
that the interaction strength over a correlation length is 
small-this "first-order perturbation theory" leads to the 
modified moment equations, and in homogeneous, isotropic 
media, to the standard moment equations and path-integral 
expressions. In anisotropic, inhomogeneous media, how
ever, a further approximation is necessary to obtain the mo
ment equations and path integral expressions. This further 
approximation is that the significant flow of wave energy, or 
the important paths, are parallel to the unperturbed ray; we 
call this the Markov approximation because its violation im
plies the appearance of correlations between successive scat
terings. We have shown that the moment equations and the 
path-integral expressions for the moments are mathemat
ically equivalent under the Markov approximation. Thus the 
two formalisms have exactly the same physical content. In 
an anisotropic medium, the moment equation involves a 
shift operation to calculate the medium correlation function 
along the unperturbed ray; this form ofthe moment equation 
has not been given before. 

We have also pointed out that aU appropriate formulas 
can be derived in a rectangular coordinate system (even for 
point sources). 
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APPENDIX 

We must show that the scaling lox j 1_(&)1/2 holds for 
integrals of the form 

J ( oxz.) 
IIdo Xj exp 2: ± ik j 2/j~ F(x j ). (AI) 

If F is expandable in a power series (even if the radius of 
convergence is zero) this result follows immediately. One 
expands F and integrates term by term, obtaining a power 
series in (&)1/2. By standard methods in the theory of asymp
totic expansions, only the low order terms need to be re
tained as &---+0. 

For singular functions, a demonstration is not as simple. 
One may worry about cancellations between terms in the 
exponent, since the signs might differ. 

We will content ourselves with a demonstration in the 
case likely to arise in practice. It is common to model a ran
dom medium as having a power-law structure function. 
Thus as two x's become equal, a singularity IXi - x j IP with 
P > 0 might occur in the integrand. In order to have possible 
cancellations in the exponent, we assume that ki = k j = k, 
and the exponential factor is exp(ik (ox; - ox) )/2 oz). We as
sume, for simplicity, that Xi and x j are one dimensional; 
higher-dimensional singularities are effectively weaker. 

Define v = (OXi + ox j )/2, ft = oXi - ox j' and 
a = Xi - X j' The singularity from the previous step, xi 
= x j - ox j is 1ft - alP. The integral to be evaluated is 

J dft dv eikf'v/& f(a"u,v)lft - alP. (A2) 
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We would like to ignore theft dependence in f. How
ever, spurious large-ft contributions would arise, even 
though we are only interested in contributions from ft close 
to a. To drop theft dependence of f and also to simplify the 
analysis, we introduce a convergence factor 
exp( - ~(.u2 + v)/&I- E). As long asft,V,-&1/2, this factor 
does not change the integral as oz---+O (we are assuming £ > 0). 
Conversely, if the integral in the limit oz---+O does not depend 
on a and £, then ft and v are of order &1/2. 

The integral is then 

I = J dft dveik,.,vlIJz 

Xexp[ - a(.u2 + v)l&I-E] 1ft - alP f(a,v). (A3) 

The ft integral can be done, yielding 

I = cJ dv e'/cav/& exp[ - a(a2 + V)/OZI-E] 

X f(a,v)a -(I +P)l20z!1 +pXI- E)/2 

XM(P + 1 ..!.. _ (v + 2iOzEaa)2) (A4) 
2 '2' 4aoz l + E ' 

where M is a confiuent hypergeometric function and C I is a 
constant independent of{)z,£, and a (as are Cz and C3, below). 
The hypergeometric function has a part that behaves as the 
exponential of its argument for large (positive) values of its 
argument, a part that falls as a power [since (p + 1)/2 is posi
tive] and a part at small values of the argument. These last 
two parts can be combined into a bounded part. We show 
that the exponential part'gives the leading behavior and the 
bounded part is a higher power of &. 

The contribution II from the exponential asymptotic 
part of Mis 

II = C2 J dv ei/cav/IJz exp[ - a(a2 + v)/oz l - E) 

X f(a,v)a - (I + p)/Z Oz!1 + p)(1 - E)/2 

Xex ((28zEaa - ikv)2). 
p 4a&I-E (AS) 

The exponential from M cancels much of the first two expon
entials 

II = c2fdvexp{ _ v[_a + k
2 

]} 
OZI - E 4aozl + E 

X f(a,v)a-(I +p)/20z!1 +p)(I-WZ, (A6) 

which can be done explicitly. Only the first term in the expo
nential survives as oz---+O. The result is independent of a and 
£, and is 

(A7) 

exactly as would be obtained from the Taylor series expan
sion for I. 

We now turn to the contribution I z from the bounded 
part of M. We <show 12 has a higher power of OZ than II' We 
can set £ to any positive value. At large £ we depend on the 
fact that ei/cavlIJz averages to zero for v-ozl + IJ for any posi
tive 0, but it would be necessary to examine the detailed 
behavior of M to use this fact. On the other hand, for small 
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enough E, it suffices to bound the integral by the integral of 
the absolute value of the integrand. The convergence factor 
provides a cutoff at V-&I - .. 12. Thus Sdvexp[ - aV / 
&1 - .. ] f (a, v) gives a contribution scaling like &1 - .. 12 . 
Thus 12 is bounded by an expression which scales as 

I
2
-8z}l-")/2+(1 +p)(I- .. )/2 = 8z.1 +p/2)(I- .. ). (AS) 

As long as we have chosen E small enough, the exponent of & 
is larger than 1, and 12 can be neglected relative to II' Thus 
we have established the necessary scaling of J.L and v even in 
the singular case. 
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For Hamiltonians that have a formal (canonical) decompositionH = -l6. + Vex), Vex) being 
a multiplication operator, the definition of the dynamics by a ground state measure leads to an 
energy (Dirichlet) form formulation of quantum mechanics that is more general than the 
operator SchrOdinger approach. Here, the question of reconstruction of the dynamics from an 
eigenstate when the potential is not restricted to the class of multiplication operators is analyzed. 
By explicit analysis of several examples, it is found that, once a particular operator class is chosen, 
the potential and the energy form are, to some extent, determined by the eigenstate. However, 
depending on the type of operator the potential is chosen to be, many distinct dynamics can be 
associated to the same fixed eigenstate. The nature of the stochastic processes associated with each 
reconstructed dynamic is also discussed, as well as a generalization of the stochastic dynamics 
formalism allowing for nonlocal potentials. 

I. INTRODUCTION 

Consider a SchrOdinger operator H = -!6, + V(x), 
where Vex) is a multiplication operator, and a real function 
;(x) eL ~oc (Rn

), such that ( -!6, + V-E); = O. Let 0 
be an open set in the support of the measure dv = ;2 dx and 
K v (0) the closed subspace of L 2 (O,dv) obtained by clos
ing CO' (0) in theL 2(0,dv) norm. For!I,}; e C~ (0), the 
quadratic form 

(1.1) 

is a local Markovian symmetric form on L 2(0,dv). If; is 
such that the form E is closable in K v (0) then its closure "E is 
a local regular Dirichlet form. I Several closability conditions 
are known.2

-4 For example, ; > 0 locally uniformly; ; = 0 at 
most on a set of Lebesgue measure zero (n = 1) plus some 
regUlarity. 

Conversely if "E(jl'};) is a densely defined symmetric 
positive closed form there is a positive self-adjoint operator 
H such that 2,5,6 

"E(!1,J2) = (H 1/2!1' H 1/%). (1.2) 

One has, therefore, a way to describe quantum dynam
ics through (energy) forms alternative to the conventional 
operator SchrOdinger approach. In sufficiently well-behaved 
situations the two approaches are equivalent. In particular, 
if V;, V;/;, 6,;/; e L foc(O), thenH = - ~6, + V - Ewith 

V - E = !;-I6,;. (1.3) 

The Dirichlet approach is, however, more general in the 
sense that through regular Dirichlet forms one can describe 
dynamic situations which formally would correspond to po
tentials more singular than distributions. 

The Dirichlet approach faces a uniqueness question, 

since E(!t,J2) = !f V!I'V}; dv is first defined on a dense do
main, but for the characterization of quantum dynamics one 
needs a self-adjoint operator. In principle, distinct quantum 
dynamics would correspond to the possible nonequivalent 
extensions of E. A certain number of uniqueness results are 
available, in particular when the operator associated with E 

is essentially self-adjoint in C O'(O)Y 
In this paper, a different nonuniqueness question is dis

cussed. This relates not to the equivalence of the Dirichlet 
and Schrodinger approaches as formulated above, but to the 
question of whether the ground state determines the dynam
ics uniquely. 

The sense in which the eigenstate; determines the dy
namics is apparent in the potential equation (1.3) or in the 
fact that given, for example,; e L f~ #0 almost everywhere 
and V; e L foe (JRn - N) (N a closed null set), then the form is 
closable and the positive self-adjoint operator H ofEq. (1.2) 
is unique. This uniqueness, however, is a consequence ofthe 
implicit assumption that V is a multiplication operator or 
equivalently that the energy form is the closure of a form of 
the type (1.1). Physically this assumption makes sense if one 
has grounds to believe in the assumed (canonical) decompo
sition of the Hamiltonian. This may be the case when recon
struction from the vacuum is used in models where the fun
damental dynamic laws are presumed to be known, for 
example, lattice QED or QCD.9 

In (nonrelativistic) many-body problems the situation 
may be quite different. In nuclear physics, for example, there 
is often more information on the nature of the ground state 
than on the form of the interaction potentials. It is also true 
that when the fundamental forces are known but many parti
cles are in interaction, to determine experimentally without 
ambiguity the ground state structure may be easier than the 
effective one-body potential. Even when some parts of the 
potential correspond to known particle exchanges, it is only 
the leading static contribution that can be described by a 
multiplication potential. Higher-order contributions have a 
nonlocal nature. 

When detailed information on the dynamic laws is lack
ing, a sensible question to address is the characterization of 
the possible dynamics compatible with a given (zero) energy 
eigenstate (or a finite set of known eigenstates). Defined in 
such a generality the question has infinitely many nonequi
valent answers. One should somehow restrict the classes of 
operators one uses as candidate potentials. 

In the Schrodinger and the Dirichlet approaches one 
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deals, respectively, with the spacesL 2(Rn,dx) and L 2(Rn,dv), 
dv = ¢idx, the unitary map UtfJ between them being multi
plication by t/J - I: 

u. 
gEL 2(Rn,dx) ~ gt/J -I E L 2(R2,dv). 

A natural restriction on the operators of the theory would be 
to require a simple operation on the product of functions, 
i.e., a multiplication law 

V(gt/J) =F[g,t/J,Vg,Vt/J). (1.4) 

From linearity it follows thatFis a homogeneous function of 
order 2. Linear operators with a multiplication law (1.4) are 
called Bourlet operators and have been studied extensive
ly.lO.ll 

Under fairly general conditions it can be shown that 
there are three types of Bourlet operators, namely multipli
ers V M' derivations VD, and substitution operators VH. In R, 
for example, 

(V Mg)(X) = a>(x)g(x), 

d 
(VDg)(X) = a>(x~g(x) - eg(x), 

dx 

(VHg)(X) = (lIA )g[Av(x)) +/Lg(x). 

Unfortunately, derivation and substitution operators are not 
symmetric in general and their symmetrized versions no 
longer obey the simple multiplication law (1.4). Therefore 
symmetrized derivation and substitution operators will be 
used, but we will not be restricted to these classes only. 

The plan of the paper is the following: The potential V is 
considered to belong to one of the following operator classes: 
finite rank operators, second order (Sturm-Liouville) opera
tors, symmetrized derivations, or symmetrized substitution 
operators. In each case,,p is considered to be a (zero-) energy 
eigenstate of the dynamics 

( - !A + V),p = 0, 
and V is determined in the assumed class. The nature of the 
(reconstructed) dynamics is then characterized by spectral 
analysis and (or) construction of the associated stochastic 
process through the Beurling-Deny formula. For explicit 
calculations and examples one concentrates on the one-di
mensional case. As an illustrative example t/J is taken to be 
the harmonic oscillator wave function e - x'12. One finds in 
all operator classes distinct dynamics that contain this ,p as a 
zero-energy eigenstate. 

II. FINITE RANK POTENTIALS 

An operator 0 is of finite rank if it can be written as 
N 

01= 2: (gi>/)hi> (2.1) 
;=1 

where {gi>h;) are 2N vectors in a Hilbert space. Here one 
considers potentials that are sums of a constant with a sym
metric finite rank operator 

N 

VRN = e + 2: Ih;)bij(hj I , (2.2) 
;.j= I 

where b t = bj ; and e is a constant >0. Let,p be a zero-energy 
eigenstate of HRN = -!A + VRN. The state,p determines 
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the potential uniquely only if N = 1. Then one knows that 

HR I = -!A + e - Ih ) (h I = -!A + VR I' (2.3a) 

where 

(2.3b) 

[For example if,p is the harmonic oscillator ground state 
,p-exp( - x 2/2), then 

h = {(e + !)uo - .J2/4u2 }(e + !)-I12, (2.4) 

where 

(2.5) 
are the normalized eigenstates of the (multiplicative) har
monic oscillator.] 

The spectral properties of a Hamiltonian H R I with 
rank-one potential are known.6

•
12 It has at most one eigen

vector (bound state) and because the potential is a compact 
perturbation of - !A + e the continuous spectrum is [e, 00 ). 

For the harmonic oscillator example, the corresponding 
(local) Hamiltonian with multiplicative potential is 

1 d 2 1 
H M = ---+7!r-1). 

2 dx2 2 

HereHM has a pure point spectrum {0,1,2, ... }, whereas the 
rank-one potential which has Uo as a zero-energy eigenstate 
has very different spectral properties. 

The basic qualitative difference between local (multipli
cative) and finite rank potentials, even when they share one 
(or several) eigenvalues, becomes clearer if one examines the 
corresponding stochastic processes. 

A local Hamiltonian with a zero-energy eigenstate ,pIx) 
corresponds to a diffusion process with diffusion measure 
,p2(x)d nx. To characterize the stochastic process associated 
with HR I' one compares the (energy) form E(f, g) 
= (f,p,H R I g,p),J and g being real functions, with the Beurl-

ing-Deny formula 

E(f,g) = ~jv/·vg,p2dnX 

+ jl,p{VRI(g,p)-gVRI,p}dnx 

= ~ j VI' Vg,p2 dnx 

- j/(x),p(X)h (x){g(y) 

- g(x)} h (y),p( y)d nx d ny. (2.6) 

For comparison purposes, one writes the Beurling-Deny 
formula 

E(f, g) = j ad aj&Uij(dx) 

+ j(f(X) - I( y))(g(x) - g( y))u(dx, dy) 

+ j/(X)g(X)k (dx) (2.7) 

as follows: 
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+ jf(X)g(X) { k (x) + 2 j dy u(x,y) }dX 

- 2 jf(X)g(Y)u(X,Y)dX dy, (2.8) 

where the measures are not necessarily absolutely contin
uous. Notice that when comparing Eq. (2.6) with (2.8), u(x,y) 
is defined only up to y(x) o(x - y), where y(x) is an arbitrary 
function. To obtain the actual jumping measure density one 
has to extract all terms proportional to o(x - y). 

Comparing (2.6) with (2.8) one concludes that the sto
chastic process associated with H R 1 has diffusion, jumping, 
and killing measure densities, respectively, 

,uij(x) = !¢2(X)Oij' 

u(x,y) = ~¢(x)h (x)¢(y)h (y), 

k(x)=O, 

with h (x) a function of ¢(x) [Eq. (2.3b)]. 

(2.9a) 

(2.9b) 

(2.9c) 

Intuitively, one might think that if one considered a 
rank N potential which coincided with a local potential in its 
action on N distinct functions, the jumping measure would 
vanish in the limit N- 00. This intuition turns out to be right 
only under particular conditions. 

Let the Hamiltonian H N = Ho + :If,j:' ~ I i) bij (jl share 
N eigenstates {¢i> i = O, ... ,N - I} with the local 
H = Ho + V(x), i.e., 

HN¢i =H¢i = Ei¢i' (2.10) 

Then it follows 13 that H N has the form 
N-l 

HN =Ho+ 2: VI¢i)(r-1)ij(¢jlV, (2.11) 
i,j=O 

where ~-l is the inverse of the matrix r ij = (¢i IV I¢j)' 
Companng the energy form E(f, g) = (/¢o,H Ng¢O) with the 
Beurling-Deny formula, as before, one obtains 

I N-l 

u(x,y) = - - L ¢o(X)V(X)¢i(X) 
2 i,j=O 

X (r-1)ij¢j( y)V( y)¢o( y). (2.12) 

In the N- 00 limit the jumping disappears only if u(x,y) be
comes proportional to o(x y), 

00 

2: ¢i(X)(r-1)ij¢j(y)-o(x - y) (2.13) 
ij=O 

(which holds if {¢i } is a complete orthonormal set). 
So far, the stochastic process associated with the Hamil

tonian operator H has meant the Markov process with tran
sition functions leading to the same semigroup as that gener
ated by H. The Markov transition functions represent, 
therefore, the behavior of the Schrodinger equation in imagi
nary time, 

Another connection between the Schrodinger equation 
and probabilistic notions is established in the framework of 
stochastic mechanics,14 which concerns the time evolution 
of the probability density p(x,t) = It,b(x,t W in real time. Con
sideration of nonlocal potentials requires an extension of the 
stochastic mechanics formalism, which is sketched below. 
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From the SchrOdinger equation 

i~ t,b = - ~ At,b + Vt,b at 2m 
(2.14) 

and its adjoint, one obtains 

t = - V{bp} + 2: Ap + 1m j :I(x,Ylo(y,tjd"y, 

(2.15) 

where 

Ii Ii 
b = -V In I t,bl + -V arg t,b = U + v, (2. 16a) 

m m 

(Vt,b)(X) = j V (x,y)t,b( y)d "y, (2.16b) 

:I(x,y) = ~t,b*(x,t ) V (x,y) 1 , 
Ii t,b*( y,t ) 

(2.16c) 

and V(x,y) = V*(y,x). From (2.16aH2.16c), one sees that 
once a solution t,b(x,t) of the SchrOdinger equation is known, 
all parameters in (2.15) are known. However, one can inter
pret (2.15) as the forward equation of a stochastic process 
and use it, together with the equations of motion for u, v, and 
:I, to define the dynamics without explicit reference to the 
Schrodinger equation. This is the point of view of stochastic 
mechanics. 

The equations of motion for u, v, and :I are 

U = - 2: Vx(Vx·v) - Vx(u·v) 

-~Im Vxj:I(y,x)d ny, 
2m 

. IV(2 2 Ii 
v=T x u -v)+ 2m Vx(Vx·u) 

- ~ Re Vxj:I(Y,X)d ny, 
2m 

. [{ m 1 :I(x,y) = :I(x,y) -Iju,v(x) - TV.v(x) 

im ( 2() 2 - 2i U x - v (x)) 

(2. 17a) 

(2. 17b) 

- ~ V·u(x) + ~ j :I(z,Xjdnz } - {X-yJ l 
(2. 17c) 

In the local (multiplicative) operator case 
V(x,y) = V(x)O(x - y) and the kernel :I is 

:IM(x,y) = (2/1i)V(x)o(x - y). 

Then :iM(x,y) = 0 = 1m :IM(x,y) and the only contribution 
is the usual (l/m)VV(x), in the equation for iJ. 

For the case of the rank N potential of Eq. (2.2), the 
kernel has nontrivial dynamics. In terms of the solution of 
the Schrodinger equation, :IRN(X,y) is 

:IRN(X,y) = (2/Ii)co(x - y) 

2 N I 
+ Ij.? t,b*(x,t )hi(x)bijh j(y)-*--

'.J = 1 t,b (y,t) 
(2.18) 
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III. STURM-LIOUVILLE POTENTIAL 

Let the potential be a second-order differential operator 
with real coefficients. Symmetry restricts the operator to the 
general form 

.. a
2 

(a..) a VSL = -K!l(x)-.-.- -.K!l(x) -.+G(x), 
ax' ax' ax' ax' 

(3.1) 

with K ii(x) = K ji(X). This is called a Sturm-Liouville opera
tor. Some of the nonlocal potentials used in nuclear phys
ics15

•
16 are of this type. 

Of particular interest are the one-dimensional and the 
spherically symmetric three-dimensional cases. In three di
mensions, with spherical symmetry K ii(x) = K (r~ii, 
G (x) = G (r), and writing the wave function as 

r/J(r,(),ifJ) = (u(r)/r)Y1m((),ifJ), 

one obtains for the radial eigenvalue equation 

{(~ +K(r))( _ :; + 1(/; 1)) 

_ dK ~+J.... dK + G(r) -E}U(r) =0. 
dr dr r dr 

(3.2) 

As before Ii = m = 1, for simplicity, otherwise the factor 
~ + K (r) should be replaced by fi2 12m + K (r). 

Let ifJ be a zero-energy eigenvalue 

HSLifJ = (-!A + VSL)ifJ = O. (3.3) 

Using (3.3) to compute the energy form E(f, g) one obtains 

E(f, g) = (fifJ,HsLgifJ) 

= faJ{+8ii+Kii(X)}ajgifJ2dnx. (3.4) 

Hence, in the Sturm-Liouville case, the associated stochas
tic process is (as in the multiplication potential case) a pure 
diffusion with a (modified) diffusion measure density 

(3.5) 

This refers to the stochastic process associated with the 
imaginary time Schrodinger equation. In real time, the equa
tion of motion for the probability density p(x,t ) = lifJ(x,t) 1

2, 
Eq. (2.15), is in this case 

ap = _ ai I b p} + ad y"j(x)ajp }, (3.6) 
at 

with 

b i = ~(~8ii + Kii(x))(aj arg t/! + aj lnlt/!Il (3.7a) 
Ii 2m 

y"j = ~ (! 8 ii + Kii(X)). (3.7b) 

i.e., a generalized Fokker-Planck equation with a space de
pendent diffusion. 

Nonlocalities of the Sturm-Liouville type are relatively 
mild in the sense that the stochastic processes associated 
with imaginary time evolution and with the stochastic me
chanics description are both generalized diffusions. 

Nonlocal potentials of the type studied in this section 
can be transformed to a form which may be handled by the 
same computational techniques as local potentials. For the 
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one-dimensional (or the radial) equation one performs the 
transformation 17 

(3.8) 

in 

{ (
1 )d2 Id} - - + K - - K - t/! + Gt/! = Et/! 
2 dx2 dx 

(3.9) 

to obtain 

(3.10) 

The nonlocal eigenvalue problem is therefore transformed 
into the search for the zero-energy eigenvalue of a local ener
gy-dependent potential. 

The requirement (3.3) that ifJ be a zero-energy eigenstate 
leads to an equation 

ajifJ aiKii + ai ajifJKii = GifJ - !AifJ, (3.11) 

which for each ifJ, determines G (x) once K ii(x) is fixed, or 
conversely. 

To learn about the nature of the dynamics that are re
constructed when nonlocalities of the Sturm-Liouville type 
are chosen, one analyzes briefly the one-dimensional case. 

Let ifJ be the harmonic oscillator ground state 
expl-x2/2}. 

When K (x) is a constant (K) the coefficient of d Idx in 
(3.1) vanishes and HSL with G (x) obtained from (3.11) is sim
ply the Hamiltonian of a harmonic oscillator multiplied by 
the factor (1 + 2K). The eigenstates are the same, with the 
scale factor (1 + 2K) multiplying the eigenValUes. 

A nonconstant K (x) may be interpreted as a description 
of space inhomogeneity of the oscillator parameters. Defin
ing 

mIx) = (1 + 2K(X))-I, (3.12) 

one rewrites Eq. (3.9) as 

{ _J....~(_1 __ 1 ) + G(X)}t/!=Et/!, (3.13) 
2 dx mIx) dx 

which can be interpreted as describing the motion of a vari
able mass particle in the potential G (x). However, if dml dx is 
large this intuitive interpretation may be misleading because 
the contribution of the derivative terms may become more 
important than the static potential G (x). 

With the same zero-energy eigenstate, one can associate 
very many distinct Sturm-Liouville operators. For example 
both 

(3.14) 

and 

K = !(~' - 1); G = - !(x2 + 1)~' (3.15) 

have ifJ = e - x'l2 as a zero-energy eigenstate, although their 
static potentials are quite different. In (3.14) it is a double 
well, whereas in (3.15) the static potential is not bounded 
from below. However, in (3.15) the derivative part of the 
potential is sufficiently strong to overcome the static nega
tive unbounded contribution. In particular it is easy to prove 
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that the negative real axis belongs to the resolvent set. 
The Hamiltonian operator associated with the choice 

(3.15) is 

HSL = -.!. e"'(X + ~)2 = _.!. e"'I2~ e"'12. (3.16) 
2 dx 2 dx2 

This operator is, at least from a mathematical point of view, 
sufficiently interesting to deserve further study. HSL is sym
metric in C o(R) and commutes with complex conjugation. 
By von Neumann's theorem l8 it has self-adjoint extensions, 
which one characterizes by specifying the boundary condi
tions at ± 00. From 

f 1/1H SL "'I dx = f(HSL "'2)*"'1 dx 

-.!. e"'/2{1/1~(e"'/2"'d 
2 dx 

_ ~(e"'/2"'2)*"'1} I 00 

dx - 00 

one is led to define the following domain for the self-adjoint 
extensions: 

X~OO X-+-oXl 

Requiring t/J = e - x'/2 to be an eigenstate one is led to choose 
the self-adjoint extension H kOi. Notice that HSL has a two
dimensional subspace of zero energy eigenstates, namely 
(c1x + c2)e- x'/2. The choice of a particular self-adjoint ex
tension selects one vector in this subspace. 

The negative real axis belongs to the resolvent set of 
H kOi and there is a point spectrum contained in [0, 00). This 
analysis is divided into two parts. 

A. 'riA < 0, A EI: a{HJa.!> 

According to Weyl's criterion AE a(H ~i) if and only if 
there is a sequence "'n in D (H~L), with II"'n II = 1, such that 
limn~oo II(H~L - A )"'n II = O. 

Defining 

(3.18) 

and using the boundary conditions in D (H kOL ) to perform the 
partial integrations, one obtains 

II(H~L - A )"'n 112 = f dX{ e;2Ir::12 

-A Ir~12+A2e-x'lrnI2}. 
If A < 0, the right-hand side is a sum of positive quantities 
and is =1= 0 because 

f dx e-x'irn 12 = IIlfn II = 1. 

Therefore any A < 0 belongs to the resolvent set of H ~L. 
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8 • ..1.;;.0 

Using (3.18) one writes 

(H~L -A )lfn = e"'/2{ - ~ ::2 -Ae-X'}rn. (3.19) 

The question of whether A belongs to the spectrum of H ~L is 
therefore related to the zero eigenvalue problem for the oper
ator 

Because Ae - x' is an L 2 perturbation, u ess (B ,tl 
= u.ss ( - d 2/ dx2

), which implies 0 E a(B A.)' Because zero is 
in the spectrum of B A.> there is a sequence r n with II r n II = 1 
such that IIBA. rn 11-0. However this does not guarantee that 
IIex'/2BA.rnll-o, nor that IIe-x'l2rn il remains =1=0 in the 
n ---+ 00 limit. 

Instead, one analyzes directly the equation 

{ d2 '} dx2 + Ue- x r(x) = o. (3.20) 

In a neighborhood of ± 00, this equation has an asymptotic 
solution a ± x + f3 ± . If one requires that 
If = e - x'/2r E D (H ~Ll, then a ± = 0 and f3 + = f3 _. 

Fix r-t3 _ and r' -0 when X---+ - 00 as initial condi
tions. Because e - x' is continuous in ( - 00,00) the existence
uniqueness theorem for second-order linear homogeneous 
equations l9 implies, for any A, the existence of a solution to 
(3.20), which at x---+ + 00 grows at most linearly. Therefore, 
the problem (H ~L - A )If = 0 has an L 2 solutions for any A. 
This does not imply that all A 's are in the spectrum because 
in general If will not belong to the domain D (H ~L). If is in 
D (H ~L) only if IimHOO r(x) = f3 _. The A values for which 
this condition holds are the elements of the point spectrum of 
H~L. Below, the first seven such values obtained by numeri
cal integration of (3.20) are listed: 

o 4.33 15.07 32.14 

55.52 85.21 121.19 
Qualitatively they follow the same pattern aSA _1T"n2

, which 
is obtained from the semiclassical approximation 

r(x)-coSf~ 00 fjXe- Tf
'
/2d7j. 

IV. SYMMETRIZED DERIVATION 

The potential that is to be studied in this section is re
quired to have the form 

VD = {a(X)'i~} + W(x) 
ax + 

=2ia(x)~+ida + W(x), (4.1) 
ax dx 

where a(x) and W(x) are real functions in R. 
Let t/J(x) be a real zero energy eigenstate 

( 
1 d

2 
) H Dt/J = -"2 dx2 + VD t/J = O. 

Then one obtains 
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a(x) = (cI2)tP- 2(x), 

1 d2tP 
W(x) = 2tP(x) dx2 ' 

(4.2a) 

(4.2b) 

c being an arbitrary constant. For the harmonic oscillator 
ground state tP = e - x'/2, 

V c {-'" . a } 1 2 D=- e- ,1- +-(x -1) 
2 ax + 2 

.-"'( d ) 1 2 =Ck x+- +-(x -1). 
dx 2 

(4.3) 

Even when C is small the term c[~',i(a lax)] + cannot be 
considered a perturbation of the (multiplicative) harmonic 
oscillator, because the operator V' 

v, _ .-"'( + a) _ -,,'/2. d x'/2 - Ie- X - - e- 1- e 
ax dx 

(4.4) 

has divergent matrix elements in the {un} basis. More pre
cisely, except for Uo all other un's are not in the domain of V': 

V'U n =i~'..j2iiun_1 El:L2(JR), if n#O. 

The operator HD = - ~(d2Idx2) + VD is symmetric in 
C aIR) and unitarily equivalent (see below) to a real poten
tial. It has a one-parameter family of self-adjoint extensions 
which one characterizes by the boundary conditions at 
± 00. From 

J ~!ieX'(x + ! )~I dx 

= i~!~'~ll ~ 00 + J[ieX'(x + ! )~2 r ~I dx 

one obtains the following domains for the self-adjoint exten
sions 

(4.S) 

The self-adjoint extension that contains e - x'/2 in its domain, 
as required, is H~I. Although it shares this zero energy ei
genstate with the harmonic oscillator, the dynamic is other
wise of a completely different nature. This becomes apparent 
if one considers the isometric map 

~(x)-+(Uc~)(x) = exp{ - ic foXes' dg }~(X). (4.6) 

Then 

H'= UHDU- 1= _~~+~(x2_1)_~2X' 
C C 2dx2 2 2 

(4.7) 
is the harmonic oscillator Hamiltonian plus a negative un
bounded potential. 

To H D is associated a singular jumping measure. Com
puting the energy form e(f,g) = (ftP.HDgtP) and comparison 
with the Beurling-Deny formula as in (2.6)-(2.8) leads to 

Ilij(x) = !tP2(x)c5ij' (4.8a) 

o-(x,y) = ( - icI2)c5'(x - y), (4.8b) 

k~=Q ~~ 
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The kernel ~D(X,y) for the stochastic mechanics equa
tion (2.1S) is 

~D(X,y) = ~{W(X) + ida - 2ia(x)~ln ~.(X)}c5(X - y) 
fz dx dx 

+ -±-ia(x)c5'(x - y). 
fz 

(4.9) 

V. POTENTIALS WITH SUBSTITUTION OPERATORS 

Symmetrized substitution operators may also be of 
some interest in the description of effective nuclear interac
tions. 20 They have the general form 

(VS ~)(x) = _1_~(v(x)) 
w(x) 

+ w.(v~ I(X)) ( d;~ I r ~(V-I(X)) + q(x)f/i(x). 

(S.l) 

Using HstP = ( -!a + Vs)tP = 0 one can, as before, 
compute the energy form €I./' g) = (ftP.HsgtP) and compare 
with the Beurling-Deny formula to obtain for the diffusion, 
jumping, and killing 

Ilij(x) = !tP2(x)c5ij' (S.2a) 

o-(x) = - ~{~( y - v(x)) 
2 w(x) 

k(x)=O. 

+ w.~y)( d;~1 r c5(y - V-I(X))}tP(X)tP(y), 

(S.2b) 

(S.2c) 

Example: Let tP = e - X'/2,w(x) = 1, and the substitution 
function be a translation v(x) = x + b. 

Then 

q(x) = !(x2 - 1) - 2e- b '/2 cosh bx. (S.3) 
Because the translation operators can be written in differen
tial form, the Hamiltonian is 

Hs = - ~ ~ + ~(X2 - 1) + 2 cosh (b~) 
2dx2 2 dx 

- 2e- b '/2 cosh bx. (S.4) 

From the fact that Hs Un E L 2 it follows that, in principle and 
for small b, the two last terms in (S.4) can be treated as a 
perturbation. From 

H = (1 - 2b 2){ - ~~ + ~(X2 - I)} + O(b 4
) 

s 2dx2 2 ' 

one concludes that in leading order the effect of the perturba
tion is a scale change in the harmonic oscillator spectrum. 

VI. RECONSTRUCTION FROM A STOCHASTIC 
PROCESS 

If e(f,g) is a closed positive symmetric form densely de
fined inL 2(O,dll) (OCJRn open) there is a unique self-adJ·oint 

A '" A 
operator H such thate(f,g) = (H 1/2/,H 1/2g)d!, , where (o)d!' is 
the s~lar product in L 2(O,dll). Here one is concerned not 
with H but with the operator H in the corresponding Schro-
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dinger form. Given a (Dirichlet) form by its measure densi
ties, H is an operator such that 

(6.1) 

where dx denotes the "flat" Lebesgue measure, and "'I,"'g 
are related to f,g by unitary equivalence. 

Let E be defined as in (2.7) by the measure densities Jl ij (x), 
oix,y), k (x), and 

H= -!a+ v. (6.2) 

Assume that Jlij(x) = Jl(x)c5ij and Jl(x) > 0 everywhere. The 
states in L 2(n,dp) and L 2(n,dx) are related by 

u" 
f- "'I =f..fiii, (6.3) 

thus one obtains by a straightforward calculation using (6.1) 
and (2.8) 

(V{f.t,O',k )",)(x) 

= [ 1 a..[2ji(X) + _l_{k (x) + 2Joix ,y)d IIY}] tP(x) 
2 ~Jl(x) 2,u(x) 

-f oix,y) tP(y)d"y. (6.4) 
~Jl(xlJ.t(y) 

From (6.4) it would seem that nonlocal potential effects can 
only be associated to the jumping measure. However one 
should notice that the potential in (6.2) is not uniquely de
fined, it depends on the choice of the unitary transformation 
U between L 2(n,dJl) and L 2(n,dx). Let us decompose 
Jl(x) = a(x) + f3 (x) where now one requires only a(x) > O. Us
ingnow 

(6.5) 

one obtains for the potential in (6.2) 

V= V(a,O',k) - ! a - v(!)-v 
__ 1 V.(f3V-1 ). 

J2a J2a 
(6.6) 

The nonlocal part in (6.6) that is not related to the jumping 
measure is ofthe Sturm-Liouville type. 
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Concern with the continued fraction representations of divergent Rayleigh-Schrodinger 
perturbation expansions in quantum mechanics is expressed. The following relation between the 
large-order behavior ofthe continued fraction coefficients cn and the perturbation series 
coefficients E(n) is shown to exist: If E(n)_( - 1)"+ Ir(pn + a), p = 0,1,2, ... , as n--oo, then 
Cn = 0 (nP) as n--oo. The case p = 1 is studied in detail here, using the problems of the quartic 
anharmonic oscillator and the hydrogen atom in a linear radial potential as illustrative examples. 
For p = 1 theasymptotics ofthecn are shown to be linked to the infinite field limitE (A )_F(O)A a, 

predicting a and providing convergent estimates of F(O). 

I. INTRODUCTION AND MOTIVATION 

Perturbation methods have been an indispensible tool of 
applied mathematics and theoretical physics. The funda
mental work of Lord Rayleigh 1 and of Schrodinger2 pro
vided a basis for the important quantum mechanical pertur
bation that bears their names. Suppose that we have a 
quantum mec)1anical system characterized by a Hamilton
ian operator H(O) with known energy eigenvalues E(~/. Now 
let this system be perturbed, for example, by an external 
magnetic field, so that it is now represented by the Hamilton-

:;.0"10.. A A A 

ian H(A ) = H(O) + AV, where V represents the perturbation 
and A, the coupling constant, represents its strength. The 
9..uestion is, "What are the eigenvalues Em (A), if any, of 
H(A )?" Generally, the perturbed eigenvalue problem is not 
exactly solvable and approximation methods must be em
ployed. Rayleigh-Schrodinger perturbation theory (RSPT) 
represents the unknown energy (and wave function) as a Tay
lor series in the coupling constant 

E (A ) = E (0) + i E(n)A n • (1.1) 
n=1 

The expansion coefficients E (n) are determined by well de
fined procedures. One of the questions oflarge-order pertur
bation theory (LOPT) is, "How do the E (n) behave as 
n--oo?" 

Traditionally, physicists and chemists have been con
tent to compute perturbation expansions to only one or two 
terms, for a number of reasons. In most situations, this num
ber of terms is sufficient to remove any degeneracy of the 
unperturbed problem, so the physics associated with the per
turbation has been revealed. Moreover, in most laboratory 
applications, .1,< 1 and these terms provide good estimates of 

0' Present address: School of Mathematics, Georgia Institute of Technology, 
Atlanta, Georgia 30332. This paper represents portions of a Ph.D. thesis 
in Applied Mathematics. 

E (A ). Another reason is that the calculation of higher-order 
terms, even for simple systems such as the hydrogen atom, 
may be very tedious. However, developments over the last 
twenty years have changed the status of perturbation calcu
lations. In many physical situations, e.g., intense magnetic 
fields observed on the surfaces of neutron stars, the coupling 
constant may assume values reaching several orders of mag
nitude. In addition, computers have made it possible to cal
culate perturbation expansions for a variety of simple quan
tum mechanical problems to large order. Some of the oldest 
perturbation problems of nonrelativistic quantum mechan
ics, e.g., the anharmonic oscillator, the Stark and quadratic 
Zeeman effects in hydrogen, have been found to yield diver
gent perturbation series. Only relatively recently was the 
perturbation expansion of the classical quartic anharmonic 
oscillator studied in detail by Bender and Wu,3-S Loeffel et 
al.,6 Simon,? and others. Since then, LOPT, concerned with 
the nature of these expansions and their summability, has 
evolved into an intense and ongoing area of research in 
mathematical, theoretical, as well as atomic and molecular 
physics.8 Much of the stimulus for this research has come 
from quantum field theory where perturbation methods are 
essential. Simple perturbation problems of nonrelativistic 
quantum mechanics, such as those mentioned above, are 
similar in nature to the problems encountered in field theory. 
For example, the problems of the hydrogen molecule-ion 
and double-welled oscillators are of relevance to quantum 
field theories with degenerate vacuum states. Many such 
problems have revealed a rich mathematical structure and 
provide excellent testing grounds for the development of effi
cient and accurate summability methods. 

Many of the perturbation expansions encountered in 
theoretical physics are divergent and their large-order be
havior is given typically by 

E(n)-(-l)"+IAr(pn+a)k n , as n--oo, (1.2) 
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where A, p, a, and k are constants. Titchmarsh9 and Kato lO 

showed many year:s ago that such nonconvergent expansions 
may still be asymptotic. In special cases the perturbation 
expansions may be shown to be rigorously Borel summable 
or, in the case of Stieltjes series, Pade summable. II 

In this paper, we focus on continued fraction (CF) repre
sentations of the RS perturbation series in Eq. (1.1) and (1.2), 
having the form 

E (A ) = E (0) + AC (A ) 

=E(O) + C1"t 

1 + c~ 
1+~ 

1+ 
- (1.3) 

The function C (z) is referred to as a RITZ (rotation-inver
sion-translation-z) fraction. 12 More specifically, we are con
cerned with the large-order behavior ofthe C n' which shall be 
abbreviated as CFLO (continued fractions at large order). 

The continued fraction representations of some stan
dard perturbation expansions whose coefficients exhibit the 
asymptotic behavior in (1.2) demonstrate two noteworthy 
features: (1) all Cn > 0, hence C (A) is a Stieltjes fraction,12 a 
consequence of the Stieltjes nature of the perturbation series, 
and (2)cn -Dn P, as n---+oo , whereD is a constant. Forconve
nience, we refer to such continued fractions as S( p) fractions. 
The function E (A) is typically analytic in the cut plane 
C = {A:largA 1< 1TJ, and for p<.2, the expression in Eq. (1.3) 
converges to E (A ) uniformly on compact subsets ofC. In this 
way, the S fraction is seen to be a much more natural repre
sentation of E (A ) than its perturbation series counterpart. 

In an earlier study,13 this gross asymptotic connection 
was numerically exploited to provide very good estimates of 
the eigenvalue E (A ) for rather high values of the coupling 
constantA; in other words, to serve as an effective numerical 
summability method. Since that report, the asymptotic rela
tion between LOPT and CFLO has been refined for a num
ber of problems yielding S(I) fraction representations. I 4-16 
Asymptotic analysis reveals that significant information is 
encoded in these CF representations. 

The organization of this paper is as follows: In Sec. II are 
presented the main features of RITZ continued fractions and 
their representations offormal power series, S fractions, and 
the Stieltjes moment problem. In Sec. III, Simon's theory of 
the Stieltjes nature of perturbation expansions is outlined 
along with a synopsis of the Bender-Wu method of deter
mining the large-order behavior of the coefficients E(n). The 
connection between CFLO and LOPT is then discussed. In 
Sec. IV we look at the S(1) fraction representations afforded 
by two well-known perturbation problems: the quartic an
harmonic oscillator and the hydrogen atom in a linear radial 
potential. The large-A behavior for a particular class of S(I) 

fractions, including the examples cited above, is shown in 
Sec. V to be related to the asymptotics of the C n' This in tum 
implies a relationship between CFLO and the infinite field 
expansion of the perturbation problem concerned. Specifi
cally, if the infinite field expansion has the form 
E(A )_F(O)A a, as ..1---+00, and the Cn behave asymptotically 
as Cn -~ kn + A ('1 + 0(1), as n---+oo, where i = (1,2), if n is 
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(even,odd), then a = ~ - (A (I) - A (2))lk. Moreover, asymp
totic expansions of the S(1) fraction representations afford 
converging estimates of the leading coefficient F(O). The ex
amples cited above will be analyzed in Sec. VI to show that a 
simple relationship analogous to feature (2) does not exist for 
subdominant terms in the CFLO and LOPT expansions. We 
mention that some of these results were announced in a pre
liminary report. 15 

II. RITZ CONTINUED FRACTION REPRESENTATIONS 
OF FORMAL POWER SERIES 

A. RITZ fractions 

In this section are outlined some important properties of 
the RITZ fractions defined in Eq. (1.3). Theorems are pre
sented here without proof. Discussions and proofs can be 
found in the standard texts on continued fractions l7- 19 and 
Pade approximants.20,21 The book by Henrici l2 contains a 
presentation of RITZ and S fractions most relevant to this 
study. 

The continued fraction function in Eq. (1.3), C (z): C---+C, 
which we write in the following fashion: 

C(z) = £!. C~ c~, (2.1) 
1+1+1+'" 

and abbreviate as 

I K CnZ C(z)=z- -, 
n=1 1 

is referred to as a RITZ (rotation-inversion-translation-z) 
fraction since it may be formally defined as a composition of 
linear fractional transformations with complex parameter z. 
IfC(z) is aterminatingjraction, i.e., Ck = ° for k> n, then it is 
a rational function of z. If C (z) is non terminating, which is to 
be assumed throughout the course of this paper, it may be 
truncated by setting Ck = 0, k> n, to produce a set of ration
al functions, Wn (z), the nth convergents or approximants to 
C(z), 

Wn (z) = C11 + Ci + Ci + 

An(z) 
= Bn(z) . 

+ 1 

(2.2) 

The polynomials An (z) and Bn (z) are the nth numerator and 
denominator, respectively, of C (z). They satisfy the recur
rence relations 

(2.3) 

Bn (z) = Bn _ dz) + cnzBn _ 2 (z), n = 2,3,4, ... , 

with initial values Ao = 0, Bo = 1, AI = CI, BI = 1. More
over, it may easily be shown that L = deg{An (z) J 
= [In - 1)12] and M = deg{Bn(z)J = [nI2], where [x] de

notes the greatest integer contained in x. If we let ani' 
O<.j<.L, and bnk , O<.k<.M, represent the coefficients of xi 
and Xk in the polynomials An (z) and Bn (z), respectively, then 
Eq. (2.3) implies the recurrence relations 

ani =an-I,i +cnan-2,i-I' j=O,l, ... ,[(n -1)12], 
(2.4) 

bni =bn-I,i +cnbn- 2,i- I ' j=0,1, ... ,[nI2] , 
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TABLE I. Numerator and denominator polynomial coefficients aO} and ho} of the RITZ fraction convergents wo (z) defined in Eq. (2.2). These coefficients are 
expressed in terms of the RITZ fraction coefficients Co and obey the recursion relations in Eq. (2.4). 

'iZ 0 

1 c, 

2 c, 

3 C, C'C3 

aO} 4 C, C,C3 + c,C. 

5 C, C'C3 + c,C. + C,Cs 

6 C, C'C3 + c,c. + C,Cs + c,c6 

7 C, c,c3 + c,c. + c,cs + c,c6 

+c,c7 

s 0 

1 
2 C2 

3 C2 +c3 

ho} 4 c 2 +c3 + C. 

5 c 2 + C3 + C. + Cs 

6 c 2 + C3 + C. + Cs + c 6 

7 C2 + c 3 + C. + Cs + c 6 + c 7 

where aoo = 0, boo = 1; aOi = bOi = 0, for i>O; a lO = C I , 

blO = 1. Clearly, these polynomial coefficients are express
ible solely in terms of the CF coefficients Cn • Closed-form 
expressions for n<7 are presented in Table I. 

Theorem 2.1: For each convergent Wn (z) of C (z), the 
polynomials An (z) and Bn (z) have no common zeroes. 

The continued fraction C (z) is said to converge at a point 
Zo iflimn-+ oo Wn (zo) exists and is finite. Theorems which relate 
the regions of convergence of C (z) to the behavior of the C n 

are given in Refs. 17-20. 

B. RITZ fractions and corresponding power series 

Clearly, the approximants Wn (z) in Eq. (2.2) are rational 
functions analytic at z = O. The following theorem is impor
tant in establishing a correspondence between RITZ frac
tions and formal power series. 

Theorem 2.2: The first n terms of the Taylor series ex
pansions ofwn+dz), k = 0,1,2, ... are identical. 

The formal power series, 

P(z) = ao + alz + a'; + ... , (2.5) 

and the continued fraction C (z) are said to correspond to 
each other if 

(2.6) 

From Eq. (2.3) this is equivalent to the condition 

P(z) -An(z)lBn(z) = O(zL+M+ I), (2.7) 

which is precisely the relation defining the unique [L,M] Pa
de approximant20

•
21 

187 

[L.M ](z) = Po + PIZ + ... + PLzL , 
1 +qIZ+ .. ·+qM~ 
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(2.8) 

2 

C,C3CS 

c,c3CS + C,C3C6 + c,c,c6 

c,c3CS + C,C3C6 + c,c,c6 + C,C3C7 

+ C'C'C7 + c,csc7 

2 

C2C, 

C2C, + c 2CS + C3CS 

3 

3 

C2C, + C2CS + C3CS + C2C6 + C3C6 + C,C6 C2C,C6 + C2C4C7 + C2CSC7 

+ C2C7 + C3C7 + C4C7 + CSc 7 + C6C7 + C3CSC7 

to the series P(z). Thus W 2N (Z) = [N - I,N](z) and 
W 2N + I (z) = [N,N] (z) so that the sequence {wn (z) 1:,= 0 gen
erates a stepwise descent of the Pade table of P (z). 

Remarks: There is an immediate computational advan
tage afforded by RITZ representations over their Pade coun
terparts-a single sequence of RITZ coefficients Cn gener
ates the two diagonal Pade sequences. In order to move from 
W 2N(Z) to W 2N + I (z), we need only add the coefficient C2N + I to 
the sequence {cn I~ I' As will be shown below, this compu
tation requires the additional series coefficient a2N • This is 
not the situation for Pade approximants, where a new set of 
L + M + 1 coefficients need to be calculated for each [L,M] 
Pade. 

Theorem 2.3: A necessary and sufficient condition for 
the existence of a unique RITZ fraction representation C (z) 
of the formal power series in Eq. (2.5) is thatP(z) be normal, 
i.e., that the Hankel determinants defined by H~) = 1 and 

an an+ 1 an+k-l 

H(n)- an+ 1 an+ 2 an+ k 
k - (2.9) 

an+ k _ 1 an+k an +2k-2 

satisfy H~)I=O for n = 0,1 and k = 1,2, .... The CF coeffi
cients Cn are then given by C1 = ao and 

e2m = - H~H~_I/H~_IH~, 
(2.10) 

C2m + I = - H~)+ lH~)_I/H~)H~). 

These equations are quite unsuitable for numerical com
putation of the CF coefficients, however. As in the case of 
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Pade approximants, the evaluation of such determinants is 
tedious and very sensitive to the roundoff error associated 
with fixed point arithmetic. There exist a number of simpler, 
but also numerically unstable, algorithms which exploit, ei
ther directly or indirectly, the relationships between neigh
boring Hankel determinants to calculate the Cn' We now 
outline the quotient-difference (QD) algorithm of Ruti
shauser,22 which has been employed in this study. The nota
tion scheme employed here differs slightly from the usual 
one presented in books. 12,17,23 

For the power series P (z) defined in Eq. (2.5), the QD 
algorithm defines the two-dimensional sequences enm and 
qnm with the initial values 

enO = 0 , n = 1,2,3, ... , 
(2.11) 

and the following recursion relations, the so-called "rhom
bus rules," 

enm =qn+l,m -qnm +en,m-l , 

qnm = en,m-lqn,m-l/en -I,m-I' 

n = 2,3, ... , m = 2,3, ... ,n . 

(2. 12a) 

(2. 12b) 

These sequences are traditionally presented as a set of inter
woven two-dimensional arrays known as the QD table, 
which is shown schematically in Fig. 1. Any four elements of 
the table which form a unit rhombus are connected by the 
recursion relations of (2.12). 

Theorem 2.4: If the power series P (z) is normal, then its 
RITZ fraction representation is uniquely defined by the "di
agonal" elements ofthe QD table, i.e., 

C(z) = ao ql1Z el1z q2~ e2~ 

1 + 1 + 1 + 1 + 1 + 
(2.13) 

The QD algorithm represents a convenient method of 
determining the RITZ fraction representation (if it exists) of 
a formal power series. The first column enO is filled with 
zeroes, and the next column qnl is filled with the negative 
ratios of successive power series coefficients. Equations 
(2.12) are then used to calculate a QD triangle outward to the 
diagonal as in Fig. 1. This method is known as the lorward 
QD algorithm. Each additional series coefficient an allows 
the determination of an additional CF coefficient cn • In this 
way a one-to-one correspondence is seen to exist between the 
an and the cn. 

The QD scheme, as other algorithms designed to calcu
late RITZ CF coefficients from power series coefficients, is 
numerically unstable by virtue of the alternating procedures 
of division and subtraction, Practical calculations of RITZ 
coefficients to large order are thus impeded by this sensitiv
ity to roundoff error. It is found that roughly one digit of 
accuracy in the Cn is lost for every two orders of calculation, 
implying that even in IBM quadruple precision (32 signifi
cant digits), coefficients beyond about C60 are totally mean
ingless. As a result, all calculations performed in the course 
of this work have been accomplished with the use of a multi
ple-precision software routine,24 which allows decimal 
numbers to be represented by arbitrarily large numbers of 
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FIG. 1. The quotient-dilference (QD) table, illustrating two particular unit 
rhombi. The elements defining rhombus A satisfy Eq. (2.12a) with 
m = n = 1. The elements of rhombus B satisfy Eq. (2.12b) with m = n = 2. 
From these equations, the rightmost elements of any rhombus may be cal
culated from the other three elements. The first two columns are initialized 
as in Eq. (2.11), permitting the calculation of the triangular lattice shown in 
this figure. This procedure is known as the/orward QD scheme. The diag
onal entries q.. and e.. define the coefficients c. of the RITZ continued 
fraction representation of the formal power series concerned. 

digits. In these calculations, each decimal number-includ
ing those involved in the calculation of the perturbation coef
ficients-was represented by, typically, 200 digits. This 
would ensure a 32-digit accuracy of the cn to at least 
n = 100. 

C. S fractions and the Stleltjes moment problem 

A Stieltjes or nonrational positive symmetric function 
I(z) may be defined by the Stieltjes integral, 

I(z) = l"" dt/!{t) , (2.14) 
o 1 +zt 

where t/!{t) is a bounded, nondecreasing real valued function 
with infinitely many points of increase on [0,00). The func
tion I(z) is said to be the Stieltjes transform of "', 1= .Y "', 
and obeys the following four basic properties: (i) I(z) is ana
lytic in the cut plane C = [z:largzl <1T}, (ii) l(x»O for 
x> 0, i.e., I(z) is real positive symmetric, (iii) if 
U = [zIIm(z»O} andL = [zIIm(z) <O},then I(L )CUand 
I(U)CL, i.e., - I(z) is Herglotz,7 and (iv) I(z) admits an 
asymptotic expansion as z-o. 

A formal expansion of the denominator of the integrand 
in Eq. (2.14) followed by term-by-term integration gives the 
series expansion 

"" 
I(z) = L Il-n zn , (2.15) 

n=O 

where the Il-n are real and finite moments of the measure 
dt/!{t): 

Il-n = ( - It 1"" t ndt/!{t), n = 0,1,2,... . (2.16) 

The series in Eq. (2.15), termed a Stieltjes series, mayor may 
not converge for z i= 0, but is asymptotic to I(z) as z-O. Giv
en a sequence of real numbers {Il-n 1;,= 0' the Stieltjes mo
ment problem consists of finding a real valued, bounded, and 
nondecreasing function f/!{tJ with infinitely many points of 
increase on [0,00) whose moments are the Il-n' . 

We now define an S (Stieltjes)lraction as a nontermmat-
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ing RITZ fraction ofEq. (2.1) for which Cn > 0, n = 1,2,3, .... 
Theorem 2.5: The RITZ fraction representation corre

sponding to a series of Stieltjes is an S fraction. 
Theorem 2.6: The sequence of convergents { Wn (z)} of an 

S fraction contains a subsequence which converges uniform
lyon any compact subset S of the cut plane C. The limit 
function of this convergent subsequence will be analytic in S. 

IfC(z) converges for zeS, then limn_ oo w,,(z) exists and 
all subsequences converge to the same limit function, called 
the value /unction (VF) of C (z). If C (z) does not converge for 
some zeS, then it is possible that different subsequences of 
Wn (z) converge to different generalized value Junctions (GVF) 
ofC(z). 

Theorem 2.7: Corresponding to each GVF ofanS frac
tion, we may construct a bounded nondecreasing function 
tfJ(t) satisfying Eq. (2.14). The function tfJ(t ) must have an infi
nite number of points of increase. 

Theorem 2.8: The even and odd approximants of an S 
fraction which corresponds to the asymptotic expansion in 
(2.15) obey the following bounding properties for x > 0: 

W 2N(X) = [N - 1,N] (z) < J(x) < [N.IV] (z) = W 2N + I (x) , 

N= 1,2, .... (2.17) 

If C (z) converges, then its value function is equal to J(z) 
for all zeC. A unique function .,p generates the moment se
quence { p,,, } and the Stieltjes moment problem is said to be 
determinate. If C (z) diverges, it will have two generalized 
value functions, the limits of the subsequences W 2n (z) and 
W2n + I (z) as n_ 00 and the moment problem is indetermin
ate. The convergence is uniform on every compact subset of 
C. An infinite number offunctions.,pi yield the same moment 
sequence, each of which produces a Stieltjes transform, but 
only two of these are generalized value functions of C (z). The 
determinacy of the moment problem is thus seen to boil 
down to the convergence oftheS fraction C (z). The following 
theorems are of paramount importance in the studies of 
LOPT and CFLO. 

Theorem 2.9: An S fraction C (z) whose coefficients Cn 

obey the relation 

00 L C,,-I12 = 00 

,,=1 

converges uniformly on all compact subsets of C. 

(2.18) 

Theorem 2.10: (Carleman condition) A sufficient condi
tion for the determinacy of the moment problem, hence the 
convergence of C (z), is that 

00 

L I p,,,1 - 112" = 00 , (2.19) 
,,=1 

where the p,,, are the given moments ofEq. (2.15). 
By Theorem 2.7, determinacy of the moment problem 

ensures Pade summability of the power series. In fact, 
for Stieltjes series, the Pade sequences [N + k,N](z), 
k = - 1,0,1, ... converge in the limit as N-oo to J(z) uni
formly on compact subsets of the cut plane C.20 
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III. RAYLEIGH-SCHRODINGER PERTURBATION 
SERIES AND THEIR 5 FRACTION REPRESENTATIONS 
AT LARGE ORDER 

We now return to the following general class of bound 
state eigenvalue problems: Given the unperturbed problem 
H(O)""~ = E(~N~, m = 0,1,2, ... , we consider the perturbed 
problem 

[H(O) + AV].,pm = Em (A ).,pm 

= [E~) + AE(A )].,pm , 

m = 0,1,2, ... , (3.1) 
A. 

where V is a positive (self-adjoint) perturbation and it is as-
sumed that.,pm -""~) and AE (A )-0 asA-D. For a large num
berofperturbation problems, thefunctionA -I AE (A ) may be 
shown to satisfy the four properties of a Stieltjes function 
given in Sec. II C. The asymptotic series toE (A ) corresponds 
to the Rayleigh-Schrodinger perturbation series ofEq. (1.1). 
In his detailed treatment of the quartic anharmonic oscilla
tor, Simon7 showed thatifE(A }-IA Iq, as IA 1-00, thecoef
ficients E(") constitute a negative Stieltjes series for n > q. 
More precisely, the E(n) obey the dispersion relation 

E (n)- -I[ Im(E+iO)d'l -1T /I., n>q. 
-00 A,,+I 

(3.2) 

Bender-Wu theorY exploits Eq. (3.2) to establish the 
large-order behavior of the E (,,) as n_ 00. For n very large, 
the dominant contribution to the integral comes from the 
region A - O. The quantity Im(E) is proportional to the tun
neling factor for the unstable state, whose asymptotics as 
A-D are determined by WKB methods. The LOPT of a 
number of problems has been studied in this way and it is 
found that typically 

Im(E + iO)-C( -A )b~/AC[ 1 + O(A d)], as A-D- . 

(3.3) 

Substitution of (3.3) into (3.2) gives 

E(")-( _ l)n+ I ABbie (B -IITr (n - b) 
1TC C 

as n-oo , (3.4) 

which we shall write in a more general form as 

E(n)_( - 1)"+ IAr(pn + a) k"[ 1+ O(n -1], as n-oo , 

(3.5) 

where A, p, a, k, and r are constants specific to the problem 
studied. 

From Carleman's condition in Eq. (2.19), the moment 
problem associated with the RS perturbation coefficients in 
Eq. (3.5) is guaranteed determinate for p<:.2. Pade summabi
lity of the series is thus ensured. Borel (p = 1) and general
ized Borel (p > 1) methods may also be possibly estab
lished. 11 

We now focus on the RITZ fraction representations of 
these generic RS perturbation series. From Eq. (3.1) and the 
fact that 0 < q < 1 for many problems, we construct represen-
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tations of the form 

Em (A ) =E~) +ACm(A), 

where 

cm C;'A ci'A 
cm(A)=~ 

1+ + + 

(3.6) 

The index m represents any quantum number labeling of 
states and will generally be suppressed below. In these gen
eric perturbation problems, C (z) is an S fraction, i.e., C" > 0 
for n = 1,2,3, .... 

An interesting relationship is generally observed 
between the large-order behavior of the RS series coefficients 
E[") and their S-fraction counterparts Cn' If the E(n) behave 
asymptotically as in Eq. (3.5), then 

(3.7) 

where D is a constant. We shall refer to this asymptotic prop
erty as the continued-fractions-at-large-order (CFLO) rela
tion. For convenience, we refer to S fractions whose coeffi
cients behave asymptotically like (3.7) as SIP) fractions. The 
case p = 0 corresponds to representations of geometric 
power series for which the cn approach a constant. 

The behavior in Eq.(3.7) could be expected from a look 
at the extended QD table for the perturbation series, dis
cussed in the Appendix. Its rows and columns grow asymp
toticallyas 0 (E (n + l)/E In)) = 0 (n Pl. The diagonal elements 
qn" and e"" also behave in this way as n-+oo although some 
work is required to obtain the coefficients of the leading 
term. In this paper, we restrict ourselves to an analysis of the 
relatively simple relation for p = 1, relevant to the study of 
S(l) representations presented below. The following result is 
proved in the Appendix. 

Proposition 3.1: Given that the E(n) form a negative 
Stieltjes series for n > 1 and behave as in Eq. (3.5) with p = 1 
and r> 1, then the coefficients of its S-fraction representation 
in Eq. (3.6) behave as C" -kn/2, as n-+oo. 

Illustrative example-The generalized Euler series: The 
following modification of the classical Euler series, 12.20 

E (z) = O! - 1!z + 2!z2 - •.• , is relevant to the analysis of S(l) 
fractions presented in Sec. V: 

"" F(z)=I+ L (-I),,+lr(n+a)k n z". (3.8) 
n I 

This series has been constructed in a form which corre
sponds to the typical leading behavior of n!-type perturba
tion expansions [e.g., k = 3, a = K + ~ for the QAHO series 
in Eq. (4.4)]. It is the asymptotic expansion of the Stieltjes 
transform 

l "" -fta 
G (z) = 1 + kz 0 e dt 

1 +kzt 
(3.9) 

for z-+O in the cut plane larg zl < 17'. 

The coefficients of the S-fraction representation, 

F(z) = 1 + bIZ bzZ b~ , 
1+1+1+ ... 

(3.10) 

are easily determined in closed form by constructing the QD 
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table (Fig. 1) for the expansion in (3.8): 

bn.even = ! kn + ka , (3.11) 

bn•odd =! kn - k /2 . 

The special case k = 1, a = 0 corresponds to the Euler series. 
The CFLO property in (3.7) provides a consistency rela

tion between the moment conditions in Eqs. (2.8) and (2.9). 
In both cases, the moment problem is determinate for p<2 
in Eqs. (3.5) and (3.7). 

From a computational viewpoint, a knowledge of S(P)

fraction asymptotics for p = 1,2 has proven useful13 in the 
estimation of energy eigenvalues E (A. ) for rather larger values 
of the coupling constant A. For S(I) fractions, an extrapola
tion of a small number of accurately known c n' produces an 
approximate "tail" of C (A ). The approximants W" (A ) asso
ciated with this CF are then evaluated to sufficiently high 
order to ensure convergence of the fraction, i.e., IWn + I (A) 
- wn(..1.)1 <E for a given E> O. Excellent estimates of E(A) 
for large A are obtained. In the case of S(2) fraCtions, a similar 
extrapolation of the c" is performed. The convergence of the 
w,,(..1.) is extremely slow. A suitably constructed extrapola
tion of even (lower bound) and odd (upper bound) approxi
mants yields a common limit which again approximates E (A ) 
very well for even large A. Some numerical results are pre
sented in Ref. 13. 

We mention that the importance of CFLO has already 
been realized for the case of S(O) fractions, i.e., C,,--+a, as 
n-+oo, where a is a constant. These types of fractions have 
been encountered in solid state physics25

•
26 in the approxi

mation of densities of states of periodic and aperiodic sys
tems as well as in atomic and molecular physics27

•
28 for the 

determination of optical dispersion profiles. In both cases, 
one is interested in the location of a branch cut of singulari
ties in the complex energy plane as well as the discontinuity 
across the cut. The asymptotic value a is important in light of 
an extension of a theorem due to Van Vleck. 18 

Theorem 3.1: Let C (z) be an S fraction such that 
lim,,~oo Cn = a#O, where a is a complex constant and let 
Ca = ! z: I arg(az + ~) I < 17' J. The continued fraction C (z) con
verges to a function f(z), which is either merom orphic in Ca 

or identically infinity. 
The region Ca represents the complex plane C cut along 

the line which passes through the point Zc = - (4a)-1 and 
the origin. The cut begins at the point Zc and extends 
outward to infinity. In the context of photoabsorption stud
ies,28 the continued fraction corresponding to the Stieltjes 
series for complex polarizability a(z) (having nonzero radius 
of convergence) is constructed and the (real) asymptotic val
ue a is estimated. The distance from the origin to the cut, 
Izc I, corresponds to the photoionization threshold frequency 
for the atomic or molecular system concerned. 

The subject of S(O) representations of perturbation series, 
including the well-known problem of a rigid dipole rotor in 
an electric field, will be discussed in a future report. 
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TABLE II. The first 105 coefficients en ofthe S-fraction representation, Eq. (4.4), of the ground-state Rayleigh-Schrooinger perturbation series for the energy 

E (A ) of the quartic anharmonic oscillator in Eq. (4.1). 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

0.750000 000 000 000 000 000 000 000 000 D + 00 
0.175000000000000000000 OOOOOOOOOD + 01 
0.221428571 428 571 428 571 428 571 421 D + 01 
0.328067396313 364 055299539 170507 D + 01 
0.368842779459679897367783849295 D + 01 
0.473 804 188521881063707142639 340D + 01 
0.517612209347468499579930828597 D + 01 
0.622046 670 654 721 646 752 711 278894 D + 01 
0.666 893 242 501 742590748909803938 D + 01 
0.770863415363561254700 818 557 412 D + 01 
0.816435361 582525381761294381692 D + 01 
0.920033250189205270860 568 794018 D + 01 
0.966091975248318987231089675743 D + 01 
0.106 941 039059420442884222717620 D + 02 
0.111 582 703 907 225 187463 106 182 106 D + 02 
0.121 891 786716627292093981465 150 D + 02 
0.126561481600 439 307 617 042 237 015 D + 02 
0.136851666800 951687340 583597644 D + 02 
0.141543905856510535100 790 729557 D + 02 
0.151818201 881 278086509898007 004D + 02 
0.156529036609 641454734415308722 D + 02 
0.166789725929183986105 190000 238 D + 02 
0.171 516250463633 149014914506 289 D + 02 
0.181765110oo7862677187948391759D+02 
0.186505099422477445005670089919 D + 02 
0.196743558645901433503889886225 D + 02 
0.201 495 258 388 647 959 134768 165 616 D + 02 
0.211 724487343025978350805 140 175 D + 02 
0.216486487913 904 719 665 323 624721 D + 02 
0.226707455 165976782269398642 140 D + 02 
0.231478606 456887946 340 101 511 963 D + 02 
0.241692 123421 839 163 178236803349 D + 02 
0.246 471 472 775 375 599234607439973 D + 02 
0.256678227429547402476297926381 D + 02 
0.261464 975 059 643 661 428067741 878 D + 02 
0.271 665 556 836 904 330 890 567 928 711 D + 02 
0.276459023 629 938 404 499 119 327073 D + 02 
0.286653941970252042903449281275 D + 02 
0.291453545655385564 489559777508 D + 02 
0.301 643 244 245 166299 113381212607 D + 02 
0.306 448 481 268505030447360 406552 D + 02 
0.316633349237015931994160 481653 D + 02 
0.321443780714774978038609561019 D + 02 
0.331624161540 972 554682971634140 D + 02 
0.336439 402 247 503 199 580 128 679 770 D + 02 
0.346 615 600 894 529 650256854210 487 D + 02 
0.351435310 544 054 420561 746757623 D + 02 
0.361607599219648367281669394216 D + 02 
0.366431 475 489 866424 186492 282 574 D + 02 
0.376600098342814395223790 757 194 D + 02 
0.381427871230572 481752179401097 D + 02 
0.391 593 048 217 481 625 609 338 844 893 D + 02 
0.396424475425589626214906981943 D + 02 

IV. S(1)·FRACTION REPRESENTATIONS OF THE 
QUARTIC ANHARMONIC OSCILLATOR AND 
CHARMONIUM PERTURBATION SERIES 

In this section we focus on two perturbation problems 
whose Rayleigh-Schrodinger expansions yield S11) -fraction 
representations: ( 1 ) the quartic anharmonic oscillator 
(QAHO) and (2) the hydrogen atom in a linear radial poten
tial or the charmonium model. The LOPT of these expan
sions is known. In both cases, the S-fraction coefficients for 
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n 

54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 

0.406 586405522041 706 283769067693 D + 02 
0.411 421 268655535 125766943934596 D + 02 
0.421580132542 199212702235748957 D + 02 
0.426418233947834481230612157025 D + 02 
0.436574196271 822690130688022839 D + 02 
0.441415356393589419024936020957 D + 02 
0.451 568 567 683 689 989 026 434 041 269 D + 02 
0.456412622835465321760 882 311 956 D + 02 
0.466563221 133621513 614 705 133795 D + 02 
0.471410021611 420740 202843289912 D + 02 
0.481 558 133870169732229550002981 D + 02 
0.486407 542 342 811 785 880668 124 362 D + 02 
0.496 553 285 628456 366 775 785 329 355 D + 02 
0.501 405 175758083 127 125447075667 D + 02 
0.511 548658291 584962866225233352 D + 02 
0.516402913 545 210 988 616 740 602 626 D + 02 
0.526 544 235 606 717 905 492 047 637 396 D + 02 
0.531 400 748 227 523 481 657 986 922 305 D + 02 
0.541 540 002945683 876082634 129675 D + 02 
0.546398673058640 534 948 768 719 363 D + 02 
0.556535947 102096253 126954317229 D + 02 
0.561396681933142450130413 395460D+02 
0.571 532056118585474617123 149510 D + 02 
0.576394769310 252 475830880035511 D + 02 
0.586528319139005802204 136059 178 D + 02 
0.591 392930148347636208678651 578 D + 02 
0.601 524726281461064 295 401471 352 D + 02 
0.606391159848526671653170951027 D + 02 
0.616521268528770627915 137953 121 D + 02 
0.621 389 454 205 790738 151 998 196930 D + 02 
0.631 517937633613 814640 723299693 D + 02 
0.636387809366651971458620241430 D + 02 
0.646514726036083720705508426670 D + 02 
0.651 386 221 792 192 662 882 270 236 493 D + 02 
0.661 511 626791776902003228269454 D + 02 
0.666384688225765 166563 320358766 D + 02 
0.676508633 508 864 441 634996399357 D + 02 
0.681 383205664 658379358696010 237 D + 02 
0.691 505740 292848656085278687390 D + 02 
0.696381771 335 167227892366108653 D + 02 
0.706 502 941697920626433 180581495 D + 02 
0.711 380382670592101404 492 697 713 D + 02 
0.721500 232 684 006 573528150279693 D + 02 
0.726379037291769538599407518 198 D + 02 
0.736497608578733 388621 936009 027 D + 02 
0.741 377732989796844 663 583 318223 D + 02 
0.751495065043661298463454064922 D + 02 
0.756376467710 664 171 010 360 108025 D + 02 
0.766492598044 229348950781251158 D + 02 
0.771375239541549915310 285838617 D + 02 
0.781490203822940 836 992 120212793 D + 02 
0.786374046698 570669023 801 627046 D + 02 

the first few bound state levels have been computed accura
tely to high order, typically n = 100, to facilitate numerical 
analysis of their asymptotic behavior. Details of numerical 
aspects are presented in Refs. 13, 15, and 16. 

A. The quartic anharmonic oscillator 

The quartic anharmonic oscillator, whose perturbation 
expansions were first studied in detail by Bender and WU3-5 
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(with a different normalization), Loeffel et al.,6 and Simon,7 

is given by the eigenvalue problem 

with boundary conditions tA(x)-o, Ixl- CIO, xeR. The unper
turbed eigenvalues are given by E~) = 2K + 1, 
K = 0,1,2, .... The perturbation expansion for theKth level 
ofEq. (4.1) will be denoted by 

co 

EK(P)=2K+l+ L E~)P". (4.2) 
,,=1 

The large-order behavior of the RS coefficients is given 
by4 

E~)-( _ 1)"+ I 12K (~)1/2 rtn +K +!) (n" 
K! t? 

X[I-~(~+~K+~K2)+O(~)] . 
n 72 12 12 n2 

(4.3) 

The perturbation series is negative Stieitjes7 for n> 1. This 
guarantees its Pade, henceS . fraction, summability to E K (P) 
in the cut plane largp 1<11'. 

We now consider S-fraction representations of the 
QAHO perturbation series having the form 

(4.4) 

where 

CK(p)_cf cfp cfP 
1+ 1 + 1 + ... 

(4.5) 

The coefficients c: have been calculated from the RS coeffi
cients E~) to n = 100 for the levels K = 1, 2, and 3. The first 
100 coefficients for the ground state, K = 0, are presented in 
Table II, accurate to all digits shown. 

From Eq. (3.7) it is expected that C:-i n, as n-CIO, 
which is observed numerically. On the basis of more detailed 
numerical analysis,14.15 the asymptotic behavior of the c: is 
conjectured to be 

J( _ (I) • _ {I, n even, 
c-" i(n + K ) ± A + R", I - 2, n odd, (4.6) 

where R ~-o, as n- CIO, and it is conjectured that 
R ~1 = O(n- 1/2

). The constant terms in Eq. (4.6) are not a 
priori correction terms-in fact, no general asymptotic ex
pansion beyond the leading term is guaranteed. Neverthe
less, numerical analysis strongly suggests these terms. More
over, the analysis in Sec. V attests to their validity. 

Before concluding this discussion, we mention that 
Reid29 performed the first calculation of continued fraction 
representations of QAHO perturbation series. His calcula
tions appeared well before Refs. 3-7, the latter two of which 
established the Stieltjes nature and Pade summability of the 
series. Reid did, however, realize the power of continued 
fraction summability of divergent Stieltjes series, using the 
classical Euler series as an example. His representations in
volved J/ractions,17,18 having the form 
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EK(P)=E~)+Jk(P) 

=E~)+ alP a2p
2 

a3p
2 

(4.7) 
1 + hi P - 1 + h2 P - 1 + h3 P ... 

The coefficients ai' hto i = 1,2, ... ,10, were calculated for a 
number oflevels in multiple precision and, for all cases, were 
found to be positive. 

The J fraction in Eq. (4.7) is actually the even part of the 
S fraction in Eq. (4.5).12 Its sequence of approximants coin
cides with the approximants of even order, w2" ( P), of the S 
fraction. This fact is revealed in Reid's calculations of the 
first ten approxiIJ1ants of the J fraction for various values of 
p. All sequences of $l)proximants approach the exact values 
E ( P) monotonically from below. The coefficients ak and hk 
are related to the C n as follows: 

al = CI , hi = C2 , 

(4.8) 
ai = ctci + I' ht = ci + I + Ci + 2 ' i = 2,3,4, .... 

The calculation of at and ht to i = 10 is thus seen to be equi
valent to determining the c" to c20• A look at the tables of J
fraction coefficients presented by Reid reveals that the at 

grow quadratically and that the hi grow linearly, in accor
dance with Eqs. (4.6) and (4.8). 

B. Charmonlum-The hydrogen atom In a linear radial 
potential 

The problem of a hydrogenic atom in a linear radial 
potential, one of many nonrelativistic quark-confinement 
models,3O-32 is given by the Hamiltonian (in atomic units) 

H(A)= -!V2 -Z/r+Ar. (4.9) 

With no loss of generality, we consider the problem for 
Z = 1. The RS perturbation expansion for the energy of a 
given level will be denoted by 

ENLM(A) = -~+ f E~LMA". (4.10) 
2N ,,=1 

The indices N, L, and M denote, respectively, the principal, 
orbital-angular momentum, and magnetic quantum 
numbers of the unperturbed hydrogenic state giving rise to 
the level. 

The large-order behavior of the RS coefficients is given 
byl6 

E(") (-1)"+ 132N22N-I exp[ - 3N +L (L + 1)/N] 
NLM - 11N 3(N + L )I(N - L - I)! 

X nN3)"rtn + 2N)[1 +A /n + O(n- 2
)] 

(4.11) 

The coefficient A has been computed for a number of states 
but no general formula has been conjectured. 'the numerical 
evidence strongly indicates that for the S-wave states, i.e., 
L=M=O, 

A = - ~(21N2 + 18N + 10). (4.12) 

The coefficients form a negative Stieltjes series16 for n > 1. 
We now consider S-fraction representations to the char

monium series having the same form as Eq. (4.5), and let 
C:LM denote the CF coefficients. These coefficients have 
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been calculated to at least 32 digit precision to order n = 100 
for the hydrogenic states N,3, O,L,N - 1, M = O. From 
Eq. (4.11) and Proposition 3.1, it is expected that Cn -i N~, 
as n~oo, which is observed numerically. A more detailed 
numerical analysis 16 leads to the following conjectured be
havior for the S-fraction coefficients: 

~LM_iN3(n + 2N) - !N 3 +R ~),NLM, n even, 
(4.13) 

~LM_iN3(n + 2N) -! N 3 + R ~),NLM, n odd, 

where R ~1~, as n~oo. As in the case of the QAHO, nu
merical extrapolation techniques strongly suggest that the 
R ~1 = 0 (n- 1/2

). 

V. ASYMPTOTICS OF 5(1) FRACTIONS AND THE 
INFINITE FIELD LIMIT 

A. General formulation 

The infinite field expansion for many standard pertur
bation problems assumes the form 

E(A. )-A. a L F(O)A. -ny, as 1A.I~oo, (5.1) 
n=O 

and may often be obtained by real-valued dilation transfor
mations, usually referred to as Symanzik transformations. 7 

For exampl~ in th~ case of generalized anharmonic oscilla
tors, where Hm = p2 + x2 + A.X2m, m = 2,3,4, ... , the scaling 
transformation x = rx, r real, yields a = l/(m + 1), r = 21 
(m + 1). The leading term coefficients F~) represent the K th 
eigenvalues of the oscillator with Hamiltonian 
H = p2 +x2m. 

The infinite field limit is reflected in the large-order be
havior of certain S(I) -fraction representations. In the exam
ples below, for which 

Cn -! kn + A (.) + 0(1), i = g: n even, 

n odd, 
(5.2) 

where the A (·1 are constants, it will be shown that the expo
nent a in Eq. (5.1) is given by 

a=!-aAlk, 

where 

A. A = A (I) - A (2) • 

First, consider the continued fraction 

_ () CI C~ CN_IZgN(Z) 
WN _ I z =-1 + 1 + ... + 1 

where 

+ 
and 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

In other words, w(z) is constructed by replacing the infinite 
tail of C (z) with one whose coefficients en ignore the terms of 
R ~1 in Eq. (5.2). For N even, we produce the odd convergent 
approximation WN_I (z) to C(z); for N odd we produce the 
even convergent approximation. 

The function gN(Z) in Eq. (5.6) is an S(I) fraction formally 
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representing a Stieltjes transform and converging uniformly 
to it over compact subsets of the cut plane C. We first deter
mine the asymptotics of gN(Z) as Izl~oo, zeC, by means of 
the following classical relationl7

,21 between contiguous 
Gauss hypergeometric functions: 

(b + 1)z (a + 1)z .:..~--"o,,-(a.:...,b_+-,---,l ',--_z-,-) = .l az 
Jo(a,b, -z) 1 + 1 + 1 + 1 + ... ' 

(5.8) 
where aEt[O, 1,2, ... ] and bEt[ - 1, - 2, ... ]. The ratio ofthe two 
series on the left-hand side of Eq. (5.8) formally represents 
the function 

(5.9) 

which is analytic for zeC, provided that Re(a) > O. By 
Theorem 2.8 theS fraction in Eq. (5.8) converges uniformly 
to G (z) on C. We now analyze the odd and even truncations 
individually. 

Odd convergent truncation, N=2n: From Eqs. (5.6) and 
(5.7), it follows that 

z _ 2FO(n + A (I)lk,n + ! + A (2)/k; - kz) 
g2n( ) - 2FO(n +A (I)lk,n _! +A (2)lk; _ kz) (5.10) 

_ U(n + A (I)lk,! + aA Ik;(kz)-I) 
- U(n +A (I)lk,~ + aA Ik;(kz)-I) , (5.11) 

where U(a,b;z) is a solution of Kummer's confluent hyper
geometric equation,33,34 

d 2w dw 
z-+(b-z)--aw=O. (5.12) 

dz2 dz 
We now employ the relation34 

U(a,b,'x) = r(l - b) F (a'b;x) 
r(1+a-b) I I, 

+ r(b - 1) Xl- b F (1 + a - b'2 - b;X) r(a) I I , , 

xeC, (5.13) 

to expand the Kummer functions in Eq. (5.11) for 
x = (kz)-I~+. The leading asymptotic behavior of the 
U(a,b;x), in terms of the arguments a and b, is tabulated in 
Refs. 33 and 34. However, Eq. (5.13) is useful for the calcula
tion of more terms in the asymptotic expansion. One special 
case requires care: For b = 1, 

U(a,b;x)- - [l/r(a)][ln(z)+t/I(a)] + O(lzln(z)1) , 

(5.14) 

where t/I(x) denotes the psi (digamma) function. 35 Temporar
ily ignoring this case, we rewrite Eq. (5.11) as 

(5.15) 

where O<a(l) <a(2)< "', and O<b (1) <b (2) .... Clearly, 
these exponents are sensitive to the values of a and b in Eq. 
(5.13), which are, in tum, defined by the asymptotic coeffi
cients in Eqs. (5.2) and (5.4). 
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Formal division in Eq. (5.15) yields the relation 

g2n(Z) =D~2n)zr(l) +D~n)zr(2), Izl-oo, zeC, (5.16) 

where1'(l) = b (1) - a(l) > 1'(2) > 1'(3) .... Only two terms of the 
expansion in (5.15) are used since two terms in the expansion 
of the Cn' cf. (5.7), are employed. 

The function WN _ I (z) in Eq. (5.5) may be interpreted as 
a terminating fraction-the generalized odd approximant 
W2n _ I (z) which may be written as 

_ () A2n-2(Z)+C2n_Izg2n(z)A2n_3(Z) 
W2n _ 1 Z = . 

B2n _ 2 (z) + c2n _ I zg2n (Z)B2n _ 3 (Z) 
(5.17) 

The Ak (z) and B k (z), k<2n - 2 are, respectively, the lower
order partial numerators and denominators of C (z). We now 
expand these polynomials in terms ofthe coefficients in (2.4) 
and substitute Eq. (5.16) into Eq. (5.17). Formal multiplica
tion of powers inz, rearrangement of terms, and subsequent 
division yields an expansion of the form 

w2,. _ I (z) = W~2" - l)zu(1) + W~2n - i)zu(2) + ... , as Izl-oo , 

(5.18) 

whereu(l)> u(2) > .... SubstitutionofEq. (5.18)intoEq. (5.5) 
produces the approximation 

E2n _ dz) = E (0) + W~2" - l)zu(1) + I + w~n - l)zu(2) + I 

+ ... , as Izl-oo , (5.19) 

forzeC. 
Even convergent truncation, N=2n+l: In this case it 

follows from Eqs. (5.6) and (5.7) that 

z _ Ji'o(n +! +A (2)/k, n + 1 +A (I)/k; - kz) 
g2n+ d ) - Ji'o(n + ! + A (2)/k, n + A (I)/k; - kz) 

_ U(n +! +A (2)/k,! - AA /k;(kz)-I) 
- U(n +! +A (2)/k, ~ - AA /k;(kz)-I) 

(5.20) 

(5.21) 

Proceeding in the same manner as above, we expand the 
Kummer functions in Eq. (5.21) to ultimately obtain an 
asymptotic series for g2n+ I (z) analogous to Eq. (5.16), 

g2,.+I(Z) =D~2"+I)~I) +D~n+ 1)~2) + ... , 
as Izl-oo, zeC, (5.22) 

where s(1»s(2» .... The function wN_dz) in Eq. (5.5) is 
now written as a generalized even approximant w2n (z) [re
place 2n - 1 by 2n, etc., in Eq. (5.17)]. This ratio of two series 
again yields an expansion analogous to Eq. (5.18), 

W2,.(Z) = W~2")Zv(I) + w~n)zv(2) + ... , as Izl-oo, (5.23) 

where v(I»v(2) .... When substituted into Eq. (5.5), Eq. 
(5.23) yields the approximation 

E2,. (z) = E (0) + W~2n)zv(l) + I + W~2")zv!2) + I + '" , 
as Izl-oo , (5.24) 

wherezeC. 
Several remarks concerning the above truncations are 

now to be made. First, the expansion for g2" + I (z) in (4.22) 
could also have been derived from that of g2" (z) in (4.16) (or 
vice versa) by using the defining property 
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g2,,(Z) = [1 + C2"Zg2" + I (Z)]-I 

= [1 + (kn +A (I))zg2n+ I (z)] -I. (5.25) 

Both leading exponents in (5.16) and (5.22) satisfy the ine
quality - 1 <x<O. Furthermore, from (5.25), the expo
nents in these two expansions obey the relations 
1'(1) = - I-s(I), 1'(2) = - 1- 2s(1) -s(2). Additional 

manipulation reveals that expansions (5.19) and (5.24) pos
sess the same power-law behavior, i.e., 

u(l) = v(l), u(2) = v(2) . (5.26) 

We now consider the approximate convergents of Eqs. 
(5.19) and (5.24), written in the more general form 

EN(Z) =E(O) +zWN(Z). (5.27) 

Their asymptotic expansions will be denoted by 

EN(z)-E(O) + W~N)ZI'(1) + W~N)ZI'(2) + "', as Izl-oo , 

(5.28) 

where J.t(I) = u(l) + 1 and J.t(2) = u(2) + 1. As Nincreases, 
i.e., as the infinite tail of the true S(I) fraction is replaced 
farther down, better estimates of E (z) are obtained. This is 
expressed more precisely in the following theorem. 

Theorem 5.1: The approximate convergents EN(z) in 
(5.28) converge uniformly to E (z) over compact subsets of the 
cut plane C. 

Proof.' Consider the S(I) -fraction representations of the 
RS perturbation series having the form E (z) = E (0) + zC (z). 
The approximants Wn (z) of C (z) converge uniformly to an 
analytic function I(z) on compact subsets of C. Moreover, 
the bounding properties in Eq. (2.17) hold on the positive real 
axis. The wN(z) defined in Eq. (5.5) are S(I) fractions analytic 
in the cut plane C. The functions gN(Z) in (5.6) are also S(I) 
fractions and have the properties gN(O) = 1, O<gN(x)<l, 
xeR. The following relations are also satisfied on the positive 
real axis: 

W2N _ 2 (x)<W2N(X)<W2N _ I (x) , 
(5.29) 

W2N (x) < W2N + I (X)<W2N _ I (x) . 

These properties arise from the relation 

. [al a2] al + ta2 [at a2] mm -,- < <max -,- , 
b l b2 bl + tb2 bl b2 

a;.bj >0, t;;;.o, (5.30) 

where the following correspondences have been made: 
t=c"zg,,(x), al=A,,_dx), bl=B,,_dx), a2=A,._2(X), 
b2 = Bn _ 2 (x), and n = 2N or 2N + 1. Uniform convergence 
of the W,. (x) implies uniform convergence of the WN(X) to I(x) 
on R. By analytic continuation the wN(z) converge uniformly 
to I(z) on compact subsets of C, and the theorem is proved. 

Relation (5.29) actually implies that the uniform conver
gence of the wN(z) to I(z) is guaranteed if the tail ofC(z) is 
replaced by any real positive symmetric function gN _ I (z). 
The exact association of the functions EN (z) with the infinite 
field expansion (5.1) may now be stated. 

Theorem 5.2: In the asymptotic expansion of the E N(Z) 
in Eq. (5.28), the exponents J.t(I) and Jl(2), which are inde
pendent of N, coincide with the leading two powers in the 
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infinite field expansion 

E(z) - E(O)_HI ZI'(I) +H2z l'(21, as Izl-oo, 

obtained from Eq. (5.1). Moreover, the coefficients Wr' and 
W!fl converge uniformly to HI and H 2, respectively, as 
N-oo. 

Proof' This theorem follows from the results of Theorem 
5.1 and from the original construction in Eq. (5.27). 

Uniform convergence of the approximate convergents 
EN(z) in (5.27) implies that the asymptotic expansion coeffi
cients WINI, i = 1,2, converge to the coefficients of the corre
sponding terms in the infinite field expansion (5.1) as N- 00. 

B. Application to S·fractlon representations of the 
quartic anharmonic oscillator 

The goal of this section is to employ the above proce
dures to recover the leading terms in the infinite field expan
sion (5.1) for the QAHO/ for which a =:i and r = ,. The 
coefficients F~I represent the K th eigenvalues of the quartic 
oscillator A = p2 + X4. We determine the asymptotic expan
sion of 

(5.31) 

where the modified CF, WN(Z), is constructed as in Sec. V A. 
It shall always be understood that zeC. 

From Eq. (4.6), we define the relevant parameters 

k=~, A(lI=I+~K, A(21= -l+~K, AA/k=f,. 

(5.32) 

The analysis to follow will be applicable to ground and excit
ed states. The important property 0 < (AA /k ) <!, for all 
states, will be implicitly assumed since it plays a role in the 
ordering of powers ofz, for example, in Eq. (5.17). 

For the odd convergent truncation, Eqs. (5.10), etc., yield 
the expansion 

g211(Z) = D\211IZ-s + D~"lz-1 + D ~211Iz-2s + "', (5.33) 

wheres =! + AA /k and 

D(2111- r(! - AA /k)r(n +A (l)/k) 
I - r(! + AA/k)r(n +! +A (21/k) 

Xk -(l/2+AAlk l , 

D~"I = k -I( -! + AA /k)-I. 

(5.34) 

We note thatg211 (z) = o (Z-2/3), as Izl-oo. Substitution of 
Eq. (5.33) into (5.17) and multiplication by z yield the formal 
expansion 

ZW211 _ 1 (z)- W\211-l lz l/2-AAlk + W~"-11 +"', 
where 

D(2111 
W (211 - II _ C211 - I I a211 - 3.11 - 2 

I - , 

b2n-2.n_1 
w(2n-ll_ [b ]-1 

2 - 211-2.n-1 

x [ a2n _ 2.11 _ 2 + c211 _ I D ~"la211 - 3.11 - 2] • 

(5.35) 

(5.36) 

It is immediately noticed that the dominant behavior in Eq. 
(5.35) is given by 0 (z1/3), in agreement with the infinite field 
limit. 

We now consider the coefficient w~n -II for a general 
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level of the QAHO, continuing to suppress the index K for 
notational ease. A look at the closed form expressions in 
Table I as well as the recursion relations (2.4) reveal that the 
polynomial coefficients which occur in Eq. (5.36) have the 
simple form 

(5.37) 

b211 _ 2,n - I = C~4C6 ... c211 - 2 • 

The leading coefficient in Eq. (5.35) for the K th level be
comes 

[

"=1 ~ ] W(211 -II.K = IT ~ cf. 
I J( 211-1 

i= I C:2i 

X 
rWr(n + n + K /2) k -2/3 . 

r(,)r(n - n + K /2) 
(5.38) 

From Theorem 5.2, it follows that W\2n - II,K_F~I, as 
n-oo, where the F~I were defined at the beginning of this 
section. This behavior is observed numerically and will be 
discussed at the end of this section. 

We now focus on the second term of the expansion in 
(5.35). For the QAHO, no constant terms are present in the 
infinite field expansion (5.1). From Theorem 5.2, however, 
we expect that W~"-II,K_ - E~I = - (2K + 1), asn-oo. 

Returning to the even convergent truncation procedure, 
Eqs. (5.10), etc., yield the expansion 

g (z)_D(2n+ Ilz-t + D(211+ 1IZ - 2t + D(211+ Ilz-1 + ... 2n + I I 2 3 , 

(5.39) 

where t = ! - AA /k and 

D(2n+ 11_ r(! + AA /k)r(n +! +A (2)/k) k -l/2+AAlk 
I - r(! - AA /k)r(n + 1 +A (ll/k) , 

(5.40) 

D(211+11= r(n+A(lI/k) [D(2n+II]2. 
2 (! _ AA /k) I 

We now substitute the above into Eq. (5.17), where 2n - 1 is 
replaced by 2n, etc., and mUltiply by z to find that 

where 

W (2111- [D(2n+ lIb ]-1 
I - a2n - I,n - I C211 I 211 - 2.11 - I , 

(5.42) 

W(2nl = [a _ a2n-I,n_ dn +A (I1/k )] 
2 211 - 2,11 - 2 C2n (! _ AA /k ) 

X [ b2n - 2,11 _ I ] - I • 

The exponents in (5.41) agree with those of the odd conver
gent expansion in Eq. (5.35). Proceeding as before, the lead
ing term coefficient for the K th level may be simplified to 

W\211I.K = [IT ~-I ] r(!)r(n + H + K /2) k 1/3. (5.43) 
i = I ~ r(~)r(n - n + K /2) 

Again, it is expected that W\2nl_F~I, as n-oo. In fact, the 
common limiting behavior of the two leading term coeffi-
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TABLE III. The leading term coefficients W\2n - I) and W\2n) in Eqs. (5.38) 

and (5.43), respectively. for odd and even truncation expansion of the 
ground state (K = 0) quartic anharmonic oscillator S fraction. These coeffi
cients were calculated from the Cn presented in Table II. The exact asympto
tic value corresponds to the ground state energy of the quartic oscillator. 
accurately calculated in Ref. 36. 

n W\2n-l) W\2n) 

1 1.224047 7874 1.136615 8026 
2 1.184372 7691 1.128 172 1211 
3 1.147912 1127 1.1205248180 
4 1.131 702 1008 1.114 333 6496 
5 1.121 723 1409 1.109 553 1035 
6 1.1149272483 1.105 798 2023 
7 1.109 924 9553 1.102 752 7649 
8 1.106 050 6539 1.100 227 0571 
9 1.1029415164 1.098 092 4465 

10 1.100 377 3017 1.096 258 9783 
11 1.0982167152 1.094 662 9230 
12 1.096364 8471 1.093 257 8234 
13 1.0947552164 1.092 008 8703 
14 1.093 339 6745 1.090 889 4343 
15 1.0920824154 1.089 878 7881 
16 1.090 956 2079 1.088 960 5397 
17 1.089 939 9310 1.088 121 5369 
18 1.0890169206 1.0873510914 
19 1.088 1738319 1.0866404182 
20 1.087 399 8377 1.085 982 2236 
25 1.084 302 1726 1.083 294 1739 
30 1.082 061 9832 1.0812986219 
35 1.080 346 3128 1.079 742 6098 
40 1.078 978 6658 1.078 485 8784 
45 1.077 855 7235 1.077 443 6524 
50 1.0769124936 1.076561 3088 

Exact 1.060 362 0905 1.060 362 0905 

cients may be seen by examining the ratio 

W\2n) _ kr(n + 1 + A (I)/k) 
W\2n - 1) - C211 r(n + A (I)/k) 

kn +A (!) 
= -+1, as n-+oo , 

c211 
where the final limit follows from Eq. (5.2). 

(5.44) 

It is also expected that W~211)-+ - E ~), as before. Here, a 

TABLE IV. The leading term coefficients W\N),K in Eqs. (5.38) and (5.43) for 

odd and even truncation expansion of the QAHO excited states. K = 1 and 
2. calculated from exact S-fraction coefficients c:. The entries denoted "Ex
trap" are obtained from a Thiele-Pade extrapolation of the n~cal val
ues for n<;4O. The exact values correspond to the eigenvaluesE~ of the first 
and second excited states of the quartic oscillator, as calculated in Ref. 36. 

n 

10 4.1674601887 4.112230 5151 9.3317614599 8.687772 5465 
IS 4.0862435971 4.0564679529 8.6057870279 8.372 5794890 
20 4.0413656060 4.0221614546 8.192793 1484 8.1104713017 
25 4.012 1174604 3.9984493352 8.099 2624616 8.040 537 0703 
30 3.991 1986065 3.980 844 6770 8.033011 7261 7.9884684132 
35 3.9753150468 3.9671267485 7.9830897907 7.9478361085 
40 3.962740 8882 3.9560580405 7.9438127059 7.9150269928 

Extrap 3.800 3.7996 7.46 7.456 

Exact 3.7996730298 3.7996730298 7.4556979380 7.4556979380 

ratio analogous to (5.44) exists between coefficients obtained 
from odd and even truncations. 

Numerical results: The values of the leading term coeffi
cients W\211- 1) and W\211) in Eqs. (5.38) and (5.43), calculated 
from the exact coefficients Cn of Table II, are presented in 
Table III. A regular monotonic behavior toward the exact 
value36 FW) = 1.060 362 09 ... is observed for both sequences. 
For n = 52, the coefficients are in error by about 1.5%. The 
accurate estimation of this constant from LOPT has been a 
subject of some interest. 13,37 A number of extrapolation tech
niques were adopted to determine whether these sequences 
could predict the exact values more accurately. 

In one method, the sequence of S-fraction coefficients c n 

was artificially extended by a Thiele-Pade CF extrapolation 
which employed the asymptotics of Eq. (4.6). The approxi
mate coefficients en were calculated to n = 18000. Eqs. 
(5.38) and (5.43) were then evaluated by employing the lead
ing three terms of an asymptotic relation for the ratio of the 
r(n) functions. The result was WV8OOO

) = 1.061 5500, 
which is in error by 0.11 %. Needless to say, this method 
converges very slowly-a 180-fold increase in the number of 
Cn yields only a tenfold increase in accuracy. 

TABLE V. Numerical values of the coefficients W~N~IC for odd and even convergent expansions of the QAHO, K = 0 and 1 states, as calculated from exact S
fraction coefficients c: using Eqs. (5.36) and (5.42). The entries denoted "Extrap" are obtained from a Thiele-Pade extrapolation of the numerical values. The 
exact values correspond to - E~) = - (2K + 1). the negatives of the unperturbed harmonic oscillator eigenvalues. 

n w~n-I).O w~n~O W~2n-I).1 wl2n~1 
2 

10 - 1.3191820604 - 1.307 525 7128 - 5.7974189494 5.638473 0622 
IS - 1.295 084 5542 - 1.287 925 1310 - 5.562 695 7668 5.464 876 2762 
20 - 1.2795878618 - 1.274511 5840 - 5.4150059102 5.3456631522 
25 - 1.2682367160 - 1.264 445 2638 - 5.309 333 3028 5.256213 5888 
30 - 1.259 587 9252 - 1.2564545210 - 5.228 033 6260 5.1852966200 
35 - 1.2524769026 - 1.249 867 1622 - 5.1624929676 5.1269269212 
40 - 1.246 515 1018 - 1.244 287 2144 - 5.107 904 0762 5.077 564 8328 

Extrap - 1.00 ± 0.02 - l.(X) ± 0.02 - 3.0±0.2 - 2.9 ±0.2 

Exact -1 -1 -3 -3 

196 J. Math. Phys., Vol. 27, No.1, January 1986 E. R. Vrscay and J. Cizek 196 



                                                                                                                                    

A final attempt to accelerate the slow convergence of 
this sequence was to Thiele-extrapolate the approximate 
W~N) values of above to their infinite limit. Sets of [n,n] 
Thiele-Pade approximants were constructed from all sets of 

A 

2n + 1 consecutive members of the sequence W~N), 
N = 1000,2000, ... ,18000. The common limit of these ex
trapolations for n = 3,4,5, and 6 was 1.060 362 075, a result 
in error by less than 0.000 000 02. This represents the most 
accurate calculation of the infinite coupling constant limit 
from LOPT. The accuracy surpasses the calculations of 
Refs. 13 and 37. 

A similar behavior is observed for the sequences oflead
ing term coefficients for excited state representations. Some 
values from the sequences corresponding to the levels K = 1 
and 2 are presented in Table IV. Also given are estimated 
limits of the sequences as predicted by a Thiele-Pade extra
polation of the elements of these sequences only. 

Table V presents some values of the coefficients W~N) for 
both odd and even convergent expansions associated with 
the ground and first excited states, K = 0 and 1, respectively. 
These values were calculated from the exact S-fraction coef
ficients. Their convergence to the theoretical values - E~) 
is not as rapid as for the leading term coefficients. Also pre
sented are Thiele-Pade CF extrapolations of these sequences 
which are in good agreement with the theoretical values .. 

c. S-fractlon representations of charmonlum 

The infinite field expansion for the charmonium model 
has the form of Eq. (5.1) with a = 1 and r = l The leading 
term coefficients F~LM represent eigenvalues of a three-di
mensional Airy-type differential equation. 16,30 We now con
struct a CF representation analogous to Eq. (5.31) and inves
tigate its large field asymptotics. 

The asymptotic behavior of the charmonium S(I) -frac
tion coefficients was given in Eq. (4.13). The parameters rel
evant to the following analysis are 

k=~N3 , 

A (1) = N 3
( - ! + ~ N) , 

A (2) = N 3( -1 + ~ N) , 

l1A/k= -i. 

(5.45) 

We summarize the results of both truncation procedures be
low. 

Odd convergent truncation: Referring to Eq. (5.16), we 
have r(1) = - i and r(2) = -1 and 

D (2n) =:3 :3 _ N -1 r(2)r(n - 1 + N) (2 )1/3 
1 rWr(n +i +N) 3 ' 

(5.46) 

The net result is 

ZW2n _ 1 (z)- W~2n-l) z2/3 + w~n-I) zI/3 + ... , (5.47) 

where 
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C D(2n)a 

W
(2n - I) _ 2n - I I 2n - 3,n - 2 
I -

b 2n - 2.n - I 

(5.48) 

[

D(2n) b ] 
W(2n - I) = w(2n - I) _2 __ w(2n - I) 2n - 3.n - 2 • 

2 I D(2n) I 
I a 2n - 3.n-2 

Even convergent truncation: Referring to Eq. (5.22), we 
have s(l) =~, s(2) = 1, and 

D (2n + I) = r(!)r(n + i + N) (1)2/3 N -2/3 

I r(~)r(n+~+N) , 

D~n+I)= -3/k. 

The net result is 

zw2n (z)- W~2n) z2/3 + w~n) zI/3 + 
where 

w(2n) _ a 2n - I.n - I 

I - D(2n+l)b 
C2n I 2n - 2.n - I 

(5.49) 

(5.50) 

(5.51) 

w(2n) = w(2n) _ 2 _ W(2n) 2n - I.n - I • 
[ 

D(2n+l) b ] 

2 I D(2n+l) I 
I a2n -I.n-I 

We immediately notice that the leading exponent a = 1 
is obtained from the term! - l1A /k. The leading term coeffi
cients W~2n - I) and w~nl have the same generic form as their 
QAHO counterparts in Eqs. (5.38) and (5.43). For a general 

TABLE VI. Numerical values of the leading term coefficients W\k j in Eqs. 
(5.52) and (5.53) for truncations of the ground state charmonium S fraction. 
The exact value is the ground state of an Airy dift'erential equation. 

n w(2n-lj 
I 

w(2nj 
I 

1 0.5021956152 1.255 489 0381 
2 1.255 489 0381 1.365 191 9638 
3 1.397 286 2825 1.4525224410 
4 1.468 149 2263 1.506 058 7769 
5 1.5 1 5 535 3965 1.543 038 1825 
6 1.549 352 0460 1.570 587 0907 
7 1.575 100 4133 1.592 108 1965 
8 1.5954798492 1.609 502 3004 
9 1.6121177745 1.623 9366885 

10 1.626021 2941 1.636 1575755 
11 1.637 856 5953 1.646 674 8240 
12 1.648 085 4000 1.655 8480979 
13 1.657037 1400 1.663 938 9765 
14 1.664 954 3381 1.671 1432758 
15 1.672 020 0523 1.677 610 7481 
16 1.678 375 1994 1.6834580510 
17 1.684 130 2254 1.6887776125 
18 1.689 373 0844 1.693 643 7351 
19 1.694 1747790 1.6981169063 
20 1.698 593 3221 1.702246 9261 
25 1. 716 369 0297 1.7189921717 
30 1. 729 305 5925 1.731305 1658 
35 1. 739 252 2482 1.740 841 1185 
40 1.7472019267 1.7485035446 
45 1.7537409885 1. 754 '132 4751 
50 1.759240 6071 1.760 172 9309 

Exact 1.855757081 1.855 757081 
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TABLE VII. Results of a Thiele-Pade estimation of the limits of leading 
term coefficients W\k)in Eqs. (S.S2) and (S.S3), as k-+oo , kevenandodd, for 
the six lowest-lying charmonium states. The limits W\',,) are presented to 
the number of digits shared by estimates for even-k and odd-k sequences. 
The exact values F~L' which correspond to the (N,L ) state eigenvalues of a 
three-dimensional Airy di1ferential equation, are taken from Ref. 30. 

State N L W\~) FlO) 
NL 

IS I 0 1.8SS 75 1.855757 
2S 2 0 3.24 3.2446 
2P 2 1 2.668 2.6679 
3S 3 0 4.4 4.3817 
3P 3 I 3.9 3.8768 
3D 3 2 3.37 3.371 8 

state IN,L,M), they assume the explicit form 

[

n-I d:,LM] 
w(2n - I),NLM = II ~ CNLM 

I JVLM 2n-1 
i= I C:2i 

X 
rHlr(n-i+N) (_2)1/3, 

Nr(!)r(n + i + N) 3 
(5.52) 

W\2n),NLM = [Ii ~L~ ] r(~)r(n + ~ + N) N 2 (2.)213 . 
1=1 ~LM r(!)r(n +~ +N) 2 

(5.53) 

An analysis of the same form as in Eq. (5.44) reveals that the 
above constants approach a common limit as n-ex). From 
Eq. (5.1), it is expected that this common limit is F~LM' 

Numerical results: The values of the leading term coeffi
cients W\2n-l) and w~n) in Eq. (5.52), corresponding to the 
ground state N = 1, L = M = 0, are presented in Table VI. 
A regular monotone behavior approaching the exact value 
FlO) = 1.855 757081 is observed for both sequences. A 
Thiele-Pade extrapolation of values from each sequence af
fords approximate limits which are in excellent agreement 
with the exact results. Table VII presents the results of these 
extrapolations for all states h;;N<3, L = 0,1,2, ... ,N. The es
timates are presented to the number of digits shared by ex
trapolations of even and odd sequences. In all cases, the esti-

TABLE VIII. Numerical values of the second term coefficients W!j' I in Eqs. 
(5.48) and (S.SI) for ground state charmonium, as obtained from exact S
fraction coefficients c!oo. The entries denoted "Extrap" are obtained from 
Thiele extrapolation of the sets of numerical values. They represent esti
mates of the expectation value of the negative Coulomb potential over the 
unperturbed ground state Airy function. 

/I WI2n-l) 
2 w~n) 

10 0.727 S93 1703 0.706 640 967 7 
15 0.623 259099 7 0.608 708 767 3 
20 0.S49 905 928 8 0.S38 8920174 
25 0.493981 747 5 0.485 1825775 
30 0.4491149114 0.441 823 389 I 
35 0.4118410694 0.405 637 637 0 
40 0.3800801663 0.374696598 4 

Extrap -0.26±0.02 -0.26±0.03 
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mated limits are in good agreement with the exact values 
taken from Ref. 30. 

Table VIII presents some values of the coefficients 
W~" - I) and w~n) corresponding to the ground state, along 
with the Thiele-Pade extrapolated limits of both sequences. 
Interestingly, the limits of these positive and monotone de
creasing sequences are negative, which is to be expected, 
since they correspond to the expectation value of a negative 
Coloumb potential over the unperturbed Airy eigenfunc
tions. 

VI. THE RELATION BETWEEN SUBDOMINANT TERMS 
IN LOPT AND CFLO FOR 5(1) FRACTIONS 

Here we show, by example, that a simple relationship 
does not exist between nt-type Stieltjes series coefficients and 
their S(l) -fraction counterparts as far as subdominant terms 
are concerned. We shall refer to the relevant expansions for 
the quartic anharmonic oscillator, Eqs. (4.4) and (4.6), and 
inquire whether a relationship exists between the 1/ n correc
tion term in Eq. (4.4) and the constant terms in Eq. (4.6). The 
knowledge of these terms in closed form serves as a motiva
tion. The following treatment will be centered around the 
QAHO problem, and special reference to the charmonium 
model will be made at the end. 

For convenience, we consider the following scaled 
QAHO perturbation coefficients, 

E~) = (- 1)11+ Ir(n + K + !)[1 +AKn- 1 + D(n- 2
)], 

(6.1) 

where 

AK = - (~ + H K + H K 2) (6.2) 

and the geometric factor k = ~ is combined with the coupling 
constantp to produce the expansion parameter z = k{3. The 
multiplicative factor has also been ignored as it will only 
contribute to cf. The coefficients of the S(I) fraction which 
represents the scaled series beginning with term E~) are giv
en by 

c: = nl2 + K 12 ± -b + R ~).K, 

2 
. {I, n even, n> , 1= 

- 2, n odd, 
(6.3) 

where it has been conjectured that R ~).K = D (n- 1/2
). Let us 

now consider the "model" perturbation series whose coeffi
cients contain only the dominant terms of the E~) in (4.1), 
i.e., 

E ( z) = 1 + i E ~)z" 
n=1 

=1+ i (-W+lr(n+K+..!..\,.n. (6.4) 
n=1 2r 

From Eq. (3.11), the coefficients oftheS-fraction representa
tion, E ( z) = 1 + zC ( z), are given by 

Cf = r(K +~), 

~even = n12 +K +!, 
~odd = nl2 - !. 

(6.5) 

A comparison between Eqs. (6.3) and (6.5) gives the interest-
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ing set of relations, 

~ =c: + (_I)n+lcK +R~1.K 

(6.6) 

where 

cK =K12 +-&. (6.7) 

In other words, the "true" QAHO coefficients Cn are ob
tained by perturbing the model hypergeometric c: with a 
constant term alternating in sign and correction terms of 
order o( 1). One may well ask whether the oscillating pertur
bation alone could account for the appearance of the term 
AKin in (6.1), which, in tum, arises from a transformation of 
the series in (6.4). In other words, given the formal CF-power 
series correspondence, 

(6.8) 

doesBK =AK? 
In order to answer this question, we define 

F( Z,E) = 1 + zr(a _ E)r(1 + E) 2FO(a - E,1 + E, - z) , 
2FO(a - E,E, - z) 

(6.9) 

wherea = K + ~sothatF( z,O) = 1f( z). For ease of notation, 
the index K will be supressed in the following presentation. 
From Eq. (5.8), the function F( Z,E) is seen to admit the S
fraction representation 

co C:+(-lt+ IE 
F(Z,E) = 1 + ~I 1 . (6.10) 

We now expand F( Z,E) as a power series in z, 

F( Z,E) = 1 + i F(n)zn, (6.11) 
n=1 

and seek to express the coefficients F(n) as 

F(n)_( _1)n+ Ir(n +a - 1)[1 +Bln + ... ], (6.12) 

where B will be determined in terms of a and E. We let 
co 

zFo(a - E,1 + E; -z) = L an~' (6.13) 
n=O 

co 

2FO(a - E,E; - z) = L bn~ (6.14) 
n=O 

(6.15) 

The general coefficient F(n) in Eq. (6.11) will have the formal 
Cauchy composition 

F(n) = r(a - E)r(1 + E)(aoPn _ I + a l Pn _ 2 

+ ... +an-2PI+an_ I Po)' (6.16) 

Formal expansion of the hypergeometric function in Eq. 
(6.13) and use ofthe relation38 

r(n + r)-r(n + s)n'-S[ 1 + (r - s)(r + s - 1)/(2n) 

+ o (n- 2
)], as n ---+ 00, (6.17) 
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yields 

an_I = (- It- Ir(n + a - 1)/r(a - E)r(l + E) 

X [1 + (c2 - (a - 1)c)ln + O(n- 2
)] • (6.18) 

Furthermore, Co = 1, so we have determined the contribu
tion frompoOn _ I in (6.16). In order to find the contribution 
from an _ 2 PI> we use the fact that PI = E(a - E) and apply 
relation (6.17) to (6.13) to obtain 

an_ 2 PI = (- Itr(n + a - 1)1(r(a - E)r(1 + E)) 

X [(a - E)E!n + O(n- 2
)]. (6.19) 

The term an _ 3 P2 contributes terms of order 0 (n - 2) to (6.16) 
and, along with lower terms, need not be considered, with 
the exception of the final term aoPn' 

To determine the asymptotic behavior of the coefficients 
Pn of the inverse series in Eq. (6.15), we employ the method 
discussed by Bender.39 It is sufficient to show that if (i) 
bn :;60, bn _ I = o(bn ), and (ii) there exists an R > 0 such that 
for n sufficiently large 

n-R 
SR= L Ibkbn-kl = O(bn_ R), 

k=R 
then the coefficients Pn are given by 

R-I 
Pn = L gkbn-k + O(bn_ R ), 

k=O 
where thegk are coefficients of the power series expansion 

-L~o bn~] - 2 = n~o gnzn. 

The above properties are easily established from the exact 
form of the bn coefficients and the final result is 

Pn= (-It+
1 

r(n+a)[..!..+o(n- 2 )]. (6.20) 
r(a - E)r(E) n 

The net contribution from Eqs. (6.18), (6.19), and (6.20) to 
Eq. (6.16) is 

BK =2c -2aE. (6.21) 

For the quartic anharmonic oscillator, E = K 12 + -& and 
a = K + ~, so that 

BK = -(~+~K+!K2). (6.22) 

Numerical results for K = 0, 1,2,3, and 4 are in exact agree
ment with this expression. Clearly, this term does not equal 
the true asymptotic correction for the QAHO perturbation 
coefficients in (6.2). 

Turning to the L = 0 charmonium representations, we 
consider the scaled series coefficients 

EW=(-lt+lr(n+2N) 
X [1 - MIO + 18N + 21N2)(l/n) + O(n- 2

)]. 

(6.23) 
The expansion parameter becomes z = ~ N 3...t. The associat
ed S-fraction coefficients have the form 

~ = .!!.... {N - ! + R ('1.N {n even, (6.24) 
n 2+N-A n' nodd. 

The relevant parameters in Eq. (6.21) are a = 2N + 1 and 
E = N + ~. Thus, we have 

BN = - (~ + 2N + 2N 2
), (6.25) 
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again in disagreement with the LOPT result in (6.23). 
This represents the limit of any closed-form analysis. 

Numerical experiments suggest that all subdominant terms 
in R ~ contribute to the lin correction to the perturbation 
series. The experiments and mechanism will be discussed 
elsewhere. 
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APPENDIX: PROOF OF PROPOSITION 3.1 

In this section we prove Proposition 3.1 [c.f. Eq. (3.7)]: 
Given a Stieltjes series/( z) whose coefficients behave asymp
totically as 

an-(-I)n+lr(n+a)kn(I+Aln+ •. ·), as n-oo, 
(AI) 

where a, k, and A are real constants, then the coefficients of 
its S-fraction representation I( z) = ao + zC (z) behave as
ymptotically as 

cn -~ kn, as n - 00. (A2) 

We now consider this quotient-dift'erence (QD) table for 
the above series, as defined by Eqs. (2.11) and (2.12) and 
illustrated in Fig. 1. The existence and uniqueness of the QD 
table, hence the Cn , is guaranteed from the hypothesis that 
I( z) is Stieltjes. From Eq. (2.11) it follows that the elements of 
the column qnl behave asymptotically as 

(A3) 

The following expansions are now assumed for the columns, 

qnm = n[Bom +Blmln + Bzmlnz + ... ], 
m = 1,2, ... , as n - 00, 

enm = COm + Clmln + CZm ln2 + ... , 
m = 1,2, ... , as n - 00. 

From Eq. (A3), we have B Om = k. 

(A4) 

Substitution of the above expansions into the rhombus 
rules, Eq. (2.12) shows that the first four expansion coeffi
cients are given by 

COm =mBoI, 

Clm =0, 

Bom =BO.m_ 1 = ... =BoIJ 

Blm =BI.m_ 1 = ... =Bl1 , 

C2m = - mB21, B2m = Bz.m - I = ... = B2IJ 

(AS) 

C3m = - 2m2 - m(2B31 + B21 ), B3m = B30 + 2mB21 • 

In other words, the elements of the q"m columns are growing 
linearly downward as Boln, while those of the e "m columns 
approach the constants COm' However, these constants 
COm = mBOI grow linearly as we move outward horizontal
ly. 
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e OO 
e 01 e 02 e 03 e 04 

qll q12 q13 q14 

e 10 ell e 12 e 13 

q21 q22 q23 

e 20 e 21 e 22 

q31 q32 

e 30 en 

FIG. 2. The extended QD table associated with the QD table presented in 
Fig. 1. The upper triangle array represents the quotieat-dift'erenc:e &fl'&y for 
the inverse power series. The rows eom and 91m are initialized according to 
Eqs. (A6). The rhombus rules in Eq. (AS) permit a downwardtalculapon of 
the array from these rows to the diagonal elements 9 •• and e ••. This consti
tutes the extended QD scheme. 

We now consider an extension23 of the QD array of Fig. 
1 to produce a rectangular array as shown in Fig. 2. All 
elements obey the rhombus rules as before. The elements of 
the first two rows of the extended array are given by 

ql1 = - al/ao = bilbo, 

qlm = 0, m = 2,3,4, ... , (A6) 

elm = - bm+ I/bm, m = 2,3,4, ... , 

where the bi are coefficients ofthe reciprocal power series, 

lao + alz + a~ + ... ] -I = bo + biZ + b~ + .... 
(A7) 

All elements of the QD array in Fig. 2 may, in fact, be calcu
lated from the initial values in Eq. (A6) by rearranging the 
rhombus rules as follows: 

e"m = e"-I.mq,,.m+ I/q"m' 

q"m =q,,-I.m + e,,_I.m - en_ l.m_ l , 

m = 2,3, ... , n = 2,3, .... 

(AS) 

This method of calculating the QD array is known as the 
extended QD scheme. 

From the asymptotic analysis of reciprocal series de
scribed in Ref. 39 and outlined in Sec. VI, it follows that the 
coefficients bi ofthe inverse power series in (A6) behave as
ymptotically as 

b" -( - l)"r(n + a)k "(I + B In + ... ), as n -00. (A9) 

It follows that the elements of the first nonzero row elm 
behave asymptotically as 

(AlO) 

We now consider row-wise asymptotic expansions, analo
gous to (A4), and having the form 

- - - 2 e"m = m[BnD +B"l/m +B"zlm + ... ], as m - 00, 

(All) 
- - - 2 q"m = CnD + C"l/m + C,,2/m + ... , as m - 00. 

These expansions exploit the fundamental symmetry prop
erty of the extended QD scheme: q-columns behave as e
rows, and e-columns behave as q-rows. The following rela-
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tions between expansion coefficients also reflect this 
property: 

CnO = nOlO' 

Cnl =0, 

Ono = On - 1,0 = ... = 010, 

Onl = On - 1,1 = ... = 011' 

Cn2 = - nB12' On2 = On-I,2 = ... = 012, 

(AI2) 

Cn3 = - 2n2 - n(2B12 + 0 02 ), On3 = 003 + 2n012· 

Thus, for the upper triangular section of the extended QD 
scheme, the enm rows grow outward linearly as OlOm while 
the qnm rows approach constants Cna . However, these con
stants grow linearly as OlOn as we move downward. 

The growth rates for rows and columns of upper and 
lower triangles of the extended QD array are now seen to 
match, implying that the diagonal elements grow as 
qnn = Boln, enn = Boln. Since BOl = k and C2n = qnn' 
C2n + I = enn , it follows that Cn -kn/2. 

The condition that the an have an asymptotic expansion 
in powers of 1/ n in Eq. (AI) is evidently strong but not neces
sary. We have relied on the observation that many of the 
typical perturbation coefficients encountered in quantum 
mechanics possess such expansions. This enables us to as
sume the expansions in (A4) and (All). 

Before closing this section, let us make one final remark 
concerning the application of the above analysis to other S (k) 

fractions. For S(2) fractions, the expansions analogous to 
(A4) and (A 7) involve quadratic growth of the q-columns and 
linear growth of the e-columns. There is a net quadratic 
growth of entries both horizontally and vertically but the 
elucidation of the constant coefficient from the relations 
analogous to Eqs. (AS) and (AI2) is much more complicated. 
Unlike in the S(I) case, all terms Bnm and Cnm contribute to 
this constant. This feature will be discussed in a future re
port. 
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It is shown that a lack of knowledge about the measurements of a physical system gives rise to a 
nonclassical probability calculus for this physical system. It is also shown that the nonclassical 
probability calculus of quantum mechanics can be interpreted as being the result of a lack of 
knowledge about the measurements. Examples are given of macroscopic real systems that have a 
nonclassical probability calculus. A macroscopic real system that has a quantum probability 
calculus is also given, and more specifically a model for the spin of a spin-! particle is constructed. 
These results are analyzed in light of the old hidden variable problem. 

I. INTRODUCTION 

It is an opinion that the probabilities appearing in quan
tum mechanics do not arrive as a consequence of our lack of 
knowledge, but are inherent in nature and hence ontological. 
This opinion was present from the advent of quantum me
chanics as a consequence of one of the possible interpreta
tions of the Heisenberg uncertainty relations. Some physi
cists, however, did not agree with this interpretation and 
wondered whether it would not be possible to imbed quan
tum mechanics into a classical theory. They had in mind 
what happened with thermodynamics. Indeed, the theory of 
thermodynamics is independent of classical mechanics, and 
has its own set of observables such as pressure, volume, tem
perature, energy, and entropy and its own set of states. It 
was, however, possible to introduce an underlying theory of 
classical mechanics. To do this one assumes that every ther
modynamical system consists of a large number of molecules 
and the real pure state of the system is determined by the 
positions and momenta of all these molecules. A thermody
namic state of the system is then a mixed state of the underly
ing theory. It was possible and it was a great success to derive 
the laws of thermodynamics in this way from Newtonian 
mechanics. The theory that resulted was called statistical 
mechanics. 

Is it possible to do something similar for quantum me
chanics? Is it possible to introduce extra variables into quan
tum mechanics such that these extra variables would define 
new states, and the description of the system based on these 
new states and the same observables would be classical? 
Moreover, quantum mechanics would be the statistical the
ory that results by averaging over these variables. A theory 
that has such extra variables and a procedure for averaging 
over these extra variables is usually called a "hidden variable 
theory." Because we want to have the same observables and 
only new, better defined states, the algebraic structure of the 
observables has to be conserved in this hidden variable the
ory. 

Von Neumann gave the first proof of the impossibility of 
hidden variables for quantum mechanics. 1 One of the as
sumptions made by Von Neumann is that the expectation 
value of a linear combination of two observables is the linear 
combination of the expectation values of the observables. As 
remarked by Bell in Ref. 2, this assumption is not justified 

for noncompatible observables, such that, indeed, Von Neu
mann's proof cannot be considered to be conclusive. Bell 
constructs in the same reference2 a hidden variable model for 
the spin-!, and shows that indeed Von Neumann's assump
tion is not satisfied in this model. Bell also criticizes in the 
same paper two other proofs of the nonexistence of hidden 
variables, the proof by Jauch and Piron3 and the proof by 
Gleason.4 Bell correctly points out the danger of demanding 
extra assumptions to be satisfied without knowing exactly 
what these assqmptions mean physically. The extra math
ematical assumptions criticized by Bell were intl;oduced in 
all t~ese approaches to express the physical idea that it must 
be possible to find, in the hidden varil,lble description, the 
original obServables and their basic algebra. We think that 
this physical idea was expressed correctly, without extra 
mathematical assumptions, and used in the impossibility 
proof of KOchen-Specker.s Gudder6 gave an impossibility 
proof along the same lines as the one by Jauch and Piron, but 
now carefully avoiding the assumption criticized by Bell. 

One could conclude by stating that every one of these 
impossibility proofs consists of showing that a hidden vari
able theory gives rise to a certain mathematical structure for 
the observables (in Refs. 1,4, and 5) or for the properties (in 
Refs. 3 and 6) of the physical system under consideration. 
The observables or the properties of a quantum system do 
not have this mathematical structure. Therefore it is impos
sible to replace quantum mechanics by a hidden variable 
theory. To be more specific, if one works in the category of 
observables, then a hidden variable theory always has a com
mutative algebraic structure for the set of observables, while 
the algebra of observables of a quantum system is never com
mutative. If one works in the category of properties (yes-no 
observables) then a hidden variable theory always has a Boo
lean lattice structure for the set of properties, while the lat
tice of properties of a quantum system is never Boolean. 

Recently this structural difference between classical sys
tems and quantum systems has been studied by Accardi in 
another category, namely the category of probability mod
els.7 Accardi gives a definition of a Kolmogorovian probabil
ity model, which is the probability model of a classical sys
tem, and a quantum probability model, which is the 
probability model of a quantum system. Again these two 
probability models have completely different mathematical 
structures. What is more powerful in this probability ap-
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proach, compared to the algebraic or lattice theoretic ap
proach, is that probability models can be compared with 
experimental results. To make this possible, Accardi de
rives a set of inequalities that characterizes the Kolmogoro
vian model and shows that these inequalities can always be 
violated by experiments with a quantum system. Accardi 
even manages to derive inequalities that can discriminate 
between a complex and a real Hilbert-space model, which 
shows the power of this approach.8 Again this probability 
approach shows the fundamental difference between a clas
sical theory and a quantum theory. 

A lot of physicists, once aware of this fundamental 
structural difference between a classical theory and a quan
tum theory, gave up hope that it would ever be possible to 
replace quantum mechanics by a hidden variable theory; and 
I admit that I was one of them. I should like to show in this 
paper that the state of affairs is, however, more complicated. 

Some time ago I managed to build a macroscopic classi
cal system that violates Bell inequalities.9

,10 On the other 
hand, Accardi had shown that Bell inequalities are equiva
lent to his inequalities characterizing a Kolmogorovian 
probability model. Since my example did violate Bell in
equalities, it should also violate Accardi's inequalities char
acterizing a Kolmogorovian probability model. This is in
deed the case. But then I had given an example of a 
macroscopic "classical" system having a non-Kolmogoro
vian probability model. This was very amazing, and the clas
sification made by a lot of physicists of a microworld de
scribed by quantum mechanics and a macroworld described 
by classical physics was challenged completely. This system 
violating Bell inequalities and having a non-Kolmogorovian 
probability model is presented in Ref. 10. The reason macro
scopic systems can have non-Kolmogorovian probability 
models is what I want to analyze in this paper. I shall show 
that the state of affairs is the following: If we have a physical 
system S and we have a lack of knowledge about the state of 
S, then a theory describing this situation is necessarily a clas
sical statistical theory having a classical Kolmogorovian 
probability model. Ifwe have a physical system S and a mea
surement e on this physical system S, and the situation is 
such that we do not have a lack of knowledge about the state 
of S, but we do have a lack of knowledge about the measure
ment e, then we cannot describe this situation by a classical 
statistical theory, because the probability model that arises is 
non-Kolmogorovian. Hence, lack of knowledge about the 
measurements leads to a non-Kolmogorovian probability 
model. What do we mean by "lack of knowledge about the 
measurement e?" Well, we mean that the measurement e is 
in fact not a "pure" measurement, in the sense that there are 
hidden measurements eA such that the measurement e con
sists of choosing in one way or another between the measure
ments eA and then performing the chosen measurement. 

We can ask now whether it is possible to get a quantum 
probability model in this way. That this can indeed be done is 
shown in Sec. III, based on a macroscopic example. The 
example in Sec. III has a non-Kolmogorovian probability 
model of the spin of a spin-! particle, and is constructed by 
introducing a lack of knowledge about the measurements. 

It is shown in Sec. IV, based on another macroscopic 
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example, that this physical situation of lack of knowledge 
about the measurements does not only give rise to a quantum 
probability model, but can also deliver a probability model 
that is neither Kolmogorovian nor quantum. 

We can wonder now whether every quantum system can 
be described by a model with a lack of knowledge about the 
measurements. That this is indeed the case is shown in Sec. 
V. 

In Ref. 5 Kochen and Specker give a classical statistical 
model for the spin of a spin-~ particle. Because we show in 
Sec. III that a spin model is a non-Kolmogorovian model, 
this seems to contradict the result of Kochen and Specker. 
We analyze this situation in Sec. VI. 

Now, what is the relation of our model with lack of 
knowledge about the measurement to the attempts to build a 
hidden variable model? Well, our model with a lack of 
knowledge about the measurements can also be regarded as a 
hidden variable model. The hidden variables are not then 
hidden variables of the system, but hidden variables of the 
measuring apparatus. But, for each measuring apparatus we 
then have a different set of hidden variables. As I came to 
know recently, it was shown by Gudder that a hidden vari
able model, where a different set of variables is allowed for 
each measurement, can reconstruct the probabilities of 
quantum mechanics. II It seems, however, that nobody want
ed to take into consideration these kinds of hidden variables. 
This is certainly because no interpretation was given to these 
hidden variables, and the theorem of Gudder was only con
sidered to be an interesting mathematical result. 

If we accept our explanation for the probabilities of 
quantum mechanics, namely that they are due to a lack of 
knowledge about the measurements, then these probabilities 
are not more ontological than ordinary probabilities. They 
form a nonclassical probability model because they corre
spond to a different physical situation, namely the physical 
situation where we lack knowledge about the measurements 
and not about the state of the system. It is clear that such a 
physical situation can be found, as well, in the macroworld. 
We have shown this based on our examples. We can now ask 
why nonclassical probabilities only appeared in the 
microworld. In light of our hypothesis, the answer would be 
that the type of measurement, introducing nonclassical pro
babilities, is never used to describe a macroscopic system, 
because we have enough other measurements to replace 
them. This is no longer the case in the microworld. 

II. CLASSICAL AND QUANTUM PROBABILITY MODELS 

We will, in this paper, always consider the following 
situation: We have a physical system S. This physical system 
can be in different states p, q, r, .... We denote the set of states 
by l:. We can perform measurements e,f, g, ... on this phys
ical system. We denote the set of measurements by 1. We 
suppose for sake of simplicity that all measurements have an 
outcome set which is a discrete set of real numbers. Hence a 
measurement e has possible outcomes {e l , e2, ... J. 

If the system S is a classical system, then for a state p, a 
measurement e has a determined outcome e(p), and measure
ments can, in this case, be represented by real valued func
tions (random variables) on l:. Ifwe have a lack of knowledge 
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about the state of this classical system, then this lack of 
knowledge is described by a probability measure IL on l: such 
that if D is a measurable subset of l:, then IL(D ) is the prob
ability that the state of S is in D. This is the description of a 
classical system by means of a statistical theory, and often IL 
is called a mixed state of the system S. We then have 

Pte = ej ) = IL(Ej), 

whereP (e = e j ) means the probability offinding the outcome 
ej if the measurement e is performed, and E j is the set of 
states for which the measurement e gives outcome ej. 

If the system S is a quantum system, then measurements 
are represented by self-adjoint operators on a Hilbert space 
H. Since we considered only measurements with a discrete 
set of outcomes, we will have corresponding self-adjoint op
erators with a discrete spectrum. If e is such a measurement, 
with possible outcomes (e l , e2, ••• J, then the corresponding 
self-adjoint operator always has an orthonormal basis [¢JI' 
¢J2' ... j of eigenvectors. The state p of the system is represent
ed by a normalized vector.,p. We then have 

Pte = ejl.,p) = 1(¢Jj' .,pW, 
where P (e = e j l.,p) means the probability of finding the out
come ej when the measurement e is performed and when the 
system is in a state .,p. 

These two descriptions, classical and quantum, both 
give rise to a probability model. We would like to compare 
these two models. To do this we have to find a concept that 
exists in both descriptions. We would also like to compare 
both models with physical experimental examples. There
fore, the common concept must have a physical meaning 
independent of the theories. For this purpose we will use the 
concept of conditional probability P (e = ej I 1= fj). 

We will attribute the following physical meaning to 
P (e = ej I 1= fj): The probability of finding the outcome ej 
when we perform the measurement e, when the state of the 
system is such that if we performed the measurement I we 
would find the outcomefj . Hence we do not have to perform 
the measurement! There is only a condition on the state of 
the system such that an eventual measurement of! would 
give us the outcomefj. We insist on making this remark, 
because often the conditional probability P (e = ej I 1= fj) is 
given the following meaning: The probability of finding the 
outcome ej for a measurement e if a measurementl has been 
performed and has given outcomefj. If the performance of 
the measurementl creates the good conditioning on the state 
of the system, namely the condition that if we performed! 
(again) we would find the outcomefj, then the two meanings 
are equivalent. This is the case for measurements of the first 
kind in quantum mechanics. But it is certainly not true for 
general measurements. Indeed, often a measurement de
stroys the system if one of the outcomes is obtained (e.g., 
measurement of the polarization of a photon). In such cases 
it usually makes no sense to perform the measurement e after 
we have performed! 

Let us see how we can find this conditional probability 
in both theories. 

If S is the classical system with lack of knowledge about 
the states described by the probability measure IL, then 

Pte = ej I/=fj) =1L(EjnFj)IIL(Fj), 
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where Ej is the set of states for which the measurement e 
gives the outcome ej, and Fj is the set of states for which the 
measurement I gives the outcome fj. This equality is often 
introduced as a definition of the conditional probability in 
Kolmogorovian probability theory. We have, however, giv
en a physical meaning to the conditional probability such 
that this conditional probability can be derived from the ex
perimental results. Therefore we shall consider this equality 
as one of the characterizations of the Kolmogorovian prob
ability model. If considered in this way, the equality is often 
called Bayes axiom. 

If S is a quantum system, then the condition that the 
state of the system S must be such that a measurement of! 
would give the outcome fj, can be expressed by asking that 
the state of S must be an eigenstate .,pi of the self-adjoint 
operator corresponding to J, an eigenstate corresponding to 
the eigenvalue fj. Then 

Pte = ej I/=fj) = 1(¢Jj, .,pi)l2· 
Let us now give the mathematical definitions for a clas

sical and a quantum probability model as proposed by Ac
cardi in Refs. 7 and 8. 

Definition 1: A Kolmogorovian (classical) model for the 
family of conditional probabilities {P (e = ej I 1= fj); e, 
IE vii} is defined by a set l:, a set P of measurable subsets of l: 
which has the structure of a CT-algebra, and the probability 
measure 1L:,8 -+ [0,1]. For every ee vii and for every out
come ej of e, there exists a set EjE P such that for e,1 

Pte = ej I/=fj) = IL(EjnFj)IIL(Fj)· 

Definition 2: A complex (resp. real or quatemonian) Hil
bert-space model for the family of conditional probabilities 
[P (e = ej I 1= fj); e, IE vii J is defined by a complex (resp. 
real or quatemonian) Hilbert space H. For every eE vii there 
exists an orthonormal basis {¢Jj } such that 

P(e=ejl/=fj)= 1(¢Jj,.,pi)l2, 

if {¢Jj J and {.,pi J are the bases corresponding to e and! 
In Sec. III we will give an example of a macroscopic 

system with lack of knowledge about the measurements that 
has a quantum probability model. 

III. EXAMPLE OF A MACROSCOPIC PHYSICAL SYSTEM 
WITH A QUANTUM DESCRIPTION; CONSTRUCTION OF 
A SPIN-l MODEL 

We will give, in this section, an example of a macroscop
ic physical system that gives a model for the spin-!. 

We consider a particle with positive charge q that is 
located on a sphere with radius r at a point (r, 0, ¢J). The 
measurement eaP consists of the following operation: We 
choose two particles with negative charges ql and q2 such 
that q I + q2 = Q. The charge q I is chosen at random between 
o and Q. This represents the lack of knowledge about the 
measurement. Once the charges q 1 and q2 are chosen we put 
the two particles diametrically on the sphere, such that q I is 
in the point (r, a, P) and q2 is in the point (r, 1T - a, 1T + P). 
Let us call FI and F2 the Coulomb forces of q 1 on q and of q2 
on q. If the magnitude of FI is bigger than the magnitude of 
F2, we give the outcome e l to the measurement eap. If the 
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magnitude of Fz is bigger than the magnitude of FI we give 
the outcome ez to the measurement ea{J' (See Fig. 1.) 

The forces FI and Fz are in the plane through (r, B, (J), (r, 
a, {3), and (r, 1T - a, 1T + {3). (See Fig. 2.) 

Let us call ythe angle between (r, B, (J) and (r, a,{3). Then 

IIF'II- qcq 
I - 41TEr sinz (y/2) , 

and 

IIF' II - q2'q 
2 - 41TEr cos2 (y/2) 

Let us now calculate the probability that we get the out
come el for eafJ if the particle q is in state (B, (J). 

P (IIFdl > 11F211l 
= p( qcq > q2'q ) 

41TEoI" 2 sin2 (y/2) 41TEoI" 2 cos2 (y/2) 

= P(ql cos2 (y/2) > q2 sin2(y/2)) 

= P(ql cos2 (y/2) > (Q - q.) sin2 (y/2)) 

= P(ql > Q sin2 (y/2)) 

= [Q - Q sin2 (y/2)]/Q = cos2 (y/2). 

This is exactly the probability that we would find if eafJ 
represented the measurement of the spin of a spin-~ particle 
in the (a,{3) direction while the particle had spin in the (B, (J) 
direction. 

We can describe this system by means of a two-dimen
sional complex Hilbert space. We then represent the state of 
the particle q in the (B, (J) direction by means of the vector 

X8,~ = (e - i~/2 cos (B /2), ei~/2 sin (B /2)), 

and the measurement ea{J by means of the self-adjoint opera
tor 

s =1-(cosa e-ifJsina) 
a,/J 2 eifJsina -cosa . 

We can then apply the calculus of quantum mechanics to the 
description of our system. Let us remark again that the state 
of the particle q is a pure state and the probability only comes 
from a lack of knowledge about the measurement eafJ' 

Let us now consider the physical situation where we also 
have a lack of knowledge about the state of the system. More 
specifically, we suppose that the charge q (or the spin of the 

,'" 

, , , , 
" , F1 , y 

,£_------, 

FIG. 1. A positive charge q is located on the sphere at (r,e,t,6) and two nega
tive charges q, and q2 are chosen as explained in the text and located on the 
sphere at points (r,a, {3) and (r,r - a,r + {3). 
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FIG. 2. We consider the three charges of Fig. 1 as they are located in one 
plane. 

spino! particle) is in every direction (B,(J) with equal probabil
ity. We consider three measurements e, f, and g such that 
e = eo,o ,I = e1T/3,O' and g = e21T/ 3 ,O (see Fig. 3).Then clearly 
Pte = el) = P(f=/d =P(g=gd = Pte = e2 ) =P(f=/z) 
= P (g = g2) = !. Let us now show that there does not exist a 
classical Kolmogorovian probability model for this system. 

If there does exist a classical description, then we must 
have a probability measure p and 

Using Bayes axiom and the properties of the probability 
measure we have 

~P(f=/llg=gl) 

= p(FlnGd = p(Eln FlnGd + p(E2n FlnGd, 

~P(e=ellg=gd 

= p(ElnGd = p(Eln FlnGI ) + p(Eln F 2nGI ). 

Now P If = Illg = g I) is the probability that a measurement 
of/gives the outcome/l if the state of the system is such that 
an eventual measurement of g would give the outcome g I' 
The only state of the system with the property that a mea
surement of g would always give g I' is the state where the 
chargeq is at (r, 21T/3,0) [or the spin of the spino! particle is in 
direction (21T/3, 0)]. 
Hence 

e 

f 

g 

FIG. 3. The three measurements e, f, and g that are considered to show that 
the system of Fig. 1 does not allow a Kolmogorovian probability model. 
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P(f=fllg =gl) = COS
2(1T/6) = i, 

and 

PIe = ellg =gl) = COS
2(1T/3) = 1. 

Hence 

J.L(Eln FlnGJ! + J.L(E2n FlnGI ) = i ' 
and 

J.L(Eln FlnGJ! + J.L(Eln F2nGI ) = i . 
From this, it follows that 

J.L(E2nFlnGI ) = 1 + J.L(ElnF2nGI ) • 

Hence 

J.L(E2n F lnGJ!>l· 

On the other hand, we have 

!P(e = e2If=fl) 

= J.L(E2n FJ! = J.L(E2n FlnGJ! + J.L(E2n F lnG2) , 

and 

PIe = e2If=/d = cos2 (1T/3) = 1. 
Hence 

1 = J.L(E2n FlnGI ) + J.L(E2n F lnG2) , 

which shows that 

J.L(E2nFlnGJ!<! . 

It is not possible to have J.L(E2nFlnGJ!>1 and 
J.L(E2n FlnGI ),. and so this shows that the spin-! probability 
model cannot be replaced by a Kolmogorovian probability 
model. 

The fact that the quantum spin-! system cannot be de
scribed by a Kolmogorovian model is also a consequence of 
the general analysis made by Accardi in Ref. 7, but we 
thought it would be interesting to present a specific proof 
here, particularlY because we want to understand the appar
ent contradiction with the result of Kochen and Specker 
who claim to have built a Kolmogorovian model for the 
spin+ 

In our model for the spin-! we defined the outcomes for 
a measurement ea(3 as follows: ea(3 has outcome el if 
IIFIII > 11F211 and ea(3 has outcomee2 ifllFIl1 < IIF2 11· It would 
be interesting if we could relate a motion of the charge q to 
these two outcomes. To do this we can proceed as follows: 
We suppose the charge q to be on the sphere when the mea
surement starts. Once the measurement has started, the 
charge q can only move on the line between q I and q or on the 
line between q2 and q (see Fig. 4). Then it is clear that if 
IIFIII> IIF11I,q will move towards ql andifllFIIi < 11F211,qwill 
move towards q2' With this extra condition our macroscopic 
system not only gives the same probability model as the spin
!, but also gives the change of the state by means of the mea
surement with a Stern-Gerlach apparatus on a spin-! parti
cle. 

One could ask why we had to make such a rather com
plicated mechanical picture for the motion of the charge q. 
Why not just let it move on the sphere? Well, the forces that 
control the motion on the sphere are not FI and F2, but the 
projections of FI and F2 on the tangent plane at q. In Sec. IV 
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(a,S) 

FIG. 4. 

we will consider the macroscopic system consisting of the 
same charge q on the sphere with the same measurements 
ea(3 and the same lack of knowledge about these measure
ments, but now we define the outcomes as follows: ea(3 has 
outcome el if q moves towards ql on the sphere (not on the 
line) and ea(3 has outcome ez if q moves towards qz on the 
sphere. We will then show that this macroscopic system ad
mits neither a classical Kolmogorovian nor a quantum Hil
bert-space probability model. 

IV. EXAMPLE OF A MACROSCOPIC PHYSICAL SYSTEM 
THAT ADMITS NEITHER A CLASSICAL NOR A 
QUANTUM PROBABILITY MODEL 

We consider again a particle with positive charge q that 
is located on a sphere with radius r at a point (r, e, t,6). The 
measurement consists of the following operation: We choose 
two particles with negative charges ql and q2 such that 
ql + q2 = Q. The charge ql is chosen at random between 0 
and Q. This represents the lack of knowledge about the mea
surement. Once the charges ql and q2 are chosen we put them 
diametrically on the sphere at points (r, a, fJ) and (r, 1T - a, 
1T + fJ). We call FI and F2 the Coulomb forces of q I on q and 
of q2 on q. The charge q can move on the sphere. (See Fig. 5.) 
We call F; and F i the projections of FI and F2 on the tan
gent plane at (r, e, t,6). If IIF; II > IIFzlI, q will move towards 
ql' and then we will give outcome e1 to ea(3. If IIF; II < IIFi II, 
q will move towards q2' and then we will give outcome e2 to 
ea(3. 

(a,S) \ 

~---' 

F' , 2 , , , 

FIG. S. The same physical situation as Fig. 1. but now the charge q is only 
allowed to move on the sphere. 
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Let us now calculate the probability of getting e l for ea{l 

if the particle q is in state (0, rP). Again we call r the angle 
between (r, 0, rP) and (r, a, /3). Then 

IIF'II- ql'q ,cos.r. 
I - 41TEor 2 sin2 (rI2) 2 ' 

IIF'II- q2'q ,sin.r. 
2 - 41TEor 2 cos2 (rI2) 2 ' 

P(IIF; II > IIF~ III 
= p( qI"q ,cos.r. 

41TEor 2 sin2 (rI2) 2 

> q2'q , sin .r.) 
41TEor 2 cos2 (rI2) 2 

= P(ql cos3 (rI2) > q2 sin3 (rI2)) 

= P(ql cos3 (rI2) > (Q - ql) sin3 (rI2)) 

P ( 
Q sin3 (rI2) ) 

= ql> 
cos3 (rI2) + sin3 (rI2) 

_ cos3 (r121 

- cos3 (rI2) + sin3 (rI2) . 

We can, in the same way as for the macroscopic system 
of Sec. III, prove that this macroscopic system cannot be 
described by means of a Kolmogorovian probability model. 
We will not repeat this proof because it is completely analo
gous to the proof in Sec. III. 

The macroscopic system in Sec. III could be given a 
quantum description. Let us now show that for the physical 
system in this section this cannot be done anymore. Hence 
this physical system has a probability model which is neither 
classical nor quantal. 

We consider the measurements e, J, and g such that 
e = eo,o, i = e2"./3,O and g = e _ 2"./3,0 (see Fig. 6), Clearly 
with our choice of measurements 

P(g=glle = el) =P(g=glli=il) =P(f=ille = el) 

= PIg =g2le = e2) = PIg =g2Ii=i21 

= P(f=i2Ie = e2) 

cos3 (1T13) 1 
= cos3 (1T13) + sin3 (1T13) = 3{3 + 1 ' 

P(g=glle = e2) = PIg =glli=/Z) =P(f=ille = e2) 

=P(f=illg=g2) =P(e= elli=i2) 

= Pte = ellg =g2) 

sin3 (1T13) 3{3 
= = 

cos3 (1T13) + sin3 (1T13) 3{3 + 1 

If there exists a Hilbert-space model, then it must be possible 
to find three orthonormal bases {rPI' rP2}, {tPI, tP2 J, and {X I' 
X 2 J such that 

and 
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1 (rPI,tPI) 12 = 1 (tPI,XI) 12 = 1 (XI,rPI) 12 

= I (rP2,tP2W = 1 (tP2,X2W 

= 1 (X2,rP2W = 1/(3{3 + 1), 

J. Math. Phys., Vol. 27, No.1, January 1986 

e 

FIG. 6. 

I (rPI,tP2W = I (tPI,X2W = I (XI,rP2W 

= I (rP2,tPIW = I (tP2,XI) 12 

= I (X2,rPI) 12 = 3{31(3{3 + 1) . 

Let us show that this is not possible. We put 

.,1,= J1/(3{3 + 1) and /1- = J3{31(3{3 + 1). 

Then there must exist real numbers 01, O2, 03, 04, 05 such that 

(XI,rPI) =Aeill" (XI,tPl) = Aeill" 

(tPl,rPl) = Aeill" (Xl,tP2) = /1-eill., 

( tP2,rP2) = /1-eill, . 

Using the fact that {tPI,tP2J is an orthonormal basis we also 
have 

(XI,rPI) = (XI,tPl) (tPl,rPl) + (XI,tP2) (tP2,rPl)' 

Hence 

and 
Ae - ill, = A 2e - i(II, + II,) + /1-2e - i(lI. + II,) • 

Hence 

A 2 = A 4 + /1-4 + A 2/1-2ei(II, + II, - II. - II,) 

+ A 2/1-2e - i(II, + 8, - II. - II,), 

.,1,2 = .,1,4 + /1-
4 + 2.,1, 2/1-

2 cos (02 + 03 - 04 - 05)' 

SO COS(02 + 03 - 04 - 05) = (A 2 - A 4 - /1-4)/2.,1, 2/1-2. 
Let us now calculate (A 2 - A 4 - /1-4)/2.,1, 2/1-2: 

A 2 _ A 4 _ /1-4 

2.,1,2/1-2 

= 1/(3{3 + 1) - [1/(3{3 + I)P - [3{31(3{3 + I)P 

2[1/(3{3 + 1)] [3{3/(3{3 + 1)] 

= 3{3 + 1 - 1 - (3{3)2 = 3{3 - 27 

6/3 6/3 
= - 2.098 0764 .... 

This shows that it is not possible to find real numbers 01, O2, 

03 , 04 , and Os that would satisfy the equalities, since 
COS(02 + 03 - 04 - Os) > - 1 for all O2,03,04, and Os; and 
as a consequence it is not possible to find a Hilbert-space 
model for this macroscopic system. 
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The example of Sec. III shows that we can find the quan
tum probability calculus ofthe spin-! by supposing a lack of 
knowledge about the measurements. The example of Sec. IV 
shows that a lack of knowledge about the measurements can 
also, however, give rise to a nonclassical probability calculus 
which is nonquantal. In both examples there is no lack of 
knowledge about the state of the system. So we could say that 
the states are pure states; and it is clear that it will not'be 
possible to build a hidden variable model if one wants the 
hidden variables to be hidden variables. of the systems. 

V. A MODEL WITH LACK OF KNOWLEDGE ABOUT THE 
MEASUREMENTS FOR A GENERAL QUANTUM 
SYSTEM 

The example of Sec. III shows that lack of knowledge 
about the measurements can lead to a quantum mechanical 
probability model. We wonder whether we can make a mod
el for a general quantum mechanical system. We will give in 
this section a construction that shows that this can indeed be 
done. In this construction we will only consider quantum 
mechanical systems described in an n-dimensional Hilbert 
space. An analogous reasoning can be made, however, for 
the case of an infinite-dimensional Hilbert space. 

So we have a physical systemS described in an n-dimen
sional Hilbert space H. A measurement e on this physical 
system is represented by a self-adjoint operator A. With this 
self-adjoint operator correspond n eigenvectors VI'''''V" and 
eigenvalues a I, ... ,a" . If w is an arbitrary state of the system, 
we can write 

" w = L (w,v;)V;, 
;=1 

because I VI,· .. ,V" J is chosen to be orthonormal. Now 
X; = I (w,v; Wistheprobabilitythatbymeasurementofewe 
find the value a; if the system is in state w. So we can repre
sent this state w by means ofthese n probabilities I x I""X" J. 
Hence all the states can be represented in this way by n
tuples 

x = (xl, ... ,xn ), 

such that 1:7= IX; = 1 and O<x;<1. 
These are the points of the simplex S" in R" spanned by the 
canonical base vectors hi = (1,0, ... ,0), h2 = (0,1,0, ... ,0), ... , 
h; = (0,0, ... ,1, ... ,0), ... , h" = (0, ... ,1). Hence 

We now have to show that it is possible to construct a set 
of measurements e;. all with the same outcomes (al, ... ,a,,) 
such that the measurement e consists of (i) choosing at ran
dom one of the measurements e;., and (ii) performing this 
chosen measurement. Moreover the measurements e;. have 
to be classical measurements, which means that they give a 
determined outcome for a given state of the system. 

We will construct these hidden measurements as fol
lows: We will label the measurements by A. where A. is an n
tuple A. = (A.I, ... ,..l,,) such that 1:7= IA.; = 1, and 041 <1. 
Suppose that we have a given state represented by the n-tuple 

lx, hw .. ,hl _ l , h;+ I , ... ,h,,}. Then clearly S" = LI!_IAI (see 
Fig. 7). We define the measurements e;. as follows: If A.eAiJ 
then the measurement e;. gives the outcome QI if the system 
is in the state x. If A. is a point ofthe boundary of AI and, 
hence, also a point of A,_ 1 or of A; + I , then the outcome of 
e;. is indeterminate, but indeterminate in the' classical sense 
(as, for example, in the case of a classical unstable equilibri
um). The probability of choosing A. on such a boundary is, 
however, zero. So these boundary situations do not contri
bute to the final probabilities. 

Let us now calculate the probability of choosing A. in the 
simplex AI' This probability is given by 

m"(A; )/m"(S,,) , 

where m" is the trace on S" of the Lebesgue measure on R" . 
For example, if n = 3 (see Fig. 7), then we have to calculate 
the surface of A; and divide by the surface of S3' Clearly 

m"(A;) = [l/(n-I)]m"-I(S~_d/", 
whereS~_1 is theconvexclosureofhl, ... ,h;_I, h;+ I , ... ,h", 
and I" is the distance from x to S ~ _ I . A point of S ~ _ I can 
be written as follows: (Y1, ... ,y;_1 ,O,y;+ I , ... ,y,,), with 1:7= IY; 
= 1 and O<y; < 1. The line through this point and the point 

(xl,· .. ,x,,) is carried by the vector (XI - YI"",x; _ I - YI _ I , 

x; + I - Y; + I , ... ,x" - y,,). To find I" on this line, this vector 
has to be orthogonal on the vectors hk - hm , for all k and m 
different from i. This means thatxk - Yk = Xm - Ym' for all 
k and m different from i. We also have 

YI + ... + Y; _ I + Y; + I + ... + y" = 1 , 

XI + ... + X;_I + xI+ I + ... + X" = 1 - Xi' 

Hence 

(YI-X1)+'''+(YI_I-X;_d 

+ (Y;+ I -x;+d + ... + (y" -XII) =X;. 

From this, it follows thatYk - X k = x;I(n - 1) for all k =l=i. 
HenceYk = X k + x;I(n - 1) for all k =l=i. So 

II ( X, x· 
I" = (xl, ... ,x,,) - XI + --' -, ... ,x; _ I + --' -,0, 

n-I n-l 

X· x· )11 X; + I + --' -, ... ,x" + --' -
n-l n-l 

X = (x1, ... ,x,,). Let us call A; the convex closure of FIG. 7. 
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Hence m"(An) = [1/(n - l)]mn-'(s~_,), ~n/(n - l)xj, 
and as a consequence, 

mn(Aj )/mn(Sn) = Xj • 

This shows that if the system is in the state x, and we 
perform the measurement e, then the probability of choosing 
e;. such that e;. (x) = aj is exactly given by X j . For each mea
surement/we can construct such a collection of hidden mea
surements /;.. Let us call these hidden measurements the 
"pure measurements." Is it possible to characterize the col
lection of all pure measurements? We can do this in the fol
lowing way. 

We have a physical system S. The pure states of S are 
represented by normalized vectors of an n-dimensional com
plex Hilbert space H. The pure measurements can also be 
represented by the normalized vectors of the same n-dimen
sional complex Hilbert space H. Let us denote by Pw a pure 
state represented by the vector w, and by eu a pure measure
ment represented by the vector u. To derive quantum me
chanics we adopt the following rules. 

If we want to perform a measurement of a system, then 
first we choose a system and a measurement. This choice 
corresponds to choosing an orthonormal basis {VI, ... ,Vn } of 
the Hilbert space H, and a set of possible outcomes 
{al, ... ,an } (or a self-adjoint operator). This choice is of 
course not governed by a probability rule, it is just the choice 
of the context of the measurement. The system will, how
ever, be in a certain pure state Pw represented by the vector 
w, and the measurement will be a certain pure measurement 
eu represented by the vector u. The outcome of this pure 
measurement eu is determined for the state Pw in the follow
ingway. 

Let us put 

bj = I (w,v j ) III (u,vj ) I , 
and let us consider the set of real numbersB = {b" ... ,bn }. If 
(u,v j ) = 0 and (w,v j ) #0, then bj = + 00. If 
(u,v j ) = (w,vj ) = 0, then bj is not taken into consideration. 
If B has a maximum, for example the number bj , then the 
outcome of the measurement eu when the system is in the 
state Pw is always aj • If B has no maximum, then the out
come of the measurement eu when the system is in the state 
Pw is indeterminate in the classical sense (as, for example, in 
the case of a classical unstable equilibrium). 

Ifwe now want to know the probability that (in the mea
surement context, represented by the orthonormal basis 
{vI"",vn J and the system being in the state Pw) we find the 
outcome aj , then this probability will be given by I (w,vj ) 12. 
Indeed, if we putAj = I (u,vj ) 1

2
, thenA = (AI, ... ,An) will be a 

point of the simplex Aj if and only if bj is a maximum of B. 

VI. COMPARING OUR SPIN MODEL WITH THE MODEL 
OF KOCHEN AND SPECKER 

In Ref. 5 Kochen and Specker construct a spin model 
which has a classical statistical mathematical structure. This 
seems to contradict our result of Sec. III where we explicitly 
show that every spin model will have a non-Kolmogorovian 
probability model. Let us analyze this situation. The model 
of Kochen and Specker is mathematically more complicated 
than ours, but we can construct a model equivalent to the 
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one of Koch en and Specker which is very similar to our mod
el and can easily be compared. Let us do this first. In the 
model that we proposed in Sec. III, the lack of knowledge 
that gives rise to the probabilities is about the measurements. 
We can, however, in the same spirit build a model where the 
lack of knowledge is about the state of the system. To obtain 
this we consider the measuring apparatus of the example in 
Sec. III as the physical system and we consider the system as 
measuring apparatus. The model that we get in this way is 
completely equivalent to the model proposed by Kochen and 
Specker. But let us see now that it is in fact not really a spin 
model; so the physical system consists of two negative 
charges q I and qz such that q I + q2 = Q, that are located 
diametrically on a sphere with radius r at points (r, a, /3 ) and 
(r, 1T - a, 1T + /3). The pure state of the system can be de
scribed by the direction (a, /3) and the charge ql' Hence the 
pure states can be represented by a point of the sphere and a 
point in [O,Q]. We now suppose that we have a lack of know 1-
edge about these states, in the sense that we do not know the 
charges ql and qz· The mixed states are described by the 
directions (a, /3), and ql is a hidden variable. The measure
ment eo.¢> consists of putting a positive charge q in a point (r, 
e, cp). Let us call F, and Fz the two Coulomb forces between 
ql and q and between qz and q (see Fig. 8). If the magnitude of 
F, is bigger than the magnitude of Fz we give the outcome e l 

to the measurement eo.¢> and if the magnitude of F, is smaller 
than the magnitude of F2 we give the outcome e2 to the mea
surementeo.¢>. Ifwecall rtheangle between (r, a,/3) and (r, e, 
cp), then we find with the same calculation as in Sec. III that 

P (JJFI II > IJF211) = cos2 (rI2) . 

So for one measurement eo.¢> we find the good probability of 
the spin-!. But let us see what happens if we make a second 
measurement eo '.¢>' after eo.¢> in the direction (e ',cp') which 
makes an angle {j with the direction (e,cp). We also suppose 
that (r, a, /3), (r, e, cp), and (r', e', cp') lie in the same plane (see 
Fig. 9). So, we now suppose that the state (mixture) of the 
system was (a, /3 I and we have performed eo.¢> and gotten the 
outcome el• After this we perform the measurement eo'.¢>' 
and we want to calculate the probability that we get the out
come el for eo'.¢>'. Let us denote this probability as follows: 

P(eo'.tf>' = elleo.¢> = ell· 

Then, because we have a classical statistical situation, 

(8,4» 

PIG. 8. 
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(a,Pl 

FIG. 9. 

Now 

P(ee.t/> = el ) = cos2 (yI2) , 

and 

P(ee'.t/>' = el and ee.t/> = el ) 

= P(ql > sin2 (yI2) and ql > sin2 (y - 812)) 

= 1 - max (sin2 (yI2), sin2 (y - 812)) 

= min (cos2 (yI2), cos2 (y - 812)). 

Hence 

P(ee'.t/>. = ellee.tf> = el ) = min(cos
2 
(YI2~ cos

2 
(y - 812)) . 

cos (yl2) 

If ee'.t/>' and ee.t/> would be spin measurements in the (0 '4/) 
and (0,(,6) direction, then 

P(ee',t/>' = ellee,t/> = el ) = min(cos
2 

(yI2!, cos
2 

(y - 812)) . 
cos (yI2) 

So this calculation shows that if we perform two measure
ments one after the other, the model that we propose here 
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does not agree with the spino! model. This explains the ap
parent contradiction between our results and those of Ko
chen and Specker. 

The reason the model proposed in this section is not a 
spin model is because the hidden variable q I does not get 
distributed at random again after one measurement. Kochen 
and Specker were clearly aware of this difficulty in their 
model, and, therefore, they add the extra condition that after 
a measurement the hidden variable must in one way or an
other get distributed at random again. If this extra condition 
is added, then the model is a spin model; but of course it is 
easy to see that if one adds the extra condition that the hid
den variable gets distributed at random again after the mea
surement, then the hidden variable is in fact a hidden vari
able of the measurement, and hence with this extra condition 
we really are in a physical situation as the one described in 
this paper, namely the physical situation that we.Jack knowl
edge about the measurement, and this is no classical statisti
cal situation. 
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The Cauchy problem for the coupled Maxwell-SchrOdinger equations in Rd in the Lorentz gauge 
is considered. The viscosity method is used to establish local existence. In one and two space 
dimensions, global solutions are obtained. 

I. INTRODUCTION 

Due in part to the developments oflasers, there has been 
a revived interest in the theory of the interaction of the radi
ation and nonrelativistic charged particles in recent years. 1 

In this paper we shall study the Cauchy problem for the 
closely related minimally coupled Maxwell-Schrodinger 
equations, by specializing to the Lorentz gauge. These equa
tions are the classical approximation to the quantum field 
equations for an electrodynamical nonrelativistic many 
body system,2 and may be written as 

a"'F,..v =J", F,..v =a,..Av -avA,.., 

(iDo + DjDj)f/! = Vf/!, D,.. = a,.. - iA,.. 

(1.1) 

(1.2) 

with the components A,.. (t,x)'s of the electromagnetic real 
vector potential and the complex scalar field f/!(t,x) ofnonre
lativistic charged particles. Here xERd, fl, v range over 
0, 1, ... ,d,j ranges over 1, ... ,d (repeated indices always imply 
summation), aO = ao = a lat, (- a I, ... , -~) = (al, ... ,ad ) 

= v, v = V(x) is a given real external potential, and the Jv 
are the charge-current densities given by 

Jo = - ~f/!, J j = - i(~Djf/! - f/! Djf/!), j = 1, ... ,d. 
The Lorentz gauge condition is expressed as 

(1.3) 

In Sec. II, we shall show that the Cauchy problem for 
Eqs. (1.1H1.3) with d;;;d has a local solution, provided the 
initial data and the external potential Vare sufficiently regu
lar. Our local existence argument uses the viscosity method 
(see, e.g., Refs. 3-5) to deal with the difficulty arising from 
the presence of highly singular derivative coupling terms in 
the Schrodinger equation. 

In Sec. III, we prove the global existence of solutions in 
the cases of one and two space dimensions. The needed a 
priori estimates for the solutions will be obtained by using the 
energy method in the form developed in Ref. 6, together with 
the covariant Sobolev inequalities. See the preliminary ver
sion of the present paper7 for an LP -L q approach. 

Throughout this paper we shall use Greek indices fl, v, ... 
to run from 0 to d Latin indicesj, k, ... to run from 1 to d, and 
the summation convention for both types of indices. We use 
the standard notation Ir for the Sobolev space of order sand 
exponent 2. If X is a normed space, we write II . IIx for its 
norm, and if X is also an inner product space, ( . , . )x for its 
inner product. The L P norm will be denoted simply by II . lip, 
and C;' will denote the space of functions in em (Rd

) bound
ed with their first m derivatives. 

II. LOCAL EXISTENCE 

IntroducingthemomentaP,.. = aoA,.. and the vector no-

tation f = (f )0 ... ,/ d)' we write Eqs. (l.1H1.3), with initial 
data A g, Pg, AO, po, f/!0, in the form 

du - + Zu = K (u), u = (Ao,Po,A,P,f/!), 
dt 

Po -ajAj =0, 

u(O) = Uo = (A g, Pg, AO, PO,f/!°), 

(2.1) 

(2.2) 

where the components A,.. , P,.., and f/! of the unknown u take 
values in L 2, and the operator Z and the function K ( . ) are, 
respectively, defined by 

Zu = ( - Po, - .:lAo, - P, - .lA, - iaf/!), 

K (u) = (O,Jo,O,J, - iVf/! + iAof/! + Pof/! 

+ 2A j ajf/! - iA jA jf/!), 

the indicated differential operators being defined by Fourier 
transformation. Use has been made of the side condition Eq. 
(1.3) to convert Eqs. (1.1) and (1.2) into Eq. (2.1). Equations 
(2.1) and (2.2) impose the following initial value constraints 
on the components of the data uo: 

Pg - ajA ~ = 0, ajP~ - aA g + 1fPf/!0 = O. 

Next we form for s;;' 1 the direct sum Hilbert spaces 

X S = H S + I(Rd;R) ES H S(Rd;R) ES H S(Rd;Rd) 

ES H S - I(Rd;Rd) ES H S(Rd;C), 

ys = Hs+ I(Rd;R) ESHS(Rd;R) ESHS(Rd;Rd) 

ESHS-1(Rd;Rd) ESHS-1(Rd;C). 

(2.3) 

We now state the main result of this section. We will 
denote by [P] the integer part of pER +. Let d;;. 1. 

Theorem 2.1: Let m be an integer satisfying m;;.[d I 
2 + 2], and let VE H"' (Rd ;R). Let Uo be any initial data lying 
in X"', not necessarily satisfying (2.3). Then Eq. (2.1) has a 
unique solution u on [0, T) for some T, 0 < T <, 00, such that 
uEC([O,T);X'" )nC I([O,T);Y'" - I) and u(O) = uo, where we 
may assume that either T= 00 or limt---+Tllu(t)lIx ldI2+2] 

= 00; the solution u depends continuously on the initial data 
uo, in the sense that ifllullx[dl2+2]<'C on [O,T'] for some fixed 
C, T' > 0 when Uo converges to some Uo E X'" weakly in X'" , 
strongly in X'" - I , then the solution u' of Eq. (2.1) corre
sponding to the data Uo also exists on [0, T '], and u converges 
to u' weakly in X'" uniformly on [O,T']. Furthermore, if in 
addition the data Uo satisfies the initial value constraints 
(2.3), the solution u satisfies Eq. (2.2). 

The proof of Theorem 2.1 depends on the following 
lemma. 

Lemma 2.2: Let m and Vbe as in Theorem 2.1, and let 
O<,a<,1. Then 
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IIK(u) - K(U')lIym-a 

<a>(Iiullxm - a,lIu'llxm-.lIlu - u'lIxm-a, u,u'eX m
-

a, 
(2.4) 

Re(K (u),u)xm 

<c{1 + lIullx ldl2+2J + lIull~'dI2+2d lIull~m' ueX m 
+ I, 

(2.5) 

Re(K(u) -K(u'),u - u')xm-I 

<a>(llullxm,lIu'lIxm)lIu - U'II~m-" u,u'eX m
, (2.6) 

where a>(a,b) = c{ 1 + a + b + a2 + b 2}. 
Proof: The inequality (2.4) immediately follows from the 

multiplication lemma 

IllgIIH,<cIl/IlH"llgIIH", 

ifs l , S2>S>0 and SI + S2 - d /2>s, (2.7) 

which implies that 

IIlgIIH,-, <cII/IlH,lIgIIH,-" fors>d /2. 

In proving (2.5) and (2.6), we may assume that u and u' 
are Co vectors in view of(2.4). Let m be an integer satisfying 
m>[d /2 + 2]. To show (2.5), we make use ofthe following 
inequality: 

lIaa(lg) - I aagIl 2<c{ 1I/IIHm IIgIlH,dl2+ 1 J 

+ II/IIH,d/2+2dlgIlHm-,}, 

l,geCo, (2.8) 

where lal<m. For lal<d /2 + 1, (2.8) (the right side becomes 
simpler in this case) results from (2.7) after an application of 
Leibnitzrule. For the cased /2 + 1 < lal<m, see, e.g., Ref 8. 
Now let k be any integer satisfying O<k<m. Then (2.8) in 
particular implies that 

IIlgIIHk<C{ 1I/IIHm IlglIHldl2+ 1 J + 1I/IIHld/2+2dlgIIHm-1 

+ II/IIHld/2+ 1 dlgllH.} (2.9) 

since for lal = k, 

III aaglb<II/IL., IlgIIHk<cIl/IlHld/2+ 1 dlgllHk' 

A repeated application of (2.9) yields 

II/tl2/311Hk 

(2.10) 

where the sum is taken over all cyclic permutations 
UI,j2,j3)'S of (1,2,3). Except for the term Re(A j ad,I/I)Hm, 
the inequality (2.5) can be proved by using (2.9) and (2.10) in 
the left-hand side, after an application of Schwartz inequal
ities. To estimate the term Re(A ja JI/I,I/I)Hm we shall use (2.8) 
directly. We write 

Re(A j a jl/l,I/I)Hm 

212 

= Re } (aa(A j ajl/l) - A j aa ajl/l,aat/J)L' 
lat.;'m 

+ Re } (Aj aaajt/J,aat/J)L2. 
lat.;'m 
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Applying (2.8) to the first term on the right side in the ob
vious manner, and noting in the second term that, by an 
integration by parts, 

Re(A j a a a J t/J,a at/J)L' = - ,(a jA j a at/J,a at/J)L" 

and that lIa JA j II 00 <clla jA J IIH Idl2 + 1 J, we find that the right 
side of (2.11) is bounded by a constant times II u II Id 12+ 2 J 

2 X 
X Ilullxm. Thus (2.5) follows. 

The proof of the inequality (2.6) is, except for the term 
Re(A j ajt/J - A jajt/J',t/J - t/J')Hm-l, straightforward, and in 
fact reduces to that of (2.4). We now write 

Re(A j a jt/J - A ja jt/J',t/J - t/J')Hm-1 

= Re((A j - A j)ajt/J',t/J - I/I')Hm-1 + Re L ca{J 
lal<m-I 
O<lpl<lal 

X (aPA j aa-P aj(t/J - t/J'),aa(t/J - t/J'))L' 

+Re L (A j a aa j (t/J-t/J'),aa(t/J-t/J'))L 2' 
lal<m-I 

Using (2.7) in the first and the second term on the right side 
after the application of Schwartz inequalities, and estimating 
the last term in the same way as in the last part of the proof 
of (2.5), one finds that the right side of the above 
equality is bounded by a constant times 

{lIullxm + lIu'lIxm }lIu - u'lI~m -I and obtains (2.6). 

Proof of Theorem 2.1: Let m and V be as in the state
ments of Theorem 2.1, and assume first that the initial data 
Uo is an arbitrary element of X'" . In order to construct the 
solution of Eq. (2.1) corresponding to the data uo, we shall 
introduce the following approximate Cauchy problem: 

du ---;}( + BEu = F(u), u(O) = uo, (2.12) 

where E>O, and BE = ET+S, F(u) = -Mu +K(u), with 
T=/-Lland 

Mu = ( - Po, - aAo, - P, - LlA,O), 

Su = (0,0,0,0, - iLlt/J) 

(so that M + S = Z). Note that the norms II . IIx 1 + 2a and 

IIB~( . )lIx' are equivalent for eacha>O,B~'s being the frac
tional powers of BE' The operator BE generates a holomor
phic semigroup on X[d 12 + I] , and by (2.4), 

IIF(u) -F(u')lIxs<a>(lIullx'+"lIu'lIxs+,)lIu - u'lIxs+" 

for any s>[d /2 + 1], where a>(a,b) = c{ 1 + a + b + a2 

+ b 2}. Thus it follows from the well-established theory of 
semilinear parabolic equations (see, e.g., Ref. 9) that Eq. 
(2.12) has a unique solution UE on some nonempty interval 
[O,TE) such that uEeC([O,TE);X"')nC I((O,TE);xm - 1) 
nC((O,TE); x,., + 1) and uE(O) = uo, and here we may assume 
that either TE = 00 orlim,_T.lluE(t)lI x ,dl2+2J = 00. 

We shall now consider the convergence ofuE, E>O, in 
the limit E-+O. Taking the X'" -inner product ofEq. (2.12) (for 
uE ) with UE and adding the complex conjugate of the result, 
we have 

(2.13) 
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Using (2.5) and noting that the second term on the left-hand 
side is non-negative, we obtain 

d 
-lluE IIxm <P(lIuE IIxld12+21l11uE Ilxm' 
dt 

where P (a) = cf 1 + a + a2 J. It follows that 

lIuE(t liIxm < IIUE(O)lIxmexp[i'P (II UE (sllix Idl2+ 2 I)dS] , (2.14) 

on [O,TE ). 

With the solution b of the scalar Cauchy problem 

db - = P(b), b (0) = L> II uollx (dI2+ 2 I, 
dt 

which exists and is bounded on a time interval [O,To]' 
To = To(L ) > 0, it also follows that lIuE(t lIlx'd/2 + 21<b (t) on 
[O,TE )n[O, To], from which we may assume that TE > To. 
Then by (2.14), 

(2.15) 

where C is a positive constant independent of E. 

Next letO<EI <Ez, and put w = uE, - uE,' From (2.12) 
we have 

dw 
-+B~ w=(E2-EI)TuE -Mw+K(uE )-K(uE ). dt 'I , I, 

(2.16) 
Taking the X'" - I -inner product of this equation with wand 
adding the complex conjugate of the result, we get 

J.- ~lIwllim-' + EI(Tw,w)xm-, 
2 dt 

= (EI - E2)Re(TuE"w)xm-, 

+ Re(K(uE1 ) -K(uE,),w)xm-
" 

Noting that the second term on the left side is non-negative 
and using (2.6) and (2.15), we obtain 

~ ~ IIwllim-' «E2 - EIllluE,lIxm IIWll xm 

+ OJ(IIuE1 Ilxm,lIuE,lIxm)lIwllim-' 

<CE2 + cllwllim - I' (2.17) 

Application of Gronwall's inequality then gives Ilw(t )lIim _ 1 

<CE2 on [O,To] since w(O) = 0. Thus by letting E2-o, we find 
a function ueC([O,To];X'" - I) such that UE-U in X'" - I uni
formly on [O,To] as E-o. By (2.15), it also follows that 
uEL ao ([O,To]; X"') with lIu(t lIlxm";; lIuollxmeCt, that UE-U 
weakly in X'" uniformilyon [O,To] as E-o, and that U is 
weakly continuous from [O,To] to X"'. 

Now let t/J be a smooth element of Y'" - I • Then we have 

(-BEuE +F(uE),t/J)ym-1 

= - E(uE,Tt/J) ym-I + (uE,zt{J) ym-I + (K(uE ),t/J)ym-I' 

This together with (2.4) implies that ( - BEue 

+F(uE),t/J)ym-, converges to (-Zu +K(u),t/J)ym-, uni
formly on [0, To]. Thus, integrating the equality 
(-(duEldt)-BEuE +F(uE),t/J)ym-1 = Oon a time interval 
in [O,To]' and changing the order of the inner product and 
the time integral after taking the limit E-o, we find that U is 
a solution of Eq. (2.1) lying in the class C([O,To];X"'-I) 
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n L ""( [O,To] ;xm). By taking the X'" - I -inner product ofEq. 
(2.1) with U and using (2.6) and Gronwall's inequality, we 
also find that the solution U is unique in this class. Note that 
U is strongly continuous in X'" at t = ° since U is weakly 
continuous in X'" at t = ° and lim sUPe-.o lIu(1 lllxm 
..;;lIuollxm. The fact that Eq. (2.1) is time translational then 
implies that the solution corresponding to the initial data 
u(to), given at t = to> 0, is also right continuous in X'" at 
t = to. By the above uniqueness result, it follows that U is 
right continuous in X'" at any tin (O,To]. Since Eq. (2.1) is 
also time reversible (in a suitable sense), we deduce that 
ueC ([O,To];X"')' Note that the choice of To was uniform for 
all initial data Uo satisfying lIuollxldl2+21<L, for each fixed 
L > 0. Thus the above solution U extends to some larger in
terval [0, T) in such a way that ueC ([0, T);X'" I with either 
T= 00 orlimt_ T lIu(t)lIx ldl2+21 = 00. From the equation, it 
also follows that U eC I([O,T);Y'" - I I. 

To prove the continuous dependence of the solution u of 
Eq. (2.1) on the initial data uo, let f UnO J:' = I be a sequence in 
X'" that converges to Uo weakly in X'" strongly in X'" - I , 

and let Un be the solution of Eq. (2.1) corresponding to the 
initial data UnO' for each n. Suppose that fUn J satisfies 
lIun II x ldl2+ 2 I";;C of [O,T'] for some constants C,T' > ° inde
pendently of n. Now an argument similar to that which led 
from (2.13) to (2.15) (but now setting E = ° and replacing Uo 
by unO) shows that lIun Ilxm ..;; II UnO IIxmeCt on [O,T'] for some 
constant C> ° independent of n. An analysis similar to that 
which led from (2.17) to (2.18) then shows that 
lIun(t) - un·(t)lIxm-, <Clluna - un.ollxm_1 on [O,T'] again 
for some constant C> ° independent of n and n'. Then by the 
same argument as above, we deduce that Un _U weakly in 
X'" uniformly on [O,T']. 

It remains to show the last part of the theorem. To see 
this, assume further that Uo satisfies (2.3), and let U = (Ao, 
Po,A,P,,,,) be the corresponding solution of Eq (2.1). Put 

f= Po - ajA j' g = ajPj - aAo + ,¢",. 
From Eq. (2.1) we have 

df = _g, dg = -Af +2#f. 
dt dt 

Using these equations, we obtain 

~ :tf IIfll~ + IIV fll~ + IlglI~ J 

= f (2#-I)fgdx JRd 

..;;B + 11"'11: J fllfll~ + IIgll~ J, 
on the interval of existence [O,T) of u. Since 11"'11 ao 

..;;1I"'IIH ld/2+,,<c(T') on each [O,T'], T'<T, and 
flO) = g(O) = ° by assumption, it follows that IIfll~ 
+ IIV f~ II + IIglI~ = ° on [O,T). Thus f==O, which is the 

desired result. 

III. GLOBAL EXISTENCE IN ONE AND TWO SPACE 
DIMENSIONS 

In this section we shall prove the following theorem. 
Theroem 3.1: Let def 1,2J, m an integer satisfying 
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m>[d 12 + 4], and Ve H'" (Rd ;R). Let Uo be any initial data 
lying in X"' and satisfying the constraints (2.3). Then Eqs. 
(2.1) and (2.2) have a unique solution U on [0,(0) such that 
ueC ([0, 00 );X"' )nC 1([0,00 ); 1"" - I ) and u(O) = Uo' 

The proof of Theorem 3.1 depends on the energy and the 
charge conservation laws, which we shall state here as a 
lemma. Note that we have the identities 

al'(fg) =Dl'fg+ f Dl'g, 

DI'(fg) = al' fg + f Dl'g, 

DI'Dvf = DvDl'f +iFvl'f, 

al'Fv;' + avF;.1' + a;.Fl'v = 0, 

whenever f,g,andtheAI' are smooth in (t,x) and the AI' are 
real valued. 

Lemma 3.2: Let (Ao, A 1> ••• ,Ad ,1/1) be a smooth solution of 
Eqs. (1.1) and (1.2) with V smooth, and assume that Ao, 
A 1, ... ,Ad ,1/1, V and their derivatives (of suitable order) are 
square integrable on lRd

• Then the energy Eland the charge 
Q ofthe solution, that is, 

E I = r [D.I/ID.I/I+V# JRd J J 

+!FpFp +lFjkFjk}dx, 

Q= r I/I¢dx, 
JRd 

are finite Constant functions of time. 
Proof: In fact, we have from the equations that 

(d Idt) EI = (d Idt)Q = O. The proof is facilitated by using 
the above identities for the DI' and the Fl'v' 

Proof of Theorem 3.1: We shall prove the theorem under 
slightly weaker assumptions. We replace the condition 
m> [d 12 + 4] by m> [d 12 + 2], and assume the exis
tence of a sequence {unO} of initial data in Xk, with 
k>max{m,[d 12 + 4 n, such that UnO-+UO strongly in X"' 
weakly in X"' - I , and that each UnO satisfies the constraints 
(2.3 ). Let {Vn } be a sequence of external potentials in 
Hk (lRd 

; R), k being as above, that converges to Vin H'" , and 
for each n, let Un e C ([ 0, Tn );Xk) be the solution of Eqs. 
(2.1) and (2.2) corresponding to the initial data UnO and the 
external potential Vn , given by Theorem 2.1. We shall show 
that for such {un}' there is a locally bounded function C( . ) 
on [0,(0), which can be chosen independently ofn, such that 
Ilun (t)ll x (dI2+2«C(t) on [O,Tn). One can then show, by an 
obvious change of the proof of the previous result on contin
uous dependence of solutions on initial data (to include the 
dependence on the external potential), that, for every T> 0, 
the solution U ofEqs. (2.1) and (2.2), corresponding to the 
initial data Uo and the external potential V, exists in 
C( [0, T];X"' ) as the uniform limit of {u n } on [0, T] in the 
weak topology of X"' , and thus conclude the desired global 
existence result. 

To derive the above estimate, we will use the covariant 
Sobolev inequality (see, e.g., Ref. 10, Appendix) 

IIfllp<K{ 2: IIDjfllq}allfll~-a, Dj =aj -iA j, 
I<;j<;d 

where l/p=a(l/q-l/d)+(I-a)(l/r), with d>l, 
1..;p<00, l<q<oo, l<r< 00, and O<a<1 (if p= 00, only 
a < 1 is allowed), K = K(d,p,q,r), and theAj are real and f is 
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complex valued, with fe L', aj fe Lq, and A j fe Lq. We 
will need the following particular estimates: 

IIf114<K IIDfll~/4I1flli -d/4, d = 1,2, (3.1) 

Ilfll", <KIIDflli/21Iflli12, d=l, (3.2) 

IIfll", <K IID2 fllf21lDfll~ -Ellff2, 

O<E< 1, d = 2, (3.3) 

and also use the usual estimates obtained by setting A j = 0 
for all j in (3.1)-(3.3). Here as in the following, we write 
liD' fib for {l:), ..... J.IIDj, ... D)JIID1I2 We will also use the 
notation lid' fib to designate [l: j, ..... ), lIa j, ... a JJII~ } 112. 

We shall denote Un simply as u, and any positive locally 
bounded function of te [0,(0) (including any positive con
stant), which can be chosen independently of n by the same 
letter C. Note that U = (Ao,Po,A,P,I/I)eC([O,Tn);r') implies 
that AoeC/([O,Tn) Hk+ I-I), AjeC/([O,Tn);Hk-/) 
(j = 1, ... ,d) and t/JeC ([0, Tn );Hk - 2/), for 1= 0, 1, ... ,[k 12). 
The identities for theD I' and the Fl'v will be freely used in the 
following arguments. 

Lemma 3.2 and the fact that the sequence of initial data 
with which we are concerned is bounded in X"' first give 

(3.4) 

Consider now the second-order pseudoenergy E2 defined by 

E2 = r [DjDjl/l DkDkl/l + !akF p akF p JRd 

+! akFjI akFjl}dx. 

We note that (3.1) and (3.4) imply 

liD 21/111~ = r D jDk 1/1 D jDk 1/1 dx JRd 

so that 

+ 2iFjk Djl/l Dkl/l + i ajFjkl/l Dkl/l }dx 

<IIDjDjl/lll~ + IIFjklbIlD jl/l1l4Dkl/l1l4 

+ lIa jFjk 112111/111411Dk 1/1114 

<E2 + ClID21/111~/2 + CEi12I1D21/111~/4, 

liD 21/111~ <CE2 + C. (3.5) 

We compute the time derivative of E2 using Eqs. (1.1) and 
(1.2), and then estimate the result by means of(3. IH3.5). The 
result is that 

~!£.E2 = Re r {2iFpDkl/l DkDJI/I 
2 dt JRd 

- i aj a j VI/I DkDkl/l 

- 2i a j VDjl/l DkDkl/l - akF pF)k#}dx 

<211F p 11411Dk 1/1114 IIDk D j I/Ilb 
+ lIa j aJvlblll/lll", IIDkDkl/llb 
+ 211a j V 114//D JI/I114//DkDk I/Ilb 

+ //akF p IbllFjk 114//1/1114111/111 '" 
<CE2 +C. 

(The //a j V// 4,IIFj l' 114 are estimated by the usual Soholev ine-
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quality.) Recalling that the sequence of initial data is bound
ed in X'" , we obtain 

E2 <C. (3.6) 
In a completely analogous way, we further estimate for 
d = 2 the third order pseudoenergy 

E3 = r {D,D jD jl/J D,DkDk l/J + ¥1, akF JO a,akF JO 
JR' 
+ 1 a, akFjn a, akFjn Jdx, 

by using the covariant and the usual Sobolev inequalities and 
the above estimates. One first finds that 

liD 3l/J1I~ = r D jDkD,l/J D jDkD,l/J dx 
JR' 

= r {D,DjDjl/J D,DkDkl/J 
JR' 
+ iFkjD,l/J D jDkD,l/J 

- iFkjDjD,l/J DkD,l/J + i ajF,jl/J DkDkD,l/J 

+ 2iFIjDj l/J DkDkD,l/J - i akF'kD,DjDjl/J'¢1 

- 2iF'kD,DjD j l/J Dkl/JJdx 

<CE3 + C liD 3l/Jlb + C 
and thus obtains 

liD 3l/J1I~ <CE3 + C. (3.7) 

Using Eqs. (1.1) and (1.2) and noting this estimate, one has 

J...!!..E3 = r {(2iF JOD,Djl/J + iFIODjDjl/J + 2i a,F JODjl/J 
2 dt JRd 

+ i ajF JOD,l/J + i a, a jF JOl/J - i a, aj Vl/J 
- i a j a j VD,l/J - 2i a, a j VDjl/J 

- 2i a j VD,Djl/J 
=--=-=-. - i a, VDjDjl/J) D,DkDkl/J 

+ (iDjl/J D,Dkl/J + iD,Djl/J Dkl/J 

+ iDkDjl/J D,l/J + iD,DkDj#)a, akF JO Jdx 
<CE3 + C, 

which gives 

E3 <C. 

The results (3.4H3.8) show that 

(3.8) 

1Il/Jlb < C, IID sl/J1I2 < C, S = 1, ... ,[d /2 + 2], (3.9) 

I!PJlv IIHld12+ I I < C, f.t,v = O,1, ... ,d, (3.10) 

for d = 1,2. To derive the needed bound on (Ao, 
aoAo,A,aoA,l/J), we shall consider the following quantities: 

EAo = IIAII~ + IIAolI~ld12+31 + lIaoAolI~ldI2+21 
= r AJlAJl dx + L r aaaJlAo aaaJlA 0 dx, 

JRd lal <: [d /2 + 2)JRd 

EA = lIaAII~ldI2+11 + lIaoA 1I~ldl2+11 

= L r aaaJlA j aaaJlA j dx. 
lal<:[d/2+ I)JRd 

Here we use the notation aa in the usual sense; thus 
aa = aj , ••• a j, with lal = s. Equations (1.1), (1.3), and (3.10) 
give 
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<IIF JO 11211A j 112 + lIaoAoIIH'd12+2 dlll/J121IHld12+21 
<{C+ 1I1l/J12I1Hld12+2dE,%2. 

But from (3.1H3.3) and (3.9) one obtains 

1I1l/J12Ib<IIl/JII! < C, 
lIa 1l/J12112<211l/J1I41IDl/J1I4 < C, 
lIa 21l/J12112<211l/J11 co liD 2l/Jlb + 2I1Dl/JII! < C, 
lIa 31l/J12112<211l/J11 co liD 3l/J1I2 + 611Dl/J114D 2l/J1I4 < C (d = 2), 

the last estimate being needed only for d = 2. Thus it follows 
that E Ao < C. Equations (1.3) and (3,10) and this result yield 

EA = L r {aaFJlj aaaJlA j 
lal<:[d/2+ I)JRd 

+ aa ajAoaa aoA j + aa aoAoa a aoAoJdx 

<IIFJlj IIH(dI2 + IllIaJlA j IIHld12 + II 
+ lIajAoIIH'dI2+ I dlaoAoIIH,d12+ II 
+ lIaoAolI~ld12+11 

<CE1f2 + C, 

giving E A < C. Therefore, 

IIAoliH Idl2 + 31 < C, lIaoAoliH Id12 + 21 < C, 
IIAIIHldI2+21 < C, IlaoAIIH(dI2+ II < C 

Finally, from the definition of the DJl one has 

ajl/J=Djl/J+iAjl/J 

a j akl/J = DjDkl/J + i ajAkl/J + iAk ajl/J + iA jDkl/J, 

a j ak a,l/J = D jDkD,l/J + i aj akA,l/J 

+ i akA ,a j l/J + i a jA, a k l/J 

+ iA, a j akl/J + i ajAkD,l/J + iAk a j a,l/J 
+Ak ajA,l/J - AkA, ajl/J - iA jDkD,l/J. 

Using these expressions, one finds, with the help of (3.1)
(3.3) and the usual Sobolev inequalities, that (3.9) and the 
above estimate on A imply that 1Il/JIIH Idl2+ 2 I < C, which com
pletes the proof of the desired global result. 

'w. P. Healy, Non-relativistic Quantum Electrodynamics (Academic, New 
York, 1982). 

2L. I. Schiff, Quantum Mechanics (McGraw-Hili, New York, 1968). 
'T. Kato, "Nonstationary flows of viscous and ideal fluids in R3

," J. Funct. 
Anal. 9, 296 (1972). 

4M. Tsutsumi and I. Fukuda, "On solutions of some nonlinear dispersive 
wave equations," Mem. Sch. Sci. Eng. Waseda Univ. 43,109 (1979). 

'M. Tsutsumi and I. Fukuda, "On solutions of the derivative nonlinear 
SchrOdinger equation; Existence and uniqueness theorem," Funkcial Ek
vac. 23,259 (1980). 

6V. Moncrief, "Global existence of Maxwell-Klein-Gordon fields in 
(2 + 1)-dimensional spacetime," J. Math. Phys. 21, 2291 (1980). 

7M. Tsutsumi and K. Nakamitsu, "Global existence of solutions to the 
Cauchy problem for coupled Maxwell-Schrodinger equations in two 

K. Nakamitsu and M. Tsutsumi 215 



                                                                                                                                    

space dimensions," in Physical Mathematics and Nonlinear Partial Differ
ential Equations, edited by 1. H. Lightboume and S. M. Rankin (Marcel 
Dekker, New York, 1985). 

81. C. Saut and R. Temam, "Remarks on the Korteweg-de Vries equation," 
IsraelI. Math. 24, 78 (1976). 

216 J. Math. Phys., Vol. 27, No.1, January 1986 

9K. Asano, "On semi-linear parabolic partial di1ferential equations," Publ. 
Res. Inst. Math. Sci. 1,67 (1964). 

1°1. Ginibre and G. Velo, ''The Cauchy problem for coupled Yang-Mills 
and scalar fields in the temporal gauge," Commun. Math. Phys. 82, 1 
(1981). 

K. Nakamitsu and M. Tsutsumi 216 



                                                                                                                                    

The propagator of the time-dependent forced harmonic oscillator with time
dependent damping 
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By using the Caldirola-Kanai Hamiltonian and by applying Feynman polygonal paths, exact 
evaluation of the propagator of one-dimensional time-dependent forced and damped harmonic 
oscillator, based on the work of Montroll in deriving the propagator of the harmonic oscillator 
with time-dependent frequency, is possible. The results are compared with previously found 
results. 

I. INTRODUCTION 

As is well known in nonrelativistic quantum mechanics, 
the propagatorl-6 can be expressed as the path integral in 
phase space,7 

K(x",t";x',t') 

= Jexp{( ~)[Px -H(P,x,t)]dt }DPDX 

_ l' foo ... foo dp' lIn dpj dXj 
- 1m 1/2 1/2 n_oo _ 00 - 00 (21rli) j = I (21rli) 

xexp{ ~ ~tll [Pj(Xj+ I -Xj) - H(Pj,xj,tj )]}, (1.1) 

where H (p,x,t) is the time-dependent Hamiltonian of the 
one-dimensional dynamical system considered, and Dp Dx 
is the usual Feynman differential measure in two-dimension
al phase space. For later convenience we have set 
T = t" - t', 7' = Tin, rj = r(t' + j7'), r' = r(t '), and r" 
= r(t") for any function r(t) of time t. 

Now we use the Caldirola-Kanai Hamiltonian8
•
9 

(1.2) 

for the quantum dissipative system, where V(x) and r(t) are 
the potential energy and the time-dependent dissipative co
efficient. Substituting (1.2) into (1.1) and then integrating 
over all the momenta in phase space, we obtain 

K (x" ,t ";x',t') 

= Jexp { ~f"L (x,x,t)dt }D11t)X 

= lim ( mer" )1I2nif( me
rJ 

)112 
n_oo 21Tiftr j = I 21Tiftr 

XfOO ... fOO exp{i7'~il[m(Xj+1 _Xj )2 
-00 -00 1i,=1 2 7' 

- V(xj)]erJ}dxj , (1.3) 

with the Lagrangian 

L (x,x,t) = [(m/2)X2 - V(x)]er(t), (1.4) 

• Present address: Center for Relativity, Department of Physics, The Uni
versity of Texas at Austin, Austin, Texas 78712. 

since 

(1.5) 

Here, D r(t)x is designed to indicate the modified, one-dimen
sional Feynman polygonal path differential measure by in
cluding the time-dependent dissipative effects in configura
tion space. lO

•
ll For the case ofr(t) = rt, Eq. (1.3) has already 

been used for evaluating the propagator of the time-depen
dent forced harmonic oscillator with constant damping by 
Khandekar and Lawandel2 and by Cheng,13 respectively. 

For the quadratic Lagrangian, Eq. (1.3) can, however, be 
calculated by first transforming it into the following Gaus
sian integral: 

J: oo .. J: 00 exp[i(yTAY + 2B TY)]}JldYj 

= (i1T)nI2(detA )- 1/2exp( _ iB TA -IB), (1.6) 

multiplied by a function of x", x', and 7' (where A is an nXn 
matrix, Y and Bare n X 1 matrices, and Y T and B Tare, 
respectively, the transpose matrices of Yand B) and then by 
calculating (1.6) in the limit as n--+oo (or 7'--+0). Montroll l4 

carries out such calculations for the propagator of the har
monic oscillator with time-dependent frequency. Recently, 
we are able to generalize his results for the time-dependent 
forced harmonic oscillator with constant damping. 13 In this 
paper we use the same method to evaluate the propagator of 
the harmonic oscillator with time-dependent damping and 
we compare our results with those of Dodonov et al. IS and of 
Urrutia and Hernandez. 16 

II. FORMULATION 

For our dynamical system, the Lagrangian has the form 

L (x,x,t) = ((m/2)[x2 _li./2(t )x2] + q(t)x ler(t), (2.1) 

whereli./(t ) and q(t ) are the time-dependent angular frequency 
and perturbative force, respectively. Substituting (2.1) into 
(1.3), we have 
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K (x",t ";x',t') 

[ 
,. ( 'YJ)1I2] r II me 

= ,.~ j=' 21T'ili 

f "" f"" {ir [ ,. (X -x· ,)2 X ... exp - m L 'J J - e'YJ 
- "" - "" 21i j = , r 

(2.2) 

by using Feynman's polygonal paths. The extra factor 
exp(Yj) is necessary for including time-dependent dissipative 

effect. Making the transformationYj = (me'YJ/21ir)'/2Xj' Eq. 
(2.2) can be rewritten as 

a, -d, 0 0 0 
-d, a2 -d2 0 0 

0 -d2 a3 -d3 0 

A= 
0 0 0 0 -d"_4 
0 0 0 0 0 

0 0 0 0 0 

with aj = I + if' - Cl>Jrand dj = - if'"/2. The column 
matrix B has the elements 

b, = - Y'eY'TIl + (~/2mli)'/2Q, 

= _ cr-"2iV2x'2 + ar12QI' 

bj = ar12Qj (j = 2,3, ... ,n - 2), 

and 

b = _y"/"._1TIl + (~/2mli)I/2Q ,.-1 ,.-1 

= _cr- I/2e('Y"+Y.-1TV2x ,,2 +a~/2Q"_1 

(2.5) 

and the matrix Y haselementsYj (j = 1,2, ... ,n - I). Here we 
have set Qj = exP(Yj/2)qj' c = (m/21i)'/2, and 
0= (2mlij-'/2. Using (1.6), (2.4), and (2.5), we obtain from 
(2.3) 

( 
me'Y" )112 

K(x",t ";x',t') = ~ 21T'ilirdetA exp[iB(x" ,x',r)], 

(2.6) 

with 

B(x" ,x',r) = (m/2IirXe'Y'x,2 + e'Y"x,,2) -B TA -lB. (2.7) 

We have already assumed the factor 
exp[(ir/21i)(2q'x' - mCl>'2x ,2)eY] in (2.3) to be I asr-o. Now 
we are left only to calculate the limit values of r det A and 
B (x" ,x',r) as r-o. These calculations will be carried out in 
the next section. 

III. CALCULATION 

From the matrix A, we define fj and gj as the following 
determinates: 
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K(x",t ";x',t') 

= lim (i1T') - "llexp{~[m'T-~e'Ylx'2+ eY" x"z) 
,.-"" 2h 

- eY(mCl>,2x ,2 + 2q'x')] } 

xf"" ···f"" exp{i["i\1 + if' - Cl>frlYJ 
- 00 - 00 J- 1 ,. -, . (2~)'1l - 2 L e'Yf'/2YjYj +, + ~ 
j=O mn 

X :t:e'Y/2qjYj ]) X( dYj, (2.3) 

sincedxj = (2Iire-'YJ/ m )'/2dYj' 
By comparing (1.6) and (2.3) the matrix A is ofthe form 

0 0 0 
0 0 0 
0 0 0 

(2.4) 
an _ 3 -dn _ 3 0 

-dn - 3 a"_2 -d"_2 

0 -d"_2 a,._, 

I,. =r, 1,.-1 =ra,._I' 

I 0,._2 
/,.-2 =r -d 

,.-2 

-d,._21, 
a"_1 

0,._3 -d"_3 

o I /,._3=1' -d"_3 an _ 2 - d"_2 , ... , 

0 -d"_2 a"_1 
It = rdet A, (3.1) 

and 

go=r, I al 
g, =r -d, -d'l, 

a2 
a"_3 -d"_3 0 

g3=r -d"_3 0,,_2 -d"_2 , ... , 
0 -d"_2 a"_1 

g,._1 = rdet A. 

Now it can be shown easily thatfj and gj satisfy the recur
rence relations 

fj_1 = OJ_lfj - dffj+ I (I"\i<n - 2), (3.2) 

and 

g)+ I = a)+ ,g, - dfg,-, (2"\i<n - I), 

with the following end conditions: 

(/,. - 2 - /,. - dlr 
= [a,._dl-a"_2)+d!_dlr~-I, 

and 

(g2 -gl)lr= [a,(a2 - I) - dnlr~1. 
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(3.3) 

(3.4) 

(3.5) 
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With the help of the definitions of aj and dj , and of end 
conditions (3.4) and (3.5), Eqs. (3.2) and (3.3) can be reduced 
to the following differential equations: 

j + ri + oi.f= 0, I" = 0, i" = - 1, (3.6) 

and 

g - rg + (a>2 - r)g = 0, g' = 0, g' = 1, 

respectively, as 1'~. Therefore we have 

(3.7) 

g" ~limgn_1 = lim(1'detA) = lim/l~/" (3.8) 
1'--0 1'--0 1'....0 

From (3.2) and (3.3) we also find that.lj and gj are related 
through the formula 

.Ij+lgj -d]+~+2gj_1 

= .ljgj- I - d].Ij+ Igj- 2 

= ... = r det A = I'll = 1'Kn _ I' 
(3.9) 

Hence 

gj = 1'/I.Ij+2 [(.Ij+~+ d-I + d]+ 1.Ij+2gj- II.Ij+ I] 

= 1'/I.Ij+2 [(.Ij+~+ d- I + d]+ I (.Ij+ 1.Ij)-1 

+ d]+ Id]Jj+ Igj-2I.1j] 

= ... = 1'/I.Ij+/±1 [(IJk+ d- I Yf d:]. 
k=1 ;=k+1 

(3.10) 

Forj = n - 2, we have 

rnil[(fJk+d- l . nfi'l d:] = gn-2 . (3.11) 
k= I .=\.L+ I gn-I 

However, the elements of A - I, represented by aj; I, are 
determined by finding the cofactor of the matrix A. There
fore we have from (2.4) that 

and 

-I gk-I.Ij+ I jrr-Id . k 
ajk = ;' J> , 

I'll ;=k 

k-I 
aj; 1= (gj_ dk+ 111'ft) rr d;, j<k. 

;=j 
Using (3.10) and (3.11), we obtain 

n-I 

B TA -IB = L bjaj; Ibk 
j.k= I 

(3.12) 

= ~t:0+ l.lji1ld :) -1[t~bJk+ I ;Uld; r. 
(3.13) 

after lengthy algebraic manipulations. With the help of Eqs. 
(2.5) and (3.12), Eq. (2.7) has the form 

B(x" ,x',1') 

= A1'X,2 + B1'x'x" + C1'X"2 + D1'x' + E1'x" + F1" 
(3.14) 

after lengthy, but straightforward, calculations. As 1'~, we 
obtain 

limA = lim(me
Y
') (1 _ 12) = _ me1"i' , 

1'--0 l' 1'--0 2m- II 21if' 

I· B I' (m)[ -exp(y" +rn-I1'+Yn-d] Im1'=lm-
1'--0 1'--0 lifl 2 
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limC1' =lim(me
Y
")[I_/r.-'1'gn-2] 

1'....0 1'--0 2m- gn _ I 

= lim(me
Y
") [ 1 - (1 + rn _ 11')gn - 2 ] (3.15) 

1'--0 2m- gn _ I 

_ (me
Y
") [g" . "] - 21i g" - Y , 

lim D l' = ~{t" q(t V(t jeW ldt, 
1'--0 Iif t' 

lim E1' = eY",{t" q(t)g(t )dt, 
1'--0 Iif t' 

limF1' = __ I_,{t"q(t V (t)eW1dt{tq(f))g(f))df). 
1'--0 mlil t' t' 

However, we should mention that the relation 
YJ+ I = Yj + tj1' has been used in deriving the above equa
tions and the reader must read the similar derivations in Ref. 
13 for detail. 

Substituting (3.8), (3.14), and (3.15) into (2.6), we finally 
obtain our principal result 

K (x" ,t ";X',t') 

= ( mel'" )112 exp{~ri'x'2e1" + 2eY"x'x" 
21Tilif' 2ilif' 

+ (r" /' - g")eY" X"2] } 

X exp{~[x'ft" q(t V(t )eW1dt 
Iif t' 

+ eY" x" f· q(t )g(t )dt 

- ~f"q(tV(t)erltldtfq(f))g(f))df) ]}. (3.16) 

For excluding catastrophic phenomenon we have assumed 
that/' = g" #0. In thecaseofy(t) = yt, (3,16) reduces exact
ly to (3.24) in Ref. 13 as we expect. 

It can be shown easily that the solutions of(3.6) and (3.7) 
are of the form 

I(t) =s(t)e- [Wl-n/2 sin[v" - vItI], (3.17) 

and 

g(t) = s(t)e - [1" -Wl]/2 sin [ v(t) - v']. (3.18) 

Furthermore, in order to satisfy their boundary conditions, 
we must have 

sIt) - S,2S-3(t) + [a>2(t) - yl4 - r/2]s(t) = 0, 

r(t)V(t)=s'. (3.19) 

We also have s' =s", v' = v", and s'v" =s"v" = 1 since 
/' =g". With the help of (3. 17)-(3.19), Eq. (3.16) can be re
written in the following form: 
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( 
melr' + Y')I2V' )112 { mV'. .} 

K (X",t"; x',t ') = .' exp -. -[(2S' - r'S'lx'2 - (2S" - r" S"lx,,2] 
211"1ft sm <I>(t " ,t ') 4zft 

x exp{ i;;' [X~2 + X;2] cot <I>(t ",t') - 2x~x; csc <I>(t ",t ')} 

X exp{ . W [XI r' q(t )sIt )erlt )l2 sin <I>(t " ,t )dt + X" r' q(t )sIt )erlt )/2 sin <I>(t,t ')dt 
Ii sm <I>(t" ,t') Y J,. Y Jr. 

-~ rt

' q(t )sIt )erlt )/2 sin <I>(t ",t)dt rq(O )s(0 )erl9 )12 sin <I>(O,t ')dO]} (3.20) 
mJt' Jt' 

withx~ = er'/2x', x; = ey'/2x ", <I>(a,{J) = v(a) - v({3) for 
any two arbitrary times a and {3 in between t' and t " . 

IV. CONCLUSION 

Recently the propagator of our dynamical system has 
also been obtained by Dodonov et al. 15 based on the connec
tion between the integrals of motion of a quantum system 
with its propagator, and by Urrutia and Hermidez l6 based 
on the Schwinger action principle. However, it is easy to 
show that 

and 

(4.2) 

Here, a(t) and{3 (t) are defined by (42) and (43) of Ref. 16 and 
A.I(t) and A.3(t) are defined by (5) of Ref. 15. Therefore our 
result (3.16) is exactly equivalent to (6) in Ref. 15 and to (63) 
in Ref. 16 as we expect. Finally, we should remark that (3.20) 
is independent of any boundary conditions related to the 
functionsofs(t ) and v(t ) since they are connected with/It ) and 
g(t) through (3.17) and (3.18). 
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The problem of obtaining the propagator of a spin-Bose system consisting of spins-! and several 
radiation modes in interaction is reduced to developing a bosonized Hamiltonian for the system 
from the propagator of which, by appropriate projection, the propagator relating to the original 
Hamiltonian is extracted. The analysis proceeds via functional integration involving the 
evaluation of two auxiliary propagators of Schrodinger equations whose Hamiltonians depend 
separately on radiation operators, and bosonized spin operators. These propagators are coupled 
through a complex field and the functional average of their product against a Gaussian measure of 
the field leads to the bosonized system's propagator. The procedure is applied to the propagator 
for a single spin-Bose system which is obtained as a power series in the spin flipping energy. The 
analysis is also applied for an explicit evaluation in the case of a simplified spin-Bose Hamiltonian. 

I. INTRODUCTION 

Interest in path integrals for spin systems has recently 
been revived. I The authors basically exploit representation 
properties of the spin coherent states. 2 

A central role in the development of any form of path 
integral giving the propagator of a system is played by the 
unity resolution3 in terms of states through which the propa
gator is expressed. In the case of Bose coherent states, mani
pulations in conjunction with the unity resolution involve 
relatively simple procedures, whereas the task of handling 
operations with spin coherent states is a formidable one. 

On account offacilities provided by the Bose operators a 
number of authors4 have used Schwinger's Bose representa
tion5 of angular momentum for handling certain spin prob
lems. In the present work Schwinger's representation will be 
the starting point for developing functional integrals for 
spin-Bose problems. 

An important spin-Bose problem involves the Hamil
tonian 

M N 1 
HN = L IiOra/ar + L -limdz

A
) 

r= I A= I 2 
N M 

+ L L Ii(g~a,+ +grAar)d;), 
A= I r= I 

(Ll) 

for the treatment of M modes of radiation interacting with N 
two-level atoms6 or spins-!. It has also been used for the 
treatment of phase transition problems 7,8 in the case of a 
single spin. In (Ll) a,+ and ar stand for Bose creation and 
annihilation operators, g~ and grA are coupling constants of 
the interaction with the spins, and d;) and d;) are the x and z 
components of the A th spin. 

The present work aims at establishing a method offunc
tional integration for spin problems and can handle the pro
pagator associated with (1.1). Path integrals have already 
been used8 for obtaining the partition function relating to 
( 1.1) in the case of a single spin. Our method covers the case 
of the many-spin problem. It relies on producing a bosonized 
form of the original Hamiltonian from the propagator of 
which the appropriate spin-Bose propagator can be extract-

ed by projection. Rules for the projection procedure will be 
given in the text. 

Bosonization of angular momentum operators, fol
lowed by relevant projection, has been used for the treatment 
of spin problems.4

,5 However, when more than one spin are 
involved the approach cannot provide the answers to all 
questions about the system. Furthermore, the method fails 
to apply when the spins are coupled differently to the various 
Bose fields. The proposed method bypasses the above diffi
culties by introducing separate Bose operators per spin. In 
the case of a single spin both methods are identical. How
ever, in the many-spin situation the projection schemes dif
fer. 

Before embarking on details of the scheme it would be 
helpful to describe the representation of the Bose operators 
(whether derived from the spins or the radiation field) which 
will be used throughout the present work. It is a variant of 
the Bargmann representation9 in which the creation opera
tor a+ takes the form of a mUltiplicative operator a* (a, 
complex variable) and the corresponding annihilation opera
tor a takes the form a / aa* (see Refs. 10 and 11). A word of 
caution becomes necessary in dealing with the above repre
sentation. Namely, the above operator expressions do not 
act on the weighting part of the associated coherent state 
variable. We shall avoid accompanying our wave functions 
with the weighting factor, which will be employed whenever 
the composition law is to be applied. 

In Ref. 12, certain spin states labeled by as many com
plex variables as the number of spins in the system consid
ered were introduced. These states differ from Radcliffe's or 
Arrechi's states,2 for the latter attain full description 
through a single variable. The former somehow introduce an 
amount of complication on account of the number of varia
bles required, but at the same time provide higher descriptive 
resolution in that they retain the individuality of the spins 
involved. The scheme of these states will be employed in the 
text as a basis of comparison with the results obtained by the 
method of bosonization and spin projection. Details of the 
procedure follow in Sec. II. 

In Sec. III the method of functional integration will be 
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used for obtaining the propagator of the spin-Bose Hamil
tonian, in the case of a single spin, in the form of a series 
expansion in the atom excitation energy. Finally, in Sec. IV 
an explicit evaluation of the propagator for a much simpler 
Hamiltonian derived from (1.1) is given. 

II. THE SPIN-BOSE PROPAGATOR PROJECTION 

In this section we shall present the scheme to be used for 
projecting out of the fully bosonized propagator associated 
with the Hamiltonian (1.1) the relev8)1t spin-Bose propaga
tor. 

We begin initially considering a two-level atom (equiv
alently a spino!). The states for such an atom can be described 
by two complex variables, each of which corresponds to a 
different level. Let P and r be the variables attached to the 
lower and upper level, respectively. For the purpose ofform
ing propagators we shall associate the values P , and r' with 
time t " and their complex conjugates /3 * and r* with time t. 
It is clear that the two components Uo and U I of the wave 
function for a spino! system can be entered into the form 
uo/3* + ulr*, where Uo and U I are functions of t and the 
coherent state variables associated with the radiation fields 
present in the system. In this mode of wave-function descrip
tion the Hamiltonian has to be expressed in terms of the /3 * 
and r* variables. This will be done utilizing Schwinger's5 
Bose representation of Uz and U X ' According to the Bose 
operator representation adopted in this paper these matrices 
will be replaced by 

. a [Uoo 
1-at UIO 

Equation (2.5) gives precisely the equations satisfied by 
the spin-Bose propagator elements based on the U represen
tation employed earlier by the author. II In this representa
tion the propagator has the form Uoo + UOlu* + UlOu' 
+ Ullu*u'. So, the only thing that remains to be taken care 

of in order to obtain the propagator associated with the spin
Bose Hamiltonian13 (2.2) is to fix the appropriate initial con
ditions, namely 

Uijlt=o =exPC~1 a~a;)l5ij' (2.6) 

Thus, one is able to obtain the propagator for the spin-Bose 
system described by the Hamiltonian (2.2) as a particular 
solution of a fully Bose system described by the associated 
bosonized Hamiltonian (2.2'). 

We now turn our considerations to the bosonized Ha
miltonian (2.2'). Since this is a fully Bose Hamiltonian we are 
able to apply functional integration procedures for obtaining 
the associated propagator. This propagator will contain, in 
addition to the terms involving/3 *P',P *y', r*p', and r*y', 
other powers in the variables P *, r*, P " and r'. In order to 
obtain the required propagator for the spin-Bose system with 
Hamiltonian (2.2) we have to select, from the full Bose pro-
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U_(~"~-P*~) U -(r*~+p*~). 
z r tTy* ap*' x ap* By* 

(2.1) 

Let us now consider the Hamiltoni8)1 (1.1) specialized 
for the case of a single spin. The index A. in the coupling 
constants becomes redundant and the Hamiltonian in ques
tion takes the form 

Mal 
HI = L M,a~~+-2 fwuz 

,-I cia, 

+ f Ii(~a~ +g,~) U X ' 

,= I aa, 
(2.2) 

The bosonized form of (2.2), obtained with the aid of (2.1), is 

M .a 1 (a a) K , = L lin,a, -. +-fw r*--p*-* 
,= I aa, 2 By* ap 

+ ~ Ii( .... a.+ g ~)(r·~+/3*~). ~ 15" '!l. !Ill * ~I* ,-I ~,~ vr 

A particular solution of the SchrOdinger equation 

iii ~ '11 = K ,'I1, at 
has the form 

(2.2') 

(2.3) 

UI = UocP*P' + Uo~*y' + UlOr*P' + Ullr*y', (2.4) 
where the components Uij satisfy the matrix equation 

(2.5) 

I 
pagator expansion, the bilinear portion of the form (2.4). 
This is definitely a particular solution of (2.3) and satisfies 
(2.5). There remains the question of whether the components 
Uij, thus obtained, satisfy the initial conditions (2.6). If so, 
the above projection of the full Bose propagator onto the 
bilinear component (2.4) supplies the spin-Bose propagator. 
Indeed, the appropriate initial conditions for the projected 
propagator are satisfied and this is easy to see, considering 
that the full propagator at t = 0 takes the form 

Ult=o = eXPC~1 a~a;) exp(p*p' + r*y'), (2.7) 

which clearly leads to the required initial condition for UI • 

Before proceeding with developing procedures for han
dling the many-spin problem we wish to discuss a little 
further the P, r representation in the case of a single spin. We 
notice that (P * + r*) is an eigenstate of the operator r*(a I 
a{3 *) + P *(a IBy*) (bosonized form of ux ) corresponding to 
the lowest nonzero eigenvalue. The product 
(/3 * + r*)( P' + y') equals the expression P *p' 
+ P *y' + r*P' + r*y' from which we get the form (2.4) for 

the spin-Bose propagator, by introducing the amplitudes 
Uoo, UOI' UIO,and Ull in front of the termsp *P', p.y', r*p', 
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and r*Y. The choice of the subscripts is such that 0 goes with 
the {3 level and 1 with the r level. This procedure will serve as 
a mnemonic for writing down the form of the propagator 
and a suitable generalization will be devised for the many
spin problem. 

Let us now look into a few properties possessed by cer
tain of our bosonized spin operators. Remembering that {3 * 
represents the atomic state oflower energy and r* the one of 
higher energy, it is easy to verify that the bosonized forms 
r*(a / a{3 *) and {3 *(a / ar*) of the flip-up (S +) and flip-down 
(S -) spin operators, when acting on the states{3 * and r* yield 
the defining properties of the operators S + and S -. Indeed 
we have r*(a / a{3 *)13 * = r*, i.e., the creation of the upper 
level state through the destruction of the ground level state 
by the flip-up operator. Further action of this operator on 
the upper level state gives zero. Similarly, the action of the 
flip-down operator on the upper level state leads to the 
ground level state, and further application of this operator 
on the state resulted above gives zero. These properties are 
only valid in relation to the states {3 * and r* and in this 
respect only the situation is equivalent to the two-level atom 
described by spin or Fermi operators. 

If in conjunction with our bosonized spin operators we 
employ wave functions that are higher-degree polynomials 
oftheformr*J-m{3*J+m(m = -J, -J + 1, ... ,J)suitably 
normalized, we are led to Schwinger's theory for handling 
angular momentum problems.4 The case with J = ! gives the 
set of states { {3 *,r* j, which describes precisely the states of 
a two-level atom, or of a single spin-~, and this mode of de
scription enables the answering of all relevant questions 
about the single spin system. Schwinger'S theory forms a 
precise approach to the angular momentum possessed by a 
system of spins-!. Nevertheless, certain difficulties are en
countered with the angular momentum mode of description 
in the case of many spins, particularly when information is 
sought about the behavior of a particular spin coupled to 
various radiation modes. Thus, the necessity of extending 
the method to include the treatment of the many-spin prob
lem with varying radiation couplings. We hope to return to 
the question of the amount of information one can get from 
the angular momentum mode of description when applied to 
many spins-! coupled to radiation. 

A fixed number of atoms, essentially gives each atomic 
state by its upper level occupancy. This, however, does not 
tell us which of the atoms are in the upper state. To be specif
ic, the case of two atoms (J = 1) is associated with the wave 
functions {3 *2, {3 *r*, and r*2, corresponding to the states; 
both spins down, one of the two spins up, and both up. For a 
system of spins alone such a description is perfectly adequate 
and even more appealing. However, when the system of 
spins interacts with a radiation field the individuality of the 
spins may be necessary. The spin mode of description differ
entiates between the state spin-l up, spin-2 down, and the 
state spin-l down, spin-2 up, which in the angular momen
tum mode are contracted into one state represented by the 
wave function {3 *r*. 

When the atomic system interacts with a radiation field, 
but the coupling of the various modes does not differ from 
atom to atom, one can form a Hamiltonian for the combined 
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system using either spin operators or angular momentum 
operators. Evidently the number of equations of motion for 
the various amplitudes resulting from the spin description 
will exceed the number of those derived from the corre
sponding angular momentum description. The latter can be 
produced from the former by adding the equations that give 
the rate of change of the amplitudes of those spin states that 
get contracted into one state in the angular momentum treat
ment. Under the above circumstances the individuality of 
the atoms is not always important. However, in a situation in 
which the coupling of the field modes varies from atom to 
atom one has to have recourse to the individuality of the 
spins involved. In such a case a frame incorporating this 
resolution is necessary, and requires an increased number of 
variables. 

We now proceed to show how to handle the many-spin 
problem. As a vehicle for presentation we shall have in mind 
the system described by the Hamiltonian (1.1) in which the 
spins are differently coupled to the various radiation modes. 
Should we further wish to consider more than one species of 
two-level atoms, this can be done by replacing (t) by (t) A' but 
this does not really change the method and we shall proceed 
with (1.1) as it is. 

The bosonized Hamiltonian, appropriate for the many
spin case, is obtained from (1.1) by the following operator 
replacements of the spin matrices 

(A) .A' a {3* a 
U --+rA--- A--' 

z al1 a{3! 
(2.8) 

(A) .A' a +{3* a 
U x --+rA a{3! A al1' 

i.e., we make use of as many pairs of variables {3!, 11 as the 
number of spins in the system. This is the point at which we 
part from the angular momentum treatment. The bosonized 
form of the Hamiltonian derived through the above replace
ments is 

The propagator for the spin-Bose system with Hamil
tonian (1.1) forms a portion of the propagator associated 
with the fully bosonized Hamiltonian (2.9). This portion is 
obtained by projection onto the atomic basis wave functions 
made out of the polynomial terms resulting from expanding 
the product 

N 

II ({3!+I1)({3~+r~)· (2.10) 
A=1 

We can make the situation more transparent by working 
out the details in the case of two atoms. Let us also initially 
deal with a wave function, rather than the propagator. In 
this case the atomic basis wave functions are the terms of the 
product ({3 T + 11)( {3 r + 11), i.e., {3 T {3 r, {3 T11, 11 {3 r, 
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and 1111'. We facilitate the discussion which follows by asso
ciating the above basis wave functions with the indices 0, 1, 
2, and 3, respectively. Thus, the wave function for the two
spin-Bose system will be 

'l'z = uoP T P f + U 1 P T11' + uz11 P f + u31111', 
(2.11) 

where the amplitudes uJ will be functions of the coherenj 

which are precisely the equations obtained using proper spin 
operators and the iT representation as in Ref. 11. 

The fact that through the p, r basis employed in (2.11) 
we are led to the correct equations of motion for the wave 
function components concludes the equivalence of the solu
tions obtained from the direct spin-Bose problem with those 
derived from the projected bosonized procedure. 

Before we deal with the propagator, it is worth noticing 
that the state P T P f represents the situation where both 
atoms are in their ground states, P T 11' stands for the state 
with atom 1 in the ground state while atom 2 in its excited 
state, the reverse situation being described by 11 P f, and 
finally 11 11' provides the state where both atoms are in their 
excited states. With the above in mind one can easily fix the 
initial conditions. 

Now, the form ofthe propagator is obtained by attach
ing amplitudes to the polynomial terms obtained from the 
product (P T + 11) (P f + 11') (P I + r;) (P 2 + ri)· They 
are 16 in number, and the propagator has the form 
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Uz = UooPT Pf PI Pi + UOlPT Pf PI ri 

+ UozPT Pf r, Pi + Uo3 PT Pf ri ri 
+ UIOPT 11' PI Pi + Ul1 PT 11' Pi ri 

+ UI2 PT 11' ri P 7. + U13 PT 11' ri ri 

+ U20 11PfPiPi +U21 11PfPi ri 

+ U2Z 11 P f r; Pi + U23 11 P f ri ri 
+ U30 11 11' PIP i + U31 11 11' P; ri 
+ U32 11 11' ri Pi + U33 11 11' ri ri. (2.14) 
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state variables associated with the electromagnetic field op
erators of the Hamiltonian, and the time. 

Inserting 'I' z into the Schrodinger equation 

iii!.. 'I' = 7t'z'l', (2.12) at 
we are led to the following simultaneous differential equa
tions for the amplitudes 

(2.13) 

The rule for the indices i and j in the amplitudes Uij 
becomes evident and is in accord with the convention adopt
ed for the wave function (2.11). 

The expression Uz satisfies the SchrOdinger equation 
(2.12) provided that for each column vectorj, Uij (i = 0,1,2,3) 
obeys the system of equations (2.13). These are the equations 
of motion for the two-spin-Bose propagator. To obtain the 
propagator, the initial conditions (2.6) with (i, j = 0,1,2,3) 
have to be fixed. 

As pointed out earlier, SchrOdinger's equation (2.12) ad
mits solutions of zero- and higher-order polynomials in the 
atomic variables. However, if we choose from the full Bose 
propagator the form (2.14), this will constitute the required 
two-spin-Bose propagator. This is seen along the lines of rea
soning applied to the single-spin case. 

Finally the procedure for handling the situation with a 
higher number of spins in the system becomes evident from 
the above discussion. 

Next, we shall carry out the evaluation ofthe propaga
tor, applying functional integration in the case of the single
spin-Bose system. 

III. THE SPIN-BOSE PROPAGATOR 

To enable ourselves to attain a reasonable reduction in 
the load of symbols in the functional integral expressions we 
proceed by adopting the conventions below. 

In a functional integral notation the symbolic expres
sion l:O<T<t a*(-r+)a(-r) will mean that when subdivision of 
the interval [0, t ] is under consideration we have 
l:;"=-Ol a*(1"J+ d a(1"j). Essentially when 1" stands for 1"i' 1"+ 
will stand fOJ:: the next point 1"j + 1 in the subdivision. Similar-
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ly S~ K (a*(r+), a(r),r)dr will imply that in the subdivision 
scheme, use is made ofl:f=-ol K (a*(rj+ I)' a(rj ), r j ) !irj' 

Furthermore, the weight, 11"-lexp( - la(r) 12), for a com
plex integration variable a(r) will be included in an appropri
ately weighted differential D 2a(r) as follows: 

(3.1a) 

The path differential will be 

g2{al = IT D 2a(r), (3.1b) 
O<'T<t 

where the product in (3.1 b) is understood to be taken over the 
internal subdivision points. 

With the above in mind we shall be able to avoid writing 
down various limiting processes leading to the functional 
integrals we shall be concerned with. Thus, if our Hamilton
ian is in normal form, and let it be given by K(a* ,a I aa* ,t ), 
the associated propagator, following Klauder's3 original 
construction (see also Ref. 14), is given by the path integral 
over coherent variables as 

G(a*,t la'O) = S exp [ L a*(r+)a(r) , 
0,1"<' 

- ~ f K(a*(r+),a(r),r)dr]g2{a l , 

a(O) = a',a*(t) = a*. (3.2) 

In what follows the end conditions, which determine the 
propagator variables, will always be imposed on the path 
integration, although explicit mention may not be made. 

It should be noted that the expression for the propagator 
obtained through (3.2) does not include the usual factor 
11"-1 exp( - !lal2 - !laT). This is more convenient when 
working in the representation where the operators a+, a take 
the form a*, a I aa*. Of course, the same applies to the ma
trix elements of any quantity employed. However, in an eva
luation the omitted exponentials reappear through use of the 
differentials of the form (3.1a), which become necessary in 
this scheme, and so the final result remains unaffected. 

Let us now employ (3.2) in the case of the fully bosonized 
single-spin-Bose Hamiltonian (2.2'). Thus, we obtain the 
propagator of Schrodinger equation (2.3) via the path inte
gral 

(3.3 ) 

where a denotes the vector with components a r, and g2{ a 1 stands for n~= I g2{ a r l. 
The path integrations in (3.3) are facilitated by the introduction of a complex auxiliary field/(r), which decouples the Bose 

field variables a r from the variablesp and y associated with the spin. The following functional integral identity over the fieldl 
forms the basis for decoupling: 

exp [ - i r~1 f ~a~(r+) + grar(r))(y*(r+)p(r) + P *(r+)y(r) )dr] 

= S exp [ - i r~1 f I*(r)(g~a~(r+) + grar(r))dr] exp[f f(r)(y*(r+).8 (r) + p *(r+)r(r))dr ].@2{ Il, (3.4) 

where we have introduced the functional differential15 

g2{ Il = exp (- (' I/(rWdr) IT (dr) d 2/(r). 
Jo 0,1"<' 11" 

(3.5) 

Utilizing (3.5) the propagator (3.3) decomposes as 

0& I(a*, p*,y*,t la',p ',1",0) 

= S GI(a*,t la',O;[/*]) 

xK I (/3*,y*,t IP',y',0;[f]).@2{/l (3.6) 
where G1 and KI in (3.6) are the propagators associated with 
the Hamiltonians KG, and K K, given by 

KG, = Ii f [Or a~ ~ + I*(t)(g~a~ +grar)], 
r= 1 aar 

(3.7a) 
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(3.7b) 

The propagators Gland Klare functionals of 1* and 1 
respectively; thus the notation employed in (3.6). 

They obey the Schrodinger equations 

ili!.-G1 =KG G1, ili!.-KI =KK K I , (3.8) 
at ' at ' 

under the initial conditions 

GtI,=o = exp C~I a~a;). K11,=0 = exp (/3*p' + Y*r)· 

(3.9) 
The formula for the propagator G 1 has been obtained by 
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path integration (e.g., Hillery and Zubairyl4) or can be ob
tained solving its equation of motion under the initial condi
tion given in (3.9). We state here the result 

GI(a*,t la',O;V*]) 

{ 

M . 
= exp L a~ a;e - IO,! 

r= I 

- f [i ~ a~ (' e - iO,.(t - 'Y'*(r)dr 
r= 1 Jo 

+ igra~ l' e - iO',*(r)dr 

+ Igrl 2f [ e- io,.(r-r'1*(rlf*(r')drdr'])' (3.10) 

Path integral techniques can also be applied for obtain
ing the propagator K I , but here we find it more suitable to 
proceed di1ferently. We show that KI has the form 
KIIP*,r*,t IP',y',O;[f]) 

= exp(Q0d3 *p' + QotP *y' + QlOr*P' + Ql1r*y'), 
(3.11) 

where the elements Qij in (3.11) are functions of t through 
functional dependence onf. 

Indeed, introducing expression (3.11) for K I into the sec
ond of Eqs. (3.8), this is seen to be the case, provided the 
matrix Q with elements Qij obeys the equation 

!!... Q = (i!!!... Uz + fIt )ux)Q. (3.12) 
dt 2 
In order that the initial condition in (3.9) for KI be satis

fied (3.12) must be solved under the initial condition 

Qij(O) = 8ij (i,j = 0,1). (3.13) 

The equation of motion for the matrix Q when w is dif
ferent from zero can be solved in a series or an infinite pro
duct form. In this section we shall make use of the series 
solution. We start with 

Q (O)(t) = exp( Ux l' f(r)dr) , (3. 14a) 

as the zeroth-order approximation. The complete solution 
can be obtained by iteration in the form 

(3. 14b) 

where the terms Q'n) of the series (3. 14b) obey the recursive 
relation 

:tQ'n)=f(t)UxQ(")+i~ uzQ,,,-I), (3.14c) 

which, given that Q (0) incorporates the initial condition 
(3.13), has to be solved as a di1ferential equation for Q(") 
under the condition Q ,n)(o) = 0 for n> 1. In this way the con
dition Q (0) = I for the required solution is secured. This is 
also true to any degree of approximation. 

From (3. 14c), for n = 1 we have 

Q(1)(t) = i ~ exp(ux ff(r)dr) fdrl 
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X exp( - Ux [' f(r)dr )uz exp( Ux f f(r)dr). 

(3.15) 
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In order to bring U z forward, we notice that each time U z 

overtakes an exponential, the sign in front of u x in that expo
nential has to be reversed, since Uz u x = - Uz U x • Thus, Q (1) 

finally takes the form 

Q (1)(t) = i ~ U z f dr l exp [ U x ([' f(r)dr - f f(r)dr) ]. 

(3.15') 
Utilizing Q (1) from (3.15') we find from the recursive re

lation (3.14c) Q (2), and proceeding in this way we obtain for 
Q ,,,) the expression 

Q (")(t) = (i7z )"f dr,,[" dr"_1 ... [2 drl 

xexp[ux ([' - i~2 + ... + (-l)"f)r(r)dr]. 

(3.16) 

With (3.16) we have, through (3. 14b), the propagator KI 
in (3.11) as a functional off. Now, the propagator au I ofthe 
fully bosonized SchrOdinger equation (2.3) for a single-spin
Bose system can be written with the aid of(3.6) as 

au l = Itof GI /, [1P*'r*)Q(~)r~2{fl, (3.17) 

where in (3.17) we have expanded the exponential expression 
of the propagator KI given by (3.11). 

The propagator au I in (3.17) can be viewed as a series of 
functional averages taken against the functional differential 
measure (3.5). The / th average satisfies separately the Schro
dinger equation (2.3). This is so, since the monomials inp *, 
r*, P , and y' of the form appearing in the / th term (each of 
degree / ) consitute a closed system against the action of the 
operator (i Iii) / at - K I ), and as the whole series satisfies the 
Schrodinger equation (2.3), each term must also do so. 

The / = 0 solution (3.17) corresponds to the radiation 
field alone. The / = 1 term is the one that gives the required 
propagator associated with the single-spin-Bose Hamilton
ian (2.2) in accordance with the considerations laid in Sec. II. 
The higher-order terms (/>2) relate to angular momentum 
Bose systems. Although the angular momentum involved is 
associated with a spin system with a definite number of spins 
(say N), this does not, as pointed out earlier, form a correct 
description of our N-spin-Bose system in which each spin 
interacts differently with the various radiation modes. 

We now single out the / = 1 term giving the required 
spin-Bose propagator UI and proceed with the functional 
averaging. In doing so we shall make repeated use of the 8-
functional identity, employed in (3.4), namely 

S p[f*]exp(f r(r)f(r)dr).@"2{fl =P[r] (3.18) 

where Pis a functional offexclusively dependent onf*. This 
facility is now provided by the linear exponential arguments 
appearing in the various Q''') [see (3.16)] composing the ma
trix Q in (3.17). 

Utilizing the notation 

(G,Q) = f G,Q.@"2{fl, (3.19) 

for the functional average of QGI involved in (3.17), we ob-
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tain, by repeated application of the t5-functional identity 
(3.18), the amplitudes Uij (i, j = 0,1,2,3) of the single-spin
Bose propagator in matrix arrangement as 

F(n) cos '¥ 

[ 
h mIn) 

X ( _ 1 r sinh 4>(n) 

sinh 4>(n) ] 

( - 1 r cosh 4>(n) , 
(3.20) 

where 

F(n) = exp {- f igr r [2n + 1 - iO,t 
r= I 0, 

n + 2 L (_l)ke-io,rk 

k=1 

(3.2la) 

and 
M 

4>(n) = " (a*e - i0,t A (n)· + a' A (n)) 
~ r r r r , (3.2Ib) 
,= I 

with 

A ~n) = _£ [1 + 2 i (_I)Ke-iO,rk 

Or k=1 

+(_I)n+le-iO,t]. (3.2Ic) 

Equation (3.20) together with Eqs. (3.2Ia)-(3.2Ic) complete 
the evaluation for the single-spin-Bose propagator. 

In the literature one finds the traced form of the propa
gator (3.20), over both the discrete diagonal elements and the 
coherent variables, which gives the partition function, ZI' of 
the single-spin-Bose system, obtained by replacing t by 
- ililkT. Upon taking the trace over the discrete elements 

of (3.20) only the even powers in (0 will survive. Further
more, the integrations over the end coherent variables with 
a; = a, against the measure n~= I D 2a , [see (3.Ia)) supply 
the Blume et al. result.8 However, in the present treatment 
one has the full propagator, involving the off-diagonal dis
crete elements. 

Next, we shall proceed with an explicit evaluation of the 
propagator with a simplified form of the single-spin-Bose 
Hamiltonian. 

IV. AN EXPLICIT EVALUATION 

We consider the spin-Bose Hamiltonian 

Hi = (1iro12)O'z +Iig(a+ +a)ux' 

for which we shall obtain the propagator. 

(4.1) 

Following the bosonization and decoupling procedure 
developed in Sec. III we find that the propagator K i is the 
propagator KI given by (3.11). Furthermore the propagator 
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G i in this case can be obtained as a particular case of(3.1O) in 
which there is only one coherent state variable a, one cou
pling constant, i.e., gl = g1 = g, and 0 1 = O. Under these 
circumstances we have 

G i (a*,t ia',O;[f*]) 

= exp[a*a l 
- ig(a* + al)ff*(T)dT 

-~(f f*(T~T )2]. (4.2) 

In order, now, to proceed with the present evaluation we 
require the matrix Q, which obeys the equation of motion 
(3.12) and the initial condition (3.13). This matrix was ob
tained in Sec. III in the form of a series given by (3.14b). 
However, for the purpose needed here it will prove more 
convenient if we obtain Q in a product from, the way we 
express the evolution operator to develop functional integra
tion from first principles (e.g., Ref 16). 

Thus, the solution of (3.12) satisfying (3.13) takes the 
form 

Q( t) = Yexp [ - if (!fuz + if(r)O'z )dT] 

= lim Y ill[l - i!iT(~z + if(Tj)O'x)], (4.3) 
N_oo j=O 2 

where Y signifies time ordering, !iT = tiN, and T j = j!i T. 
To facilitate application of formula (3.12) for obtaining 

the propagator U i we rewrite (4.2) in the form 

G i = I exp [ - ~ (a*2 + a '2 ) + II. (a* + a'l 

_ iAg (' f*(T~T _ J..IL 2] dIL . 
Jo 2!i1T 

(4.4) 

Introducing (4.4), in placeofGI> into (3.19) and utilizing 
the form (4.3) for Q, we can easily apply the t5-functional 
identity (3.18) and get 

(QG i ) = I exp [ -;(!fuz + gILO'I )t ] 

Xexp [ - +a*2a I 2) + II. (a* + a'l - ~ A. 2] 
X dIL. 

!i1T 
(4.5) 

Expanding the exponential in (4.5) involving the matri
ces O'z and O'x in power series, and taking into account that 
(((012)O'z + gILO'xf = ((02/4 + g2IL 2)1 (I being the 2X2 unit 
matrix), we find, after regrouping the series terms, the fol
lowing expression for the propagator associated with the Ha
miltonian (4.1): 

[
Uoo 
Uio 

= I{ICOS [(:2 +g2IL2)1/2t] 

(4.6) 
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The propagator (4.6) is given essentially in eigenfunction 
expansion form. The eigenvalues are given by 
± (tii/4 + g2A 2)1/2 and the eigenfunctions are proportional 

to exp ( - !a*2 + Aa* - !A 2), A being a continuous quan
tum number. 

Unfortunately, the ease with which we have been able to 
handle this problem ceases to exist, once the term .no + 0 is 
present in the Hamiltonian. The solution with (i) = 0 and 
.n #- 0 can also be obtained in a closed form and is given by 
the zeroth term of the general case expansion (3.20). 
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An analytical formula is obtained for the energy eigenvalues of the exponential cosine screened 
Coulomb potential by a method that is a combination of algebraic perturbation theory based on 
the Lie algebra of the SO (2, 1 ) group and the scaling variational method. The results are found to 
be in excellent agreement with Pade approximation calculations. 

I. INTRODUCTION 

Recently a great deal of interest has been shown in alge
braic perturbation theory based on the Lie algebra of some 
dynamical group. 1 Gerry and Togeas2 have successfully ap
plied this algebraic method in a number of eigenvalue prob
lems. 

In this paper we wish to apply this method to a model 
potential, namely exponential cosine screened Coulomb 
(ECSC): 

VIr) = - (lIr)e - Ar cos lir. (1 ) 

This potential is useful in describing the interaction between 
an electron and an ionized impurity in both metals and semi
conductors.3 Also, it can be used to describe the electron
positron interaction in a positronium atom in a solid.4 

So far, numerous attempts both perturbative and non
perturbative have been undertaken to calculate the energies 
of the ECSC potential.s-7 The Pade approximation7 gives 
accurate results but it is an iterative procedure and the per
turbation methodS fails to give satisfactory agreement for 
large Ii. 

So it would be preferable to have at one's disposal an 
analytical formula that will give the energy eigenvalues for 
all the states with fairly good accuracy. 

In this paper we have obtained such a formula by a sim
ple and straightforward method, which is based on the Lie 
algebra of the SO(2, 1) group supplemented by a variational 
scaling of the parameter involved. 

II. DESCRIPTION OF THE METHOD 

The SO(2, 1) Lie algebra consists of the three generators 
T3, T ± = T + ± iT2 with the commutation relations 

[T3, T+1 = T+, [T3' T_1 = - T_, [T_, T+1 = 2T3 

(2) 

and the Casimir invariant 

Q= n - ~ (T+T_ + T_T+). (3) 

The relevant unitary irreducible representation employed 
here is the so-called positive discrete series D + such that the 
generator T3 is diagonal as 

T31n, I) = nln, I) (4) 

-) nee Ghosh. 

and 

Q In, I) = 1(1 + l)ln, I), (5) 

where n is the principal quantum number and I is the orbital 
angular momentum. Here, the range of n is 

1+ 1, 1+2,... or n = 1+ 1 + S, S = 0,1,2. (6) 

The states 11/1) = In, I) are called the group states. These 
states satisfy the orthogonality relation 

(n', I 'In, l) = On'nOI'1 (7) 

and the completeness relation [in the SO(2,1) subspace] 
00 

L In,l)(n,ll=l. (8) 
n=l+ I 

The most useful, for our purposes, representation of 
T3 , T1, T2 is the configuration space representation 1 

TI = - ~ (ra + r), 

T2 = -;(1 + r:J, 
T3 = - ~ (ra - r), 

where 

(9) 

(10) 

These generators act in the Hilbert space offunctions and are 
self-adjoint not with respect to the usual scalar product of 
quantum mechanics I1/I T1/I2 d 3X but with respect to the new 
scalar product 

(11) 

where 11/11) and 11/12) are the group states. This is not the 
physical scalar product, although this can be expressed in 
terms of the invariant group theoretic product. 8 

The ECSC potential can be expanded in power series of 
the screening parameter Ii as 

1 00 

VIr) = - - L Vk(lir)k, 
rk=O 

(12) 

where the potential coefficients Vk are given by 

VI = - 1, V2 = 0, V3 = ~, V4 = -~, Vs = 10· 
(13) 

Here we use atomic units so that the distances are measured 
in ao = Kh 21m*e2 and energies in m*e4lKh 2, where m* is 
the effective mass and K is the dielectric constant. 
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The Hamiltonian equation with potential (1) reads 

[-!d-(l/r)e--<rCOsAr-E]I~) =0, (14) 

where I ~) denotes the physical state. These physical states 
I ~ ) are normalized and are orthogonal with respect to a dif
ferent metric. In coordinate space this amount to the usual 
scalar product 

(15) 

Now in order to relate the Lie algebra (9) to the Hamiltonian 
equation (14) we mUltiply the latter equation by r and consid
er a new equation 

O(E)I~) = rtH - E)I~) = 0, 

or 

( -! rd - e--<r cosAr - rE lI~) = o. (16) 

Using Eqs. (12) and (13) in Eq. (16) and retaining terms only 
up to the order of AS, we get 

{ - rd - 2 +Ur-2Er-iA3~ 

+! A 4r4 - f3 A s,s}l~) = O. (17) 

We now insert (9) in Eq. (17) and obtain 

{ T3 + T + + T - _ 2 + (U _ 2E )(T3 _ T + _ T -) 
2 2 2 2 

_ ~A 3(T3 _ T + _ T _)3 +..!...A 4(T3 _ T + _ T _)4 
3 2 2 3 2 2 

__ 1 A,S(T3- T+ _ T_)S}I~) =0. (18) 
15 2 2 

Now we perform the usual tilting transformation,9 

which is implemented as 

e-iIlT'O(E)eiIlT'e-iIlT'I~) = 0, (19) 

so that 

(20) 

is the relation between the group state and the physical state. 
This is a unitary transformation similar to the Foldy
Wouthuysen transformation but infinite dimensional. Here 
() is allowed to depend on n and 1 so that the physical state 
I~) is also dependent on n, I, and (). Hence to obtain higher
order correction terms an algebric form of perturbation the
ory has to be used. This will be discussed later on. 

It follows from the commutation relations that 

e - iT,IIT3e
iT,II = T3 cosh () + (T +/2 + T _/2)sinh (), 

e - iT,lIT +eiT,1I = T + cosh () + T3 sinh (), 

e - iT,lIT _eiT,1I = T _ cosh () + T3 sinh (). 

Table I. Energy eigenvalues for the Is state in atomic units. 

(21) 

E(present) E(Pade) E(Perturbation) E(Variational) 

0.06 
0.08 
0.10 
0.20 
0.30 
0.40 
0.50 

230 

-0.440200 - 0.440 201 -0.440201 
- 0.420463 -0.420464 -0.420464 
-0.400 883 -0.400 885 -0.400 883 
-0.306 268 - 0.306 335 - 0.306 235 
- 0.218 939 - 0.219416 - 0.218 619 
- 0.140 662 - 0.142 439 - 0.139153 
-0.073523 -0.077679 - 0.068 047 
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-0.440201 
-0.420464 
-0.400 885 
-0.306334 
- 0.219 411 
- 0.142 418 
-0.077606 

Table II.· Energy eigenvalues for the 2S and 2p states in atomic units. 

E E 
E(Present) E(Pade) (perturbation) (Variational) 

0.02 2S -0.105104 -0.105104 - 0.105104 -0.105104 
2p - 0.105 075 - 0.105 075 - 0.105 075 

0.04 2S - 0.085 769 - 0.085 769 -0.085767 - 0.085 769 
2p -0.085580 - 0.085 591 

0.06 2S -0.067419 -0.067421 - 0.067 385 -0.067421 
2p - 0.066 767 -0.066778 

0.08 2S -0.050382 - 0.050387 - 0.050222 -0.050384 
2p - 0.048 953 -0.048997 

0.10 2S - 0.034951 -0.034941 -0.034425 - 0.034935 
2p - 0.032 330 - 0.032469 -0.032042 

Using relations (21) in Eq. (18), we get 

{Tell + T + ell + T - ell _ 2 
3

22 

+ (U - 2E)e- II (T3 - ~+ - ~-) 

- ~A,3e-311(T3- ~+ - ~-r 
+..!...A 4(T3 _ T + _ T _)4e -411 
322 

__ 1 A,5e -SII(T3_T+ _ T_)S}I~)=O. (22) 
15 2 2 

Now we use the group states In, I) and write JO 

(n, IIO(E, () )In, I) = 0, (23) 

where O(E, (}) = e - illT, OlE )eillT, and OlE, (}) is given by 
the bracketed portion ofEq. (22). 

Expanding the last three terms ofEq. (22) and making 
use of the commutation relations (2), we get from (23) after 
some straightforward algebra 

E~?l<(}) = ~II - ~ +A - ! A 3e -211(SX
2 

- 3y + 1) 

+ ~ 4e -38(3Sx4 + 2Sx2 
- 3Ox2y + 3yl - 6y) 

_ ~ se - 48( 63x4 + 87x2 

+ 6 - 7Ox2y - 38y + ISyl), (24) 

Table III. Energy eigenvalues for the 3S, 3p, and 3d states in atomic units. 

E E 
E(present) E (Pade) (Perturbation) (Variational) 

0.02 3S - 0.036025 - 0.036025 -0.036022 -0.036025 
3p -0.Q35968 -0.035968 - 0.035 965 
3d - 0.035 850 - 0.035851 - 0.035849 

0.04 3S -0.018847 -0.018823 - 0.018 707 - 0.018822 
3p - 0.018457 - O.ot8 453 
3d -0.017663 -0.017682 

0.05 3S -0.011677 - 0.011576 
3p - 0.010954 - 0.010929 - 0.010 538 
3d -0.009493 - 0.009 555 - 0.009 292 

0.06 3S -0.005875 -0.005462 - 0.004 538 -0.005454 
3p -0.004606 -0.004472 
3d - 0.002140 - 0.002 309 
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Table IV. Energy eigenvalues for the 4S, 4p, 4d, and 4/ states. 

E 
E(present) E(Pade) (Perturbation) 

0.01 4S - 0.021438 - 0.021438 - 0.021436 
4p - 0.021424 - 0.021424 - 0.021424 
4d -0.021398 - 0.021398 -0.021397 
4/ - 0.021358 -0.021358 - 0.021357 

0.02 4S - 0.012 581 - 0.012 572 - 0.012 539 
4p - 0.012 492 - 0.012486 - 0.012454 
4d -0.012310 - 0.012 310 - 0.012 283 
4/ -0.012034 -0.012038 - 0.012 019 

0.D3 4S - 0.005382 - 0.005 270 
4p - 0.005105 - 0.005 033 
4d - 0.004 550 - 0.004 539 
4/ - 0.003715 - 0.003 748 

where 

x = 1+ 1 +s, 

y = 1(1 + 1). 

Setting 

dE~~)t!O) = 0 
dO ' 

we obtain 

eS9 A 3 1 
e69 __ + e29.:::--(5x2 _ 3y + 1) _ --e9A 4 

x 3 16x 

X (35x4 + 25x2 - 3Ox2y + 3y2 - 6y) 

+ (A S /60)(63x4 + 87x2 + 6 

E 
(variational) 

- 0.021437 

- 0.012 572 

(25) 

(26) 

- 70x2y - 38y + 1ST) = O. (27) 

This method of treating 0 as a variational parameter is just 
the scaling variational method since T2 is essentially a gener
ator of scale transformations. This has got the added advan
tage that the lowest approximation satisfies both the virial 
theorem and the Hellmann-Feynmann theorem. 11 

231 J. Math. Phys., Vol. 27, No.1, January 1986 

Equations (24) and (27) together give E~)l for various 
values of A. In Tables I-IV we list the energy eigenvalues 
E~)l (without second-order correction) of various states for 
values of A not greater than 0.5. 

Higher-order correction terms can be obtained by treat
ing the nondiagonal terms in Eq. (22) as perturbation terms 
and using an algebraic form of the perturbation theory first 
formulated by Barut and Nagel 12 and later modified by Ger
ryand Inomata. 13 In this perturbation scheme, one treats the 
nondiagonal terms as small-order terms and for a particular 
n value fix the 0 value (0 = On). It is then possible to have a 
closed form normalization for the perturbed states. 
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SchrOdinger's operator - (~2/2m)[d2/dr + (2/r)d /drJ + VIr) is studied, and what happens 
when VIr) approaches - 00 rapidly as r--+oo is shown. The cases in which V(r)- - {3,P (f3> 0, 
8> 2) as r--+oo are covered. If VIr) approaches - 00 rapidly, then the above operator is not self
adjoint and in order to get a self-adjoint operator a boundary condition must be imposed. For such 
a self-adjoint operator there are states that belong to the discrete energy spectrum. To obtain the 
discrete energy spectrum, a quantization rule that corresponds to the quantization rule of Bohr 
and Sommerfeld in old quantum mechanics is considered. 

I. INTRODUCTION 

In the literature on quantum mechanics we usually find 
the description that if an electron has, in classical meaning, a 
kinetic energy sufficient to leave an atomic system to go to 
infinity, then the value of the corresponding total energy 
belongs to the continuous spectrum of the system under con
sideration. It was pointed out by von Neumann and 
Wigner,l who gave two examples, that the description men
tioned above is not always correct. One of their examples is 
as follows. 

They treated the case of a particle with mass m in a 
centrally symmetric potential VIr), and considered Schro
dinger's equation 

~ (d 2 
2 d) -- -+-- "'+(V(r)-E)"'=O, 

2m dr r dr 
(I) 

where E is an eigenvalue, '" an eigenfunction, and r the dis
tance from the origin. By direct calculation, they showed 
that if 

VIr) = 1~/2m)[(f32 - 1)/4r - {32,-2P- 2] (f3> 2) , 

then the function "'Ir) = r -IP + 1)/2 sin(r p) is an eigenfunc
tion of Eq. (I) corresponding to the eigenvalue E = 0 and, 
moreover, the integral fa 1 tP(rWr dr is finite. In other 
words, E = 0 is one energy level of the discrete spectrum. 
Furthermore, this example is also evidence against the su
perstition mentioned above. In fact, since the potential VIr) 
decreases monotonically to V ( 00 ) = - 00, all particles 
would go to infinity; therefore all values of energy should 
belong to the continuous spectrum. However, as we have 
already pointed out, there extists at least one energy level of 
the discrete spectrum. 

They explained this strange phenomenon as follows: 
The velocity, in the meaning of classical mechanics, of a par
ticle with total energy E is, by the principle of conservation 

ofenergy,dr/dt= ±v'(2/m)(E- VIr)). Therefore the time 
taken in moving from r = R to r = + 00 is 

l oo dr (dr) - I = m roo dr , 
R dt JR v'2m(E - V(r)) 

(2) 

where VIR ) = E. Since V(r)-,w- 2 (f3> 2) at infinity, this 
time is finite; hence this particle would execute a periodic 

motion between the points r = R and r = + 00, and thus a 
bound state is produced. 

In their argument we are interested in the fact that the 
wave function tP(r) =,-IP + 1)/2 sin(,-B) satisfies the condi
tion 

Loo 1"'1 2r dr< 00 , 

if and only ifthe time (2) is finite. This condition is fulfilled 
when {3 > 2, otherwise it is not. 

Puttingf = rtP, we find that Eq. (I) is equivalent to the 
equation - (~/2m)d 2f /dr + (V(r) - E)f = O. 

II. FORMULATION AND NOTATION 

In this article we shall examine the differential operator 
- (~/2m)(d2/dr) + VIr) (a<r< 00), where the potential 
VIr) satisfies the assumptions (al) VIr) decreases monotoni
cally to - 00,f~lV(r)I-1/2dr< 00 forasufficientlylargec; 
and (a2) V'(r)/V(r) and V"(r)/V(r) are bounded over a neigh
borhood of r = + 00, where the prime denotes differenti
ation with respect to r. Assumption (al) is essential in our 
argument in this article, but (a2) is not because it is automati
cally fulfilled in most examples in our mind. 

Forfixeda,{3 (- 00 <a<{3< + 00),letL 2(a,{3)bethe 
set of all functionsfsuch that (a)/(r) is Lebesgue measurable 
over the interval (a, {3); and (b) f~ 1 /(rW dr < + 00. Let SD* 
be the set of all functions f in L 2(a, 00) such that (a)f(r),!,(r) 
are absolutely continuous on the interval (a, 00), and (b) 
- (~/2m )f" + Vf is in L 2(a, 00); and let Tbe the operator 

with domain SD* which takes f into - (~/2m)f" + VI 
Iffand g are functions in SD*, then we have 

[ (TfXi-fX Tg)dr= -~ if'i-fg'n, 
b 2m 

where a < b < c < 00. Hence the existence of the limits 

limif(rjg'(r) - !,(r)g(r)) , 
r--.a 

limif(r)i(r) - f'(rjg(r)) r--oo 
is established by the convergence of the integral of 
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T/ xg - / x Tg over the interval (a, (0) (whereg is the com
plex conjugate of g). 

Let i) be the set of all functions / in i)* such that 

S:(T/xg - /x Tg)dr = 0 for every function g in i)*; and 
let H be the operator with domain i) that takes / into Tf 
Then we can prove the following lemma (for the proof, see 
Ref. 2, Theorems 10.11 and 10.12). 

Lemma 1: H is a closed linear symmetric operator with 
the adjoint H t = T and the deficiency index (m, m), where 
m = 0, 1, or 2. In order that the operator Tbe self-adjoint, it 
is necessary and sufficient that m has the value O. 

In the next section, we will show that the operator Tis 
not self-adjoint, and that we can obtain the various self-ad
joint operators by restricting the domain i)* of T. In Sec. IV 
we will obtain a rule that gives the approximate distribution 
of eigenvalues of the self-adjoint operators described in Sec. 
III. The rule corresponds to the quantization rule of Bohr 
and Sommerfeld in old quantum mechanics. 

III. BOUNDARY CONDITIONS 

In this section we shall find that T is not self-adjoint. In 
order to get a self-adjoint operator from T we must restrict 
the domain i)* of Tby imposing a boundary condition. 

Let / be a solution of T/ = AJ, where A is a complex 
number. We should begin by describing the asymptotic form 
of the function / in the neighborhood of r = + 00. Let c be 
chosen so large that 

Vir) < 0, for all r> c. 

Set x(r) = S~ W(rW I2 dr, p(r) = W(r)I-I/4. Write the solu
tion / as fir) = p(r)g(x(r)). Then we have 

g"(x) + (2m/lf)g(x) + q(x)g(x) = 0, (3) 

where 

q(x(r)) = W(rll- I [2... { V'(r)}2 _...!.. V"(r) + 2m,-t] . 
16 VIr) 4 VIr) If 

By the assumptions (al) and (a2) we have 

fO Iq(x)ldx<const i oo 
W(r)I- I/2 dr< 00, 

where 

const = sup[2... { V'(r) }2 _...!.. V"(r) + 2m,-t ] . 
,;.c 16 Vir) 4 Vir) If 

Therefore Eq. (3) has two solutions that, in the neighborhood 
of r = + 00, have the forms 

eix~/1i+o(l) and e-ix~/1i+o(l) 

(see Ref. 3, p. 1408). Thus I is a linear combination of 

I V(r)I-I/4(eix(')~/1i + 0(1)) 

and 

I V(r)l- I/4(e - ix(,)v'2mI1i + 0(1)) , 

so that, by the assumption (a1), we have 

i oo 

If(rW dr < 00 • (4) 

We now proceed to discuss the self-adjointness of the 
operator T. Let na be the number of linearly independent 
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solutions in L 2(a, c) of the differential equation TI = AJ, 
where a < c < 00, and let n 00 be the number of linearly inde
pendent solutions in L 2(C, (0) of the differential equation 
T/=Af We first observe that the numbers na and n"" are 
obviously independent of c and that they are also indepen
dent of A, when A is not real (see Ref. 2, Theorems 10.11-
10.14). Moreover the number na must have the value 1 or 2, 
when A is not real (see Ref. 2, Theorem 10.15). On the other 
hand, in view of(4), we have n 00 = 2 for all complex numbers 
A. Therefore if na = 1 for all A that are not real then H has 
the deficiency index (1,1); if n a = 2 for alIA. then H has the 
deficiency index (2, 2)(see Ref. 2, Theorems 10.20 and 10.19). 
In either case T is not self-adjoint by Lemma 1. Hence in 
order to get a self-adjoint operator from T we have to re
strict the domain i)* of Tby imposing a boundary condition. 
We distinguish two cases according to whether na = lor 2. 

(i) Case na = 1: We can select a function u satisfying the 
relations Tu=iu and S:luI2dr=1. We set ve=(eieu 
- e - iB;j)/2i, where 0<8 < 11". If i)(8) is the set of all func

tions in i)* such that 

lim(f(r)v~(r) - j'(r)ve(r)) = 0, 
'_00 

and if H (8) is the transformation with domain i)(8 ), which 
takes I into TJ, thenH (8) is a self-adjoint extension of H; and 
if S is an arbitrary maximal symmetric extension of H, then S 
coincides with H (8) for exactly one 8 (see Ref. 2, Theorem 
10.13). 

(ii) Case na = 2: We can introduce eigenfunctions u I and 
U2 of T such that 

TUj = iUj (j = 1,2) and Loo U)ik dr = 8jk . 

We set 
z 

Vja = uj - L ajkUk' j = 1,2, 
k=I 

where a = (ajk 1 is a unitary matrix. If i)(a) is the set of all 
functions/in i)* such that 

[Ivj., - j'vja ]: = 0 (j = 1,2), 

and if H (a) is the transformation with domain i)(a), which 
takes I into TJ, thenH (a) is a self-adjoint extension of H; and 
if S is an arbitrary maximal symmetric extension of H, there 
exists a unique matrix a such that S = H(a) (see Ref. 2, 
Theorem 10.14). 

IV. QUANTIZATION RULE 

In Sec. III we introduced self-adjoint operatorsH (8 ) and 
H (a). We wish to know exact eigenvalues of them. However, 
apart from certain privileged cases, it is a very difficult math
ematical problem. In this section we shall find a rule that will 
give the approximate distribution of these eigenvalues. 

Let us now review the WKB method. We make in 
Schrooinger's equation 

If d 21 - - + (E - Vlf = 0 (E a real number) 
2m dr 

the substitution 

/= e(illi)u. (5) 
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Then we obtain the equation 

u,l/2m - iftq"/2m = E - V. (6) 

We seek u in the form of a series, 

u = Uo + (Ii/i)u. + (1ilzll u2 + ... , 
expanded in powers of Ii. Substituting this expression for u 
into (6), and neglecting in SchrOdinger's equation terms of 
order equal to or greater than 1f2, we obtain 

Uo = ± f p dr, u. = - ~ log IPI , 

where p = .J2m(E _. V). Substituting this expression into 
(5), we find the solution lin the form 

1= C.IPI-·
/l exp(~ f P dr) 

+ Cl lPl-· /2 exp( - ~ f P dr). (7) 

The approximation made in (7) is legitimate only if 

ImIiV'I/12m(E - V)1 3/2<1 (8) 

(see Ref. 4, Chap. VI). 
In most of the examples that we treat in this article the 

condition (8) is fulfilled everywhere except in the vicinity of 
the point for which 

E=V(r). 

This is the turning point of the classical motion, the point 
where the velocity of the particle vanishes and changes sign. 

Let r = R be the turning point, so that V (R ) = E. By the 
assumption that V (r) is a decreasing function V (r) > E for all 
r<R, so that the region to the left of the turning point is 
classically inaccessible. The general solution is a linear com
bination of two solutions I. (r,E ) and h(r,E) whose asymp
totic forms are 

r<R, 

11 __ 1_ exp( _l. iR 

IPldr) , 
2~ Ii , 

Il __ 1_ exp(l. rR 

IPldr) ; 
2~ Ii J 

r>R, 

I. __ 1_ cos(l. (' p dr _ !!...) , 
~ Ii JR 4 

12 __ 1_ cos(l. r p dr +!!...). 
2JP Ii JR 4 

The conditions for the validity of these formulas are as fol
lows (see Ref. 4, Chap. VI). 

(*) At the turning point the kinetic energy E - V tends 
to zero as (r - R ) and remains to a good approximation pro
portional to (r - R ) in a region extending over at least one 
wavelength on either side. Here we define the "number of 
wavelengths" contained in a given interval (a,p) by the inte
gral 

(l/21rli) [ IPldr. 
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(**) This turning region joins, on either side of its turn
ing point, an asymptotic region in which the condition (8) is 
fulfilled. 

We now proceed to discuss the rule which gives the ap
proximate distribution of eigenvalues of the self-adjoint op
erators H ((J ) and H (n). We distinguish two cases according 
to whether na = 1 or 2. 

(i) Case na = 1: We first prove the following lemma. 
Lemma 2: (a) S:lf.(r,EWdr< 00, so that I. is an ele

ment in :i)*. 
(b) Each of solutions I in :i)* of the equation TI = EI 

has the form/(r) = constX,h(r,E). 
(c) For every E there exists a unique (J (O<(J < 17') such 

that II(r,E) is in :i)((J). 
Proof; VIr) is a decreasing function, therefore 1P1- 1/2 is 

bounded in a neighborhood of r = a. We select R. such that 
a <RI <R; then we have 

JR IPldr = f: IPldr + JR. IPldr 

>iR 

IPldr + IP(Rlli(R. - r) , 
R. 

and therefore exp[ - (l/Ii}S~lPldr] <constxeCr (e> 0) in a 
neighborhood of r=a. Thus I II(r,E II <constXeCr

, and 
therefore I. (r,E) is square integrable in a neighborhood of 
r = a. On the other hand, as we have already shown in Sec. 
III, all eigenfunctions of the operator T are square integrable 
in a neighborhood of r = 00. Therefore we have proved (a). 
Since the operator H has the deficiency index (1, 1), we have, 
applying Theorem 10.19 in Ref. 2, that the dimension of the 
space of all solutions in ~* of the differential equation 
TI = EI is less than 2. Hence, by (a) described above, we 
observe that this dimension is equal to 1, and therefore we 
have (h). Let u(r), Ve (r), and x(r) be the functions described in 
Sec. III. Then, by the result stated in Sec. III, we have 

u(r) -I V (r) 1- 1I4(Aelx(r)/im/1I + Be -1x(rW2m11l) , 

1.(r,E)-1 V(r)I-1/4(Ceix(,)./2m/1I + Ce-Ix(rW2m/Il) (r-oo). 

Hence 

lim(/lve -Ii ve) = (2~2m/Ii)Re[eje(AC - BC)] 
'~oo 

and therefore there exists a unique (J (O<(J < 17') such that 
limr-+oo (f.ve -Ii ve) = O. With this result, the proof of the 
lemma is complete. 

We see by Lemma 2 that an E is an eigenvalue of H ((J ) if 
and only if limr~oo (f.ve -Ii ve) = 0, and that for every E 
there exists a unique (J such that E is an eigenvalue of H ((J). 

Now let Eo be an eigenvalue of H (9) for fixed 9. We shall 
obtain a formula which gives the other eigenvalues of H ((J ).It 
follows that limr--+oo(f.(r,E)ve(r)-/l'(r,E)ve(r)) =0 if and 
only if limr-+oo (/l(r,E),fI'(r,Eo) - 1.'(r,E}/l(r,Eo)) = 0, be
cause the former condition means that limr--+oo ,fI(r,E)/ve(r) 
= const, and the latter means that limr--+oo.t;(r,E )/.t;(r,Eo) 
= const. In order to calculate the limiting value of 

1.(r,Elfi (r,Eo) - Ii (r,Elf.(r,Eo) , (9) 

we use the asymptotic form 
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fl __ 1 COS(l. i' P dr - !!....) . 
JP Ii R 4 

Then, using the assumption (a2), we have 

(9)- ! sin [*[Pdr- Iopodr)] (r~ex)) 
where P = ~2m(E - V),po = ~2m(Eo - V), VIR ) = E,and 
V(Ro) = Eo. Moreover, introducing RI such that 
RI > Max(R,Ro) and using the assumption (a1), we have 

i' P dr - i' Po dr 
R Ro 

= iR
• P dr - iR

• Po dr + r (p - po)dr 
R Ro JR. 

= iR
. P dr - iR

• Po dr 
R Ro 

+ 2m(E - Eo) i' {~2m(E - V) 
R. 

+ ..j=2m----;-;=(E;-o ---;;V=)} - I dr 

~ iR
• P dr - iR

• Po dr 
R Ro 

+ 2m(E - Eo) ioo 

{~2m(E - V) 
R. 

+ ~=2m--;-;;:(E;-o ----;V=)} - I dr (r~ex)). 

Therefore if we define the function n(E ) by 

n(E) = _1_ lim ( r p dr - i' Po dr) [ V (R ) = E] , 
1rl1 1'-+ 00 \J R Ro 

then 

limifI(r,Eifi (r,Eo) - fi (r,EV;(r,Eo)) 

= (l/Ii)sin(n(E)1T] . 

Hence we conclude that E is an eigenvalue of H (0) if and 
only if n(E) is an integer. 

We can also obtain a differential equation for the func
tion n(E): 

n'(E) = dn dR 
dR dE 

= (1rl1)-IV'(R )-I..!!...
dR 

X [LR
' ~2m(V(R ) - V(r))dr 

-lR. ~2m(Eo - V(r))dr 
Ro 

+ L~ dr{~2m(V(R) - VIr)) 

- ~2m(Eo - V(r»)}] 

2m roo dr 

= 21rl1 JR ~2m(E - VIr)) . 

On the other hand, the time T E taken in moving from r = R 
to r = ex) and back is as follows: 
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i CC (d ) - I ioo 

TE=2 R dr ~ =2m R p-Idr 

i
OO dr 

= 2m R ~2m(E _ VIr)) . 

Thus we obtained 

TE = 21Tfzn'(E) . (10) 

Of course the formula (10) is applicable only for E such that 
the conditions (*) and (u) are valid. In most applications of 
the formula (10), these conditions are fulfilled when E has a 
sufficiently large negative value and therefore the formula 
(10) gives the approximate distribution of eigenvalues of 
H(O). 

Starting from the quantization rule of Bohr and Som
merfeld in the old quantum theory, 

f p dr = 21rl1( n + ~), (11) 

we can formally obtain the formula (10). In fact differentiat
ing both sides of (11), we have 

21rl1n'(E) = j ap = TE . 
j aE 

Here we emphasize that the left-hand side of (11) is a diver
gent integral. 

(ii) Case na = 2: We wish to obtain a rule that gives the 
approximate distribution of eigenvalues of H (a), but for gen
eral a it is very hard. Fortunately, however, we can prove the 
following lemma (for the proof, see Ref. 2, Theorem 10.17). 

Lemma 3: Let a > - ex), and let the function V (r) satisfy 
the condition that VIr) be extensible smoothly to an interval 
(a - /), ex) ), /» O. Then for fixed ¢J, O<.¢J < 1T, there is a unique 
function u'" such that 

sin ¢Ju",(a) + cos ¢Ju~(a) = 0, 

Tu", = iu"" ioo 

lu", 1

2
dr = 1 . 

Let v"'.o denote the real function (e iO u'" - e - iO Ii", )/2i, where 
0<.0 < 1T; let '1J(¢J,0) be the set of all functions f in '1J* such 
that 

sin ¢Jf(a) + cos ¢J!'(a) = 0 , 

lim(f(r)v~.o(r) - !'(r)v""o(r)) = 0; 
'_00 

and let H (¢J,O ) be the transformation with domain '1J(¢J,0) 
that takesfinto Tf Then H (¢J,O ) is a self-adjoint extension of 
H. The transformations H (¢J,O ) constitute a proper subset of 
all transformations H (a). 

In the following we restrict ourselves to treating the 
transformationH (1T12,0), and we will obtain a formula simi
lar to (10). Since na = 2, all eigenfunctions of the operator T 
are square integrable on the interval (a, ex) ) (cf. Sec. III); the 
functionsfl andf2 are elements in '1J* for every E. 

Set 

a E = exp(! iR 
~Idr), f3 E = - exp [ - ! iR 

~Idr] , 

and 

il(r,E) = aeil(r,E) + f3 d;.(r,E) , 

then we have 
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IIE'1) * , Til = Ell' ha,E) = 0 . 

Since the equation T = E is a linear differential equation of 
second order, we conclude that 

{je'I)*; /(a) =0, T/=EJ}=C/I(r,E), (12) 

where C is the set of all complex numbers. Furthermore we 
can see, by the same method as in Lemma 2, that for each E 
there exists a unique Osuch that II(r,E )isin '1)(17'/2,0). By(12) 
we see that an E is an eigenvalue of H (17'/2,0) if and only if 

lim lfl(r,E )v~/2.e(r) - I; (r,E )v7T12.e(r)) = 0 . 
1'-+00 

Therefore for every E there exists a unique 0 such thatE is an 
eigenvalue of H(17'/2,0). 

Now let Eo be an eigenvalue of H(17'/2,0) for fixed O. 
Then an E is an eigenvalue of H (17'/2,0 ) if and only if 

limlfl(r,Elfl'(r,Eo) - 11'(r,Elfl(r,Eo)) = 0 

[cf. case (i)]: 

II(r,Elfl'(r,Eo) - 11'(r,Elfl(r,Eo) 

_ ! [exp ! (iR 
~I + iRo ~ol) 

+ ~ exp ! ( - i
R 

~I- iRO ~ol)] 

Xsin ! (Lp - L/o) 

+ 2~ [exp ! (iR 

~I- i R 

~ol) 
- exp ! (i

R 
~I + iRO ~ol) ] 

lim lfl(r,E lfl'(r ,Eo) - fl'(r,E lfl(r,Eo)) 
r~oo 

=A sin{n(E)17'} . 

Hence we conclude that an E is an eigenValue of H (17'/2,0) if 
and only ifn(E) is an integer. By the same method as in case 
(i) we can see that 

TE = 21rlin'(E) . (14) 

V.EXAMPLES 

(I) Let VIr) = - (e/2m)e2r (- 00 <r< 00), then this 
potential satisfies our assumptions (al) and (a2). Further
moresolutionsofT/=A/areJis(e'),J _ is (e'), whereJv is the 

Bessel function of order v and s = ..fT. If 1m A > 0, only the 
latter is square integrable over ( - 00 ,0). It is therefore case 
(i). 

On the other hand, when 0 is a certain value 00 , we can 
calculate the exact eigenvalues of the operator H(Oo). Eigen
values are 

E = - 4W/2m)n2 (n = 1,2, ... ) 

(see Ref. 5,4.14). 
Now we have 

("" dr 2m ("" dr 
TE = 2m JR ~2m(E _ VIr)) = r; JR ~e2r _ e2R 

= (m17'/Ii)e- R = 1T(m/2)1/2( _ E)-1/2. 

Hence solving Eq. (to) we have 

n(E) = - (1/21i)(2m)1/2( - E)1/2 + C, 

where Cis the constant of integration. Set Eo = - 4(e/2m). 
Determining the initial value n(E) = 1 at E = Eo, we have 
n(E) = - (1/21i)(2m)1/2( - E)1/2. According to the results 

xcos ! (L p - Lopo), 
(13) of Sec. IV, Eis an eigenvalue of H(Oo) ifand only if 

If 1 <Ro<R then we have 

(13)--iexP (! lR ~I) 

x[exp (! iRo ~ol)sin! (Lp- L/o) 

+ + exp( - ! lRo ~ol) 

where tan r = ! exp [ - (2/1i)S:O~0Idr] and the constant A 
is independent of r. Therefore if we define the function n(E) 
by 

n(E) = _1_ lim (lr p dr - lr podr) + L [E = V(R)] , 
1TIi r~oo R Ro 17' 

then 
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(1/21i)(2m)1/2( - E)1/2 = n (n = 1,2, ... ), 

that is, E = - 4(e/2m)n2 (n = 1,2, ... ). Thus the formula 
(to) yields exact values of all eigenValues of H (00 ), 

Here we must indicate that the condition (8) is fulfilled 
in the vicinity of r = ± 00 butthe conditions (*) and (**) are 
not fulfilled for large R. 

(II) Let VIr) = (e /2m)(a/r - P~) (0 < r < 00, a> 3/4, 
p> 0, /» 2), then our assumptions (al) and (a2) are fulfilled. 
The roots of the indicial polynomial of the equation T/ = A/ 
are (1 +~1 +4a)/2 and (1-~1 +4a)/2.lfa>3/4, only 
the latter is smaller than -!. It is therefore case (i). If a> 1 
then the condition (8) is fulfilled in the vicinity of r = 0,00. 
Moreover the requirement that the conditions (*) and (* *) 
are fulfilled for sufficiently large R gives that 

/) < 4, otherwise /) = 4 and p< 1. 

Now if R>I, we have 

TE = 2m 100 

dr = 2m p -1/2 100 

dr 
R ~2m(E- V) Ii R ~?_R6 

= (2m/ /)Ii) p -112 B (! - 1/ /),~)R 1 - 612 

=A (P,/))( _ E)1I6-112, 

where 
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A (/3,~) = ~-I(/3ff)-1I6(2m)1I6+ 112B(~ -1!~ ,~). 
Therefore solving Eq. (10) we have 

n(E) =A '(/3,~)( _E)1I6+112/21rli + const, (15) 

where A '( /3,~) = - (2~/(~ + 2))A (/3,~). 
Using (15), we can ascertain the nature of the distribu

tion of eigenvalues of the operator H (0). Let aE be the dis
tance between two neighboring eigenvalues, i.e., eigenvalues 
whose quantum numbers n differ by unity. Then we can 
write, from (15), 

(_ E)I/H 112 _ (_ E + aE)1I6+ 112 = 21rliIA '(/3,~). 

Hence we have 

Il.E = (21rli1 A (/3,~))( - E )112 - 1/6 = 21rliITE . 

(III) Let VIr) = - (ffI2m)/3~ (O<r< 00,/3>0, ~>2). 
Then we have case (ii). Condition (8) is fulfilled in the vicinity 
ofr = 0,00. The requirement that conditions (*) and (**) are 
fulfilled for sufficiently large R gives 

~ < 4, otherwise ~ = 4 and /3< 1. 
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By the same method as in example (II), we have 

aE = 21rliITE' 

where aE is the distance between two neighboring eigenval
ues of the operator H (1T12,0). 
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SchrOdinger's equation for two-body scattering is analyzed in the tunneling range of energy for 
arbitrary, analytic potentials with one barrier. An exact scattering representation is given which 
furnishes a rigorous and efficient basis for the determination of all the eigenvalues of very long life 
and the associated linewidths and resonant responses. The approach is direct and simple enough 
to avoid computation or estimation of wave functions and asymptotic or perturbation expansions. 

I. INTRODUCTION 

In central scattering with potential barrier, bound states 
cannot exist in the tunneling range of energy, but some of the 
sharpest resonances arise injust that range. Such quasireson
ances have been studied widelyl-16 and the key features are 
well understood, but different approaches to the pheno
menon have led to proposals for different approximations 
and a considerable effort has been spent on their compara
tive testing.3

-6 In this connection, an exact treatment of 
SchrOdinger's equation may be of interest because it pro
vides an absolutely reliable basis and standard for the assess
ment and improvement of quantitative approximations. 
Such a treatment will be given here for two-body scattering 
with central singularity of Coulomb type because this simple 
and definite example can best serve an initial illumination of 
the issues and the method of their resolution, which covers 
most other cores as well. 

Even though the narrow quasiresonances below the bar
rier top are the least controversial, the quantitative issues 
raised by them are particularly severe. 15,16 A definitive treat
ment of barrier-top phenomena, moreover, depends on clari
fication of the main set of quasiresonances. The following 
therefore focuses on them by a choice of exact representa
tions of particular usefulness for quasiresonance of very long 
life. 

The understanding of quasiresonance has been en
hanced by the realization that the observed phenomena can 
be regarded as a manifestation at real energy of complex, but 
near-real, eigenvalues. This opens a mathematical approach 
of simplicity and clarity, which recognizes the quasibound 
states as a natural extension of the set of bound states (Sec. 
VI). Unfortunately, the quasibound eigenfunctions do not fit 
into conventional Hilbert spaces, and this has generated 
much interest in the coordinate-rotation method.6,17-19 
which constructs special Hilbert spaces to accommodate 
them. A much more direct approach, however, is from the 
non-self-adjoint eigenvalue problem of quasistationary 
states,20 which can be formulated in a few lines (Sec. III) in a 
physically elementary way. 

It leads immediately to a semiexplicit representation of 
the eigenrelation (Sec. III) which pinpoints the information 
really needed for the prediction of lives, levels, linewidths, 
etc. The mathematical theory begins here to be of numerical 
value because it shows that the expensive computation or 
delicate estimate of wave functions3-6,16,19 is dispensable. 
The eigenvalues depend only on certain scattering coeffi
cients, and accurate information on quasiresonance can be 

deduced quickly (Sec. VI) when adequate information is 
made available (Sees, IV and V) on the dependence of the 
scattering coefficients upon the energy. This is promoted by 
the familiar realization that quasiresonance of long life has 
an essentially quasiclassical character (and the transparency 
of the mathematical approach adopted permits a rigorous 
confirmation of this fact in Sec. III). Adequacy of informa
tion, however, turns out to make severe demands. The levels 
oflong life have a linewidth so narrow that standard, math
ematical WKB theory21 cannot determine them; its power 
must be increased quite substantially (Sees. IV and V and 
Appendix C). 

The first approximation to the eigenvalues, responses, 
and linewidths (Sec. VI) is not novel, of course. The way in 
which it is established (Appendix B), however, points in di
rections different from earlier numerical approaches3-6 be
cause it splits the problem of quantitative refinement 
between, on the one hand, efficient root finding within tiny 
complex disks (Sec. VI) and on the other hand, evaluation of 
the familiar bound-state quantization rule by whatever be 
the investigator's own method of preference. The proof re
lates both parts to connection properties (Secs. IV and V) of 
the SchrOdinger equation, for which successive approxima
tions with error bounds are known.21,22 Estimates of the er
rors from various sources and levels of approximation can be 
assembled from these, but it is not obvious how fruitful such 
a c;liscussion could be outside the framework of tolerances of 
a specific experiment. The main objective here will be to offer 
a definitive guide (Sec. VI) to all the sources of approxima
tion error, including those not suspected by the familiar 
forms of the theory. 

II. FORMULATION 

In central scattering according to SchrOdinger's equa
tion, 

(~/2m)V2\I1 + [E - U(r)] \II = 0, 

for a wave function \II exp( - iEt Iii) in a spherically symmet
ric potential U (r), it is traditional IS to split off the angular 
momentum with the help of spherical harmonics Y'm so that 
\II = r- 1¢'(r) Y'm and ¢'(r) satisfies a radial SchrOdinger equa
tion 

~ d 2f/! ---+ [E- U,(r)]f/!=O 
2m dr2 ' 

U, = U(r) + ~1(/~ 1). 
2m 

(1) 

The following concerns potentials of the type indicated in 
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Fig. 1: smooth, with precisely one maximum (say, U = Um 

at r = r m), tending as r_ 00 to a limit (which will be taken as 
U = 0) and with a central singularity of Coulomb type,23 

rU(r)- - U. <0, as r-D. (2) 

This type of core is chosen here in deference to Kramers23 

and because it is both singular and also involves characteris
tic difficulties at low angular momentum. A large class of 
potentials, including hard-core, multi particle potentials, is 
free of those difficulties and hence is also covered by the 
analysis (Sec. V) for the case of large angular momentum (if 
spherical symmetry of the potential be an acceptable as
sumption). Another class involves difficulties similar to 
those arising for the Coulomb core and can be treated by 
relatively direct modification of the analysis (Sec. V) for the 
case of low angular momentum. A point to note is that the 
scattering-part proper (Sec. IV) of the SchrOdinger problem 
is independent of the nature of the core, while the core-re
flection part of the problem (Sec. V) may depend on the na
ture of the singularity and also on the angular momentum, as 
exemplified by the Coulomb case. 

Such potentials with a single well and a single barrier 
(Fig. 1) possess a nondimensional wave number scale 

K = (2mUm)I/2rmlli (3) 

describing a gross feature of the barrier, and if the potential is 
normalized by choosing the well radius r m' barrier height 
U m' and iii U m as the respective units of length, energy, and 
time, the Schrodinger equation takes the nondimensional 
form 

t/!" + K 2(E - U/ )t/J(r) = 0, U/ = U (r) + / (/ + 1 )/(Kr)2. 

(4) 

Attention will be restricted to angular momenta for which 

21(1 + 1) ~ dU (5) 
K 2 < max -----;J;:- , 

so that the effective potential U/(r) also possesses a well, and 
to positive energies below the maximal potential, 0 < E < U M 

u 

U II 
In I I / 

I / 
E It-....t' 

,. I \._/ 

'i r 

FIG. 1. The barrier potential. The full line represents the typical shape of 
U (F) for real F; the broken lines indicate that of the effective, centrifugally 
corrected potential U/(F) for rather small I (lower curve) and relatively large I 
(upper curve). 
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= max U/(r), because these two conditions are necessary for 
the occurrence of strict quasiresonance. 

Under such circumstances, the tunneling effect pre
cludes bound states and implies time decay for quasistation
ary wave function (so that the energy range envisaged is real
ly not 0 < E < U M' but 0 < Re E < U M)' On the other hand, 
such potentials are associated with states of long "life,,20 

T= -1i1(2Um ImE), (6) 

of primary physical interest because they possess a resonant 
character. Their study must of necessity involve the asymp
totic notion 1'> 1. A question, of course, is how that notion 
relates to a given potential, and it will be shown that it must 
be largely interpretable in terms of the notion K> 1. That has 
long been recognized to be plausible, since excitation by tun
neling is more effective with wider barriers, and "wide" can 
have an intrinsic interpretation only in terms of wave
lengths. The plausibility stops a little short, however, when it 
is recalled that there are no wavelengths in a barrier and that 
the formal scale K may not be representative of the wave 
numbers in all important parts of the field. All the same, (3) is 
a natural, large scale associated with the problem and the 
cautionary implication is mainly that uniform applicability 
of quasi classical approximations is not thereby assured. 

Since the time decay resulting from tunneling must be 
associated with complex values of the energy, the roots of 
E - U/(r), which are the turning points marking the bound
ary of the potential barrier, must also be complex. Their 
central role in the structure of the Schrodinger equation 
makes it logical to give consideration also to complex values 
of the radius. The point emerging therefrom is that a rational 
and direct theory of quasiresonance of long life must neces
sarily involve analysis in two complex variables E and r, in 
addition to asymptotics with respect to a real parameter such 
as TorK. 

The potential U (r) then needs extension into the com
plex plane of r, and the simplest expedient is to envisage an 
analytic potential. Of two grounds on which that appears 
justified, one is that the observational evidence is unlikely to 
distinguish between a smooth potential in C co and a suffi
ciently close, analytic approximation to it. The other is that 
related work on adiabatic invariance24.2s indicates approxi
mation by analytic functions to furnish the most effective 
approach to a theory of precision scattering for general po
tentials in C co. In short, the analytic case is central, and also 
the most illuminating case. 

On the other hand, the complex extension needed below 
is notably economical; U (r) will be assumed analytic on a 
neighborhood of (0,00), however narrow, beyond which it is 
left undefined. A sectorial character6.17.18 of the domain will 
not be required, and conditions on the rate at which U (r)-D 
as r--+oo do not arise in the analysis which follows. 

III. EIGENVALUE PROBLEM 

The analysis of quasistationary states is best related to 
certain wave functions of clear-cut physical character. Fig
ure 2 shows the structure of the complex r plane. For real 
energy in the tunneling range, E - U/(r) in (4) has three real 
roots ro, r l , and r2' and by (6), those roots r.(E) remain close 
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LCD 

FIG. 2. The complex plane of the radius with turning points and Stokes 
lines for near-real energy. 

to the real r axis for decaying states of long life. The figure 
also shows the "Stokes lines" (or "anti-Stokes lines") of (4) 
definable by 

Re r [E - U/(r')] 1/2 dr' = 0, s = 0,1, or 2. Jr, 
Their physical relevance stems from the alternative defini
tion21 that to each Stokes line L; (and only to such a line) 
corresponds a fundamental solution pair u;(r), v;(r) of (4) 
which approach on Lo with increasing distance from the 
origin r, of the Stokes line, the character of progressive 
waves, undamped and unampJified with distance from r,. 
For definiteness u; will denote the wave outgoing from rs 
along L; and Vo the wave incident towards rs. Both are exact 
solutions of (4) on the whole domain of U (r), but they do not 
possess the undamped, progressive character on L; for j =I i. 

The fundamental pairs of physical interest are UO, Vo and 
u"" , v 00' the respective progressive waves on the central 
Stokes line Lo and the farfield Stokes line L"" (Fig. 2), be
cause these lines coincide, for real energy, with segments (ro, 
r1)and(r2, (0) of the real raxis, where then E - U/(r»O. For 
long life (6), they depart only little from the real axis and the 
simple wave character of the respective fundamental pairs 
on Lo and L"" remains symptomatic of the main features of 
their more complicated character on the real-axis segments 
nearby (Sec. IV). This indicates the correct formulation of 
the radiation condition of quasistationary states20 (p. 134) 
that the wave function represents an outgoing wave in the 
farfield: the representation 

t/t(r) = A "" U .00r) + Boo v 00 (r) (7) 

of the (reduced) wave function as a linear combination of 
u"" , v 00 must satisfy 

Boo = 0, A"" =10. (8) 

Asa result of this radiation condition, the wave func
tions cannot be relied upon20 (pp. 33-34, 134) to be square 
integrable in the farfield (Sec. IV) (and the language of Hil
bert space loses some of its customary usefulness). The re
flection process in the inner well (Fig. 1), however, is subject 
to the less global condition20 (p. t03) that the total probabil
ity within the well region be finite, so that t/t(r) E L 2(0,r m ). 

The wave effect of this regularity condition is best described 
in terms of the central representation 

!fIr) = Aouo(r) + Bovo(r), (9) 

in which this condition will determine (Sec. V) the ratio 
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AoIBo=R, (to) 

naturally interpretable as the (amplitude) reflection coeffi
cient at the inner barrier set up by the "centrifugal" effect of 
the angular momentum in (4). 

Since the fundamental pairs are exact solutions of (4) on 
the whole domain of U (r), they must be linearily related, 

(
uo(r)) = S T (U "" (r)) , 
voIr) v 00 (r) 

with constant matrix S T related to the F matrix. 13 Since (7) 
and (9) represent the same wave function t/t(r), it follows that 
the amplitude coefficients are also linearily related, 

with a "scattering matrix" S (E,K) = ((Sij )). The exact eigen
condition for quasistationary states can therefore be written 
quite simply as 

0= B"" 1Bo = S22 + S21AO 1Bo = S22 + S21R. (11) 

It may help to sketch briefly the connection of this 
quasistationary eigenvalue problem with the time-delay ap
proach to quasiresonance, which asks essentially the ques
tion: what stationary states could occur in the laboratory, 
which operates at real E and t! The fundamental pairs uo, vo 
and u 00 , v 00 then describe pure progressive waves along the 
real r axis, and as a solution of (4), the reduced wave function 
¢fIr) of a stationary state must again be a linear combination 

¢fIr) = A ~ uo(r) + B ~ VoIr) = A '00 u 00 (r) + B:' v 00 (r). 

If the wave pairs are normalized appropriately, IA Wand 
IB W represent the outward and inward probability-flux 
densities,20 respectively. To set up such a stationary state, 
the radiation damping due to outward tunneling must be 
compensated by incident radiation from "infinity", so that 
B:' =10. Comparison of the fluxes IB:' 12 and IB~ 12 will then 
yield a measure 

Ip(E,KW = IB~/BSoo 12 

ofthe probability level in the well for unit intensity of inci
dent radiation in the farfield. It is a standard measure of the 
response to excitation (even if only a conservative upper 
bound, because it presumes long action of a spherically sym
metrical, incident radiation). 

Since the wave pairs are related by the matrix S T, the 
stationary-state amplitudes must again be related by the 
scattering matrix S (E,K ), and by (11), the amplitude amplifi
cation is 

(12) 

For most real E, I pi is very small (Sec. VI), but exceptions 
arise near any near-real roots En of (11), where 
I p I a: IE - En 1-1. Quasistationary eigenvalUes En of long 
life therefore predict strong, narrow spectral lines of quasire
sonance, and the response is related closely to the eigenfunc
tion lifetime. 

The search for those eigenvalues, on the other hand, is 
seen from (11) to involve, not the question of approximation 
of wave functions, but only the "connection" question, how 
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fundamental wave pairs are related to each other. The only 
way that Schrodinger's equation enters into the quasireson
ance problem is through the three coefficients in (II) and 
(12), and the concern of the following must be with adequate 
approximation of their dependence onE. Since I pi is so con
servative a bound, moreover, effective quasiresonance re
quires very large I pi, and accordingly requires eigenvalues 
of very long life, and hence, of very small 11m E I, and this 
narrows the enquiry down further. 

For a given potential U (rl andfixed K and /, the charac
teristic form 

S22 + SzlR = ~(E) 
depends only on E. On the one hand, the coefficient ofSchro
dinger's equation is clearly analytic in E, and so are therefore 
its fundamental solution pairs on their common domain of 
definition DE [which includes any neighborhood ofthe real 
E axis on which the turning points remain in the domain of 
U(r)]. It follows that the entries of S Tlinking the wave pairs 
are analytic in E on DE' and so are the scattering coefficients 
S22' Sw R and the function ~(E I. On the other hand, it is well 
known why conservation of probability precludes real eigen
values E in the tunneling range, and ~(E I has therefore no 
positive real roots. For any E> 0, there is therefore a lower 
bound b (EI > 0 for 11m E I at any root of ~(E I with 
E<Re E< liE: Roots of very long life can arise only from 
extremes of the other parameters / and K. 

Unless (51 holds, however, the effective potential U/(rl in 
( I I has no well or barrier and has then only one real turning 
point at real E, so that (uo,vo) = (u co ,v co ) and R = A co I B co • 

Since the regularity condition makes IR I = 1 at real E (Sec. 
VI, the analyticity of R on DE then precludes nontrivial wave 
functions satisfying the radiation condition (81. That nar
rows the scope for eigenvalues of very long life down to ei
ther K>I, or possibly / = 0, K<I. 

However, K is an artificial parameter introduced for the 
mere sake of notation which can be eliminated from (41 by, 
for instance, measuring energy in units of 1i2/(2mr m I, rather 
than of U m • Accordingly, K 2 ~ amounts to the limit of zero 
barrier height, in which there cannot be a quasistationary 
state with Re E>E > O. It follows that eigenvalues of very 
long life are possible only for K 2> 1 in (41, if the potential is 
normalized as indicated there. Of course, this only spells out 
in rigorous terms the long understanding that a large barrier, 
in an appropriate sense, is necessary for quasistationary 
states of long life and lends them a degree of quasiclassical 
character. 

The necessary and sufficient concern of the following is 
therefore with the dependence of the three coefficients in the 
eigenrelation (11) upon E and U (r) when K is large and fixed, 
and the next two sections are devoted to a description of that 
dependence. In that description and later, the word "exact" 
will continue to be used in the sense of the dictionary to 
characterize conclusions following from the definition of the 
eigenValue problem in Secs. II and III without any kind of 
approximation or asymptotic expansion whatsoever. 

IV. PRECISION SCATTERING 

The computation of the asymptotic expansions of scat
tering coefficients in powers of K - 1 is precisely the objective 
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of turning-point connection theory,2l,26 and its application 
leads quite rigorously to the expansions 

co 

roS21- i + Le.(E)K -', 
1 

(13) 

roS22- exP[ - 2KSw(E)] {I + ~d.(E)K-sJ. 
asK-oc, where Sw denotes a familiar WKB wave distance 
specified in (16) below and the common factor r 0 =F 0 is irrele
vant to the eigencondition (11 I. It will emerge, however, that 
such a result fails to yield any information at all on the life T, 
and this theory cannot therefore offer a basis for reliable 
approximations to quasiresonant response and linewidth. 

To remedy this, Lozano and Meyer27 recalculated S21 
and S22 and showed that, if the question of computing the 
quantitative content of the symbols be postponed, then these 
coefficients can be represented by 

roS2I = i exp{ r.iI(E,K )/K J 

- (1 + i){ 1 + fi(E,K )IK Je - 2Ksb
, (14) 

roS22 = e - 2Ksw exp{ i'.i2(E,K)/K J, (15) 

where '.iI' '.i2 represent the functions expanded in (13), fi 
denotes a similarly expandable function, and Sb another 
wave distance specified in (17) below. The second term on the 
right-hand side of (14) had not been given before because 
Re Sb > 0, so that this term is meaningless in the convention
al sense (13) of mathematical asymptotics. The coefficient 
E - U/(r) of(4), however, is clearly an analytic function of E 
and, according to the principle of conservation of probabil
ity,20 is real when E and r are real. It follows27 that some of 
the wave solutions U j , Vi can be defined with a complex-con
jugate symmetry in the rand E planes, which is inherited by 
some of their functionals. By reorganizing the turning-point 
connection calculations so that these properties of analytic
ity and complex E symmetry can be traced through them, 
Lozano and Meyer proved27 the following. 

Precision Scattering Theorem: For the three-turning
point problem defined in Secs. II and III the scattering coef
ficients S21 and S22 in (11) can be represented exactly in the 
form (14), (15) with 

Sw(E,K) = E'[Fo(r)] 1/2 dr, (16) 

F= Uk) -E, 

(17) 

where r. = r.(E,K) and the subscripts on F denote a consis
tent determination of branches of the root. The functions 
'.ij(E,K) and O(E,K), moreover, have the properties that 
'.ij(E,K) is real for real E and, for large enough K, '.ij and 0 
are bounded and analytic in E on a K-independent neighbor
hood DE of the real interval (minrER U/(r), maxrER U/(r)). 

This theorem is a deliberate compromise between the 
pure existence results for scattering coefficients sought by 
functional analysis and the computational approximations 
to them sought by WKB applications. Instead, the theorem 
concentrates on those exact, qualitative features of their 
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structure which have decisive, quantitative implications, 
especially when the wave number scale K is not too small. It 
also removes the need for estimates of eigenfunctions. 16.19 

As a corollary, the first term on the right-hand side of 
(14) is seen to be of exactly unit magnitude when E is real, so 
that the "very small," second term then describes the whole 
deviation of IroS'211 from unity, regardless of any "much 
larger" uncertainties about arg(roS'21)' One thrust of the 
theorem is therefore that analyticity in E, and the principle 
of conservation of probability, permit us to filter certain ex
ponentially small scattering contributions reliably out of the 
(algebraic) asymptotic expansions (13). Since just these con
tributions will turn out to determine the life T, the standard, 
technical meaning of asymptotically larger and smaller is 
seen to be misleading in regard to quasiresonance. 

Such considerations reduce the importance of the 
asymptotic excpansions (13) for scattering, and instead, ~i
rect attention to the WKB integrals (16) and (17). A conSIS
tent scheme of branches has been described27 in detail for an 
equation analogous to (4) and details of the functions I j and 
o are there given. The main issue is that an analytic continu
ation of the fundamental wave pairs must be established 
along a chain of overlapping domains on each of which those 
functions have a coherent approximation. The procedure of 
Lozano and Meyer7 was to construct such a chain below the 
turning points rl> r2 in the r plane (Fig. 2), and determina
tions of(16) and (17) consistent with the theorem were thus 
shown to be arg Fo =.11' and arg FI = 211' at real energy, with 
extension by continuity to slightly complex energy. At real 
energy, therefore, KSw exp( - i11'12»0 and may be inter
preted in the familiar way as the width of the potential well of 
U at the level ReE in units of local, radial wavelengths. 

/ . I 
Similarly. KSb > 0 at real energy and-if the potentia bar-
rier were not just the place where there are no waves
should be interpreted as the barrier width of U/ in such units. 

The scattering analysis also provides a check on the ra
diation condition (8). The WKB approximation to u"" is 

u..,(r)-c""F:lexp{KS..,(r)!, s..,(r) = L[F.., (s)] 1/2 ds. 

where c denotes a normalization factor and F 00 (r) the 
branch of the function Fin (16) and (17) appropriate to the 
farfield. The determination consistent with those just men
tioned iS27 arg F 00 = 11' on L.., • and as r_ 00 along the real 
axis. where U/(r)-D. this gives S.., -E 1/2r exp(i11'/2). The 
phase of the full, farfield wave function A.., r- I 
u 00 Y/m exp( - iEt ) is therefore 

Im{Ksoo - iEt! -KrReE 1/2 - tReE, 

as r-oo along the real axis. and this describes an outgoing 
wave for Re E> 0, as it must be in the tunneling range. The 
radiation condition (8) therefore implies the intended wave 
character in the farfield even if L 00 should leave the domain. 
However. 

Re{Ksoo - iEt) -t ImE - Kr ImEI/2, 

as '_00 along the real axis and for positive life [as it will be 
seen in Sec. VI to be predicted by (11)). the wave function 
decays both at fixed position and at fixed phase, but at fixed 
time, it grows with increasing r. While this mathematical 
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growth is exponential and precludes convergence of 
fltf112 dr, the magnitude of KIm E 1/2 will emerge in Sec. VI 
to be so small, that the growth is postponed to very large 
distances. 

V. REFLECTION 

The regularity condition tf1(r) E L 2(0,r m) (Sec. II) identi
fies a particular solution of SchrOdinger's equation (4) as ad
missible.lts representation in terms of the central wave pair 
(uo,vo) (Sec. III) requires an analytic continuation through 
the inner barrier of U/(r), which is detailed in Appendix A for 
potentials of Coulomb type. 

For angular momenta large enough to regard I (I + 1)1 
K 2 as bounded from zero, but not too large to satisfy (5), this 
is done by an extension ofWKB theory23.28 analogous to that 
used27 in the proof of the Precision Scattering Theorem: 
asymptotic estimates for large K are first used for a tentative 
identification of the analytic continuation of the reduced 
wave function around the inner turning point ro (Fig. 2), and 
analyticity and conservation of probability are then used to 
make that identification exact. This covers also singular, 
multiparticle potentials for 1>0, if they are spherically sym
metrical. 

For small angular momentum, the inner turning point 
lies within a distance of order K -2 of the Coulomb singular
ity at r = 0, and both these singularities must then be treated 
simultaneously. This is also done in Appendix A by an exten
sion of Kramers,23 analysis of achieve estimates of the neces
sary precision and uniformity. 

The result is an exact representation of the reflection 
coefficient as 

R = e - i7T(1/2 + 20') exp[iK -lIo(E,K)], (18) 

with Io again analytic in E on DE' bounded for large K, and 
real for real E, and with angular-momentum correction 

a1./)=1 +!- [1(/+ 1)]112 (19) 

(which is one of those proposed by Kramers23
). 

While this result is es~ablished both for small and large 
angular momentum [such that u = 0 (K -1)], the proof (Ap
pendix A) leaves a gap for 1 <I<K. The correction u, how
ever, is massive only for I = 0 and decreases so rapidly with 
increasing angular momentum [e.g., 0'(4) = 0.028 only] that 
the difference, if any, between (19) and the exact correction 
at intermediate I should be rarely significant. 

VI. EIGENVALUES 

For states of long life, it is advantageous to split the 
characteristic form of ( 11) into two parts 

S22 + S21R = iro- 1R {ao(E,K) + al(E,K)}. 

with 

ao = exp[ - 2Ksw + 211'iu + iI21K - iIoIK] 

+ exp(iIIIK), 

al = (i - 1)(1 + OIK)exp( - 2Ksb), 

by (14), (15), and (18) because ao has a set of real roots E, 
given exactly by 
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K ISw(Er,K)1 + (l:1 -l:2 + l:o)l(2K) = (n +! + U)1T, 
(20) 

with non-negative integer n. In dimensional notation, that is 
the familiar quantization rule with first approximation 

(2m)'12{'IEr - U,(r)I'/2dr 

=(n+~ +U)1rli[1+0(K-2)], (21) 

U/(ro) = U/(r l ) = Er , 

where U/ is given by (1) and (ro,rl ) is the U,-well interval of 
the radius at the level Er • 

Since U (r) is monotone increasing on (O,r m) (Fig. 1), the 
exact rule (20) is known to determine a unique, real Er(n) for 
all n such that still 

Er(n) <maxrER U/(r) = UM • 

With the zero level of energy adopted here (Fig. 1), the nega
tive roots Er(n) are the bound levels, because a, = 0 for 
Re E<O. The positive roots are not eigenvalues, but it has 
long been understood20 that eigenvalues of long life should 
be close to them. The results of Secs. IV and V support a 
mathematical proof (Appendix B) that precisely one, simple 
eigenvalue En exists very close to each Er(n) < U m - a with 
any fixed a > 0, and also that there are no other eigenvalues E 
of long life with Re E < U m - a. 

The proof is of some interest because it uses the degree 
principle to establish a rigorous computational basis for the 
efficient determination of the eigenvalues by complex root
finding procedures restricted to only very small disks (Ap
pendix B). As a starting point for such computations, more
over, it provides a first approximation 

En - Er(n)- - !(1 + i)[K Is ~(Er,K)I]-1 
xexp[ - 2KSb(Er,K)] {1 + O(K -I)}, (22) 

where a prime denotes differentiation with respect to E. The 
corresponding approximation for the life is 

Tn =1i/(2Um ImEn) 

-(IlK /Um)ls ~(Er(n),K)lexp[2KSb(E.(n),K)] 

-(2m/Um)1/2rm Is ~(Er(n),K)lexp[(8mUm)1/2 
Xr mSb(Er(n),K )Iii], 

with Er(n), S~, and Sb given by (20), (B2), and (17). This is 
novel only in that it is half the life predicted by the corre
sponding approximation of Connor and Smith4-6 and an 
even smaller fraction of Child's. 7 Appendix C explains why 
this is merely an appearance of discrepancy arising from the 
unreliability of customary approximation procedures in the 
non-self-adjoint quantum mechanics of processes with radi
ation damping weak enough to call for exponential preci
sion; the interpretation of ~'approximation" then becomes 
almost totally dependent on the fine print (Appendix C). 
With just the right interpretation, on the other hand, such 
approximations may have remarkable quantitative value far 
beyond the range for which they were constructed.6 

Since the exponential proximity of the eigenvalues to the 
real energy axis makes the linewidth so narrow, quantitative 
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questions of practical interest may often concern less the 
closer computation of the lives than that of the resonant 
levels of approximations to the functions ~j in the quantiza
tion rule (20). In this respect, the proof indicates the correc
tions arising from central reflection to be potentially as im
portant as those arising from scattering, and for small 
angular momentum, where the former pose more of a chal
lenge, the uniform analysis of Appendix A may be of help. 
Unless the wave-number scale is extremely large, moreover, 
the exponential level corrections indicated by the real part of 
(22) may compete in quantitative significance with those 
arising from the functions l:j in the conventional quantiza
tion rule (20). 

It is not clear whether a quantitative assessment of these 
corrections for the very general class of potentials here cov
ered (Sec. II) could be a profitable undertaking. The present 
account limits itself to showing how the analysis of Appen
dix A and that underlying27 Sec. IV construct all those cor
rections from connection relations for which successive ap
proximations with meticulous and realistic error bounds are 
known.2l ,22 

For a more theoretical point of view, it may be of some 
interest to note the representations obtained for the quasista
tionary extension o/the exact, bound-state quantization rule 
(20). They are (11) and ao + a l = 0, of course, and in more 
longhand notation, 

KSw = (n +! + u)1Ti + i(l:2 - ~0)/(2K) 

- ! log{ eil:,IK + (i - 1 )(1 + n/K)e - 2Ksbj , (23) 

with K, SW' and Sb given, respectively, by (3), (16), and (17), 
with l:j and n defined implicitly in Sec. IV and Appendix A 
and represented explicitly in Ref. 27, and with the principal 
branch of the logarithm, for definiteness of the quantum 
number n. In all the function symbols in (23), the argument 
of the function is understood to be (En,K,l). 

The response p(E,K ) = (S22 + S2lR ) -I to excitation at 
real energy requires consideration also of the factor Yo in (14) 
and (15), which is27 exp[ - K(Sb + Sw)]{ 1 + O(K -I)}. 
Thus I pl2 has an exponentially large maximum 

I pl~ax = exp[2K5b(Er(n),K)] (I + O(K -I)} 

at each quasiresonant energy level given by (20) and (22), but 
the width of the energy band over which this response ex
ceeds half its peak value is only 

2 Re(Er -En) = - 2 1m En = rn 

= [Kls~lexp(2KSb)]-I{l +O(K- I)}, 

and over nearly the whole interval between successive such 
levels, the response is only of the exponentially small order of 
its minimum, 

I PI~in -1 exp[ - 2KSb]· 
These are again first approximations to quantities of expo
nential order and are therefore (Appendix C) dependent on 
the exact interpretation of (20); other interpretations2

-
12 can 

give quite different formulas of equal validity. 
This extreme character of quasiresonance moderates as 

the energy level increases because Re Sb decreases. Life and 
response decrease accordingly, and the bandwidth increases 
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in inverse proportion to the life. There are indications that 
the results of this section may extend to energy levels ap
proaching the barrier top to within 0 (K -I), but then the life 
and response cease to be large, the bandwidth broadens to 
almost 0 (K -I), and different scattering representations are 
more suited to the study of barrier-top phenomena. 

ACKNOWLEDGMENTS 

The author is indebted to Dr. P. R. Certain, Dr. J. N. L. 
Connor, Dr. B. K. Holmer, Dr. C. Lozano, and Dr. B. 
McLeod for valuable advice. 

The work was sponsored by the United States Army 
under Contract No. DAAG29-80-C-0041 and partially sup
ported by the National Science Foundation under Grants 
No. MCS-8001960 and No. MCS-8215064. 

APPENDIX A: ANALYSIS OF REFLECTION 

In the computation of the reflection coefficient (10), a 
distinction between large and small angular momenta arises 
in the Coulomb case, and it is convenient to begin with the 
case of quantum numbers I so large that 

IIi + 1)/K2 =..1 2 

can be regarded as a parameter independent of K. Then U/ in 
(4) is independent of K and only a more precise version of 
quasiclassical analysis23

•
28 is required. As long as (5) holds, 

U/(r) still possesses a well and quasiresonance may occur at 
energies of real part between min U/ and max U/, to which 
attention will therefore be restricted. All three roots ro, rl , r2 

ofF(r) = Ut(r) - E arenowindependentofK. The branches 
chosen for (16) and (17) are based on arg F 0 (ro) = 1Tforreal E 
and are consistently extended by arg(r - ro) = - 17" for real 
r E (O,ro) (Fig. 2) to match the analytic continuation of Sec. 
IV passing below the turning points in the r plane. The do
mains of validity of simple asymptotic approximations to 
solutions of (4) are restricted by conditions29 that prevent the 
domain Do containing the Stokes line Lo (Fig. 2) from reach
ing points in (O,ro)' where the regularity condition can be 
plainly interpreted. To reach them, the domain D _ of L_ 
(Fig. 2) is needed, which lies below ro and overlaps with Do. 
ThebranchF _ ofF appropriate for L_ hasarg F'_ (ro) = 317" 

for real energy, and the corresponding wave variables 

s_(r) = {[F_(t)P/2dt ·onD_, 

so(r) = L [Fo(t W/2 dt on Do 

are therefore related by 

S _(r) = so(r)e;'T on D _() Do, 

(AI) 

(A2) 

even at nonreal energy. [The function Sw (E,K) of Sees. IV 
and VI is thus seen to be to(r I (E,K)) in the notation of this 
appendix.] 

Langer's transformation21 of(4) near ro is 

t- = ~312, ~r) = (1r) -1/2WIt ), 
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and casts (4) into the form 

d 2W 
dt 2 = (K

2t + lP_IW, 

with a function lP _ satisfying the hypotheses of Olver's21 
Theorem 9.1 (p. 417). Accordingly, (4) has a fundamental 
solution pair '1/1" 'I/Is with first approximations 

'I/I,(r)-( 1r) -1/2 Ai(K2/3t), 

(A3) 

'I/I,(r)-( i,.) -1/2 Bi(K2/3t), 

in terms of standard Airy functions Ai, Bi as K_~, uni
formlyforbounded It \.In (O,rol,arg s- is near zero for near
real energy and the same holds for arg t. Therefore, 'I/I.(r) 
does not yield a wave function square integrable in the well 
and only mUltiples of 'I/I,(r) are admissible. 

To translate this into~xact information on the central 
reflection coefficient R requires the representation of 'I/I,(r) in 
terms of the wave pair (uo,uo) of Lo (Fig. 2) which has WKB 
approximation 

(A4) 
uo(r)-coF 0- 1/4e- Ks.(,)[ 1 + O(K -I)], 

for Iso I bounded from O. That representation can be obtained 
from the asymptotic approximation21 

- Ai[K 2/3t] 

_!1T- I / 2K -1/6t -1/4e - 1T112[ eKs- [1 + 0 (K -I)] 

+ e-1T112e-KS-[1 + O(K -I)]} 

on Lo, where arg S = 17" and, accordingly, 

'I/Ir(r)-~1T-1/2K - 1/6F = 1/41 eKso("[ 1 + 0 (K -I)] 

+ e1Ti12e - Kso("[ 1 + O(K -I)] J. 
Comparison with (9) and (A4) now shows 

R = AoiBo = e- i1T/2 + O(K -I) 

in (10). 

(A5) 

This is the result of standard, quasiclassical23
•
28 theory 

and is again inadequate for information on the life Tbecause 
its degree of accuracy destroys the chance of using the new 
information of the Precision Scattering Theorem in the ei
gencondition (11). Nor would the asymptotic expansion of R 
help in that respect. However, the key to the proof 27 of the 
Precision Scattering Theorem (Sec. IV) lies in the observa
tion that qualitative information on the errors may suffice 
for turning an asymptotic approximation to wave identifica
tion, such as (A5), into an exact identification. By their ap
peal to conservation of probability, Lozano and Meyer7 

showed that uo, Uo can be normalized so that the error terms 
in (A4) are complex conjugates of each other for real E. As a 
wave function of (4), 'I/I,(r) is similarly normalized to be real 
for real E and r, and the error terms in (A5) are then also 
complex conjugates when E is real. It now follows from the 
comparisonof(9),(A4),and(A5)thatIR I = 1 exactly for real 
E. Furthermore, since the solutions of (4) depend analytical
lyon E, so does the functional R, and its exact form must be 
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(A6) 

with l:o again analytic in E on DE' bounded as K-\I:), and 
real for real E. 

It may be noted that the analysis just sketched makes no 
reference to the specific nature of the singularity of U (r) at 
r = 0; it covers all cores for which the inner turning point is 
well separated from the central singularity. 

As the angular momentum decreases, however, the 
turning point ro of the Coulomb case moves closer to the 
singular point r = 0 of the potential, and standard, quasi
classical analysis begins to fail because more careful account 
must be taken23 of the central singularity. For smallirol, the 
Langer transformation for (4) is21 to variables 

t 1/2 = L rIo(t)] 1/2 dt, W(t) = ( irJ/2 
tP(r), 

where /orr) is a branch of U (r) - E. The Schrodinger equa
tion (4) then takes the form21 

d
2
W = [K2 + 1(/+ 1) + ¢o]w: 

dt 2 4t t2 t' 
where 

¢o = 1(1 + II[r-2(!!!:)2 _ t -2] + (!!!:)1I2~(dt)1I2 
t dt dt dt 2 dr 
satisfies the hypotheses of Olver's21 Theorem 9.1 (p. 458). 
Accordingly, (4) possesses a pair of exact solutions tP" tPs 
with approximations in terms of modified Bessel functions 

Im,Km, 

tP,- [t /(4/0)]1/4{I2/ + dKt 1/2)[1 + O(K -2)] 

+ (Bot 1/2/K)I2I+2(Kt I/2)[1 + O(K -2)] J, (A7) 

tPs - [t 1(4/0)] 1/4{K2I+ dKt 112) + O(lt 1I2/K I)], 

as K-\I:) for fixed 1, uniformly in a domain including the 
Stokes lineLo (Fig. 2), if 1//4 is that branch of[E - U(rWI4 
on which [r /0 exp( - hr)]1/4_U!."4>Oasr-o, by (2). From 
the properties of the Bessel functions, 2 

1 

K- 21 - lr- 1- ItPr and K 2/ + 1ytPs 

are seen to approach nonzero limits as r-o for fixed K and 1. 
For angular momentum I> 1, tPs thus fails to be square 

integrable in the well and cannot contribute to the wave 
functions. The case I = 0 will be considered at the end of this 
appendix. 

To obtain the exponential precision needed for informa
tion on the life T, it will again suffice to combine the exact 
results quoted with a first approximation to tP, on a suitable 
segment of the Stokes lineLo (Fig. 2) and to this end, a more 
precise version of Kramer's analysis23 is needed: The func
tion r 1 ~/2e - ;'T12 = z(r) is analytic on a neighborhood of the 
real interval of the radius r extending from 0 to near Re r l 

and 

r dz 1 
---- asr-o. (A8) 
z dr 2 

[In other words, r may be thought of as a measure of the 
radius more directly related to the Schrooinger equation (4).] 
While dz/ dr has a root on the domain of z(,), (A8) still assures 
a K-independent domain A including the origin on which the 
inverse r = r(z) is analytic, and for z e A, the functions 
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z dr -2 --=g{;;:;-) 
r dz 

1 
and-

g(Z2) 

are also analytic. For fixed angular momentum I, the root '0 
of U1(r) - E is 

r = 1(/+ 1)[1+0(/(/+ 1))] 
o K2U. K 2 ' 

by (2) and (4), and A therefore contains z(ro) and the image of 
a segment of the Stokes lineLo (Fig. 2), and so does a subdo
main AoCA on which Igl is bounded. As z-o in A, more
over, 

z-2(2g- 1 - 1) = h (z2J-lim[ E - U(r) - r- 1U. ]/U., 
,-I) 

so that h (r) is also analytic for z e A and Ih I and Ih 'I are 
bounded for z e Ao' Furthermore, 

t 1/2e - ;'T12 = {g(t 2)dt = 1/(z), 

and from (A 7), 

tP, -(1TK )-1/2/0- 1I4e(1 + 3/4)17"i 

Xcos[K1/-(/+~)1T+O(IK1/I-I)] (A9) 

on a neighborhood of Lo within Ao. 
While (A9) looks like a wave representation of tP" it is 

important23 that 1/ differs slightly from the natural wave 
variable So of(4) defined by (AI). If 

,ze - i"Fo(r) = y2 

[so that y2 may be thought of as a measure of r -'0 more 
directly related to the Schrodinger equation (4)], then 

r = y2 + A 2, with A 2 = 1 (I + 1)1 K 2 = const. 

and from (A 1), 

-i17"/2 dso y e -=-, 
dr r 

e- irr12 ~o = y2~r) = g(r) [ 1 _ (~)} 

and ifU 2/r = dtPldy, then 

tP( y) - tP(0) = 1TA - U arccot( y/ A ) 

and 

e- irr/2 dso + dtP =g(r)[ 1 + ..1. 2 h (r)]. 
dy dy 

Therefore, 

e - irr/2so(r( y)) + "'( y) - "'(0) -1/( y) 

= f{ g(t 2+A2)[1 +A 2h(t 2+A. 2)] -g(t 2)Jdt 

=A. 2f:g(t2){h(t 2) +~ + 0(..1. 2)}dt. 

Since g'(t 2)1g(t 2) = - tg(t 2)(h + !th') is also bounded for 
teAo, 

eirrI2so(r) + tP( y(r)) - tP(0) = 1/( y(r)) + 0 (A 211/( y)1) 

asA 2 = 1(1 + 1)/K 2-o, (AlO) 

for z = r1/2[E - U(rW/4 e Ao. Note that this estimate holds 
uniformly on K-independent domains of the radius r that 
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contain the origin and on whichg = (z/r)dr/dz, h (Z2) and h ' 
are analytic and bounded. By contrast, estimates restricting 
attention to small Irlleave larger error-order terms in the 
quantization rule. 

The approximation (A4) describes the wave pair (uo,vo) 
on a neighborhood of La-segments on which 1501 has positive 
lower bounds, and there fo(r)/Fo(r) = 1 + A 2/y2 
= 1 + 0 (K -2) and 1]( y(r)) = 1](z(r)) + 0 (A 2) so that (A9) 

and (AIO) show the approximate 50-wave representation of 
t/I r to be there 

tPr -(1TK )-1/2F 0- 1I4e(l + 3/4)7Ti 

xcos[K5ae-7Ti/2 -1T/4 -1Ta(/) + O(IK501-1)], 

(All) 

with 

u(1) = I+! - [1(1 + 1)p/2. 

Comparison with (10) and (A4) now shows 

R = e-i17j1l2+2u) + O(K -I). 

(A12) 

This result is again insufficient for any information on 
the life T, but since the wave function tPr is again normaliza
ble to be real for real E and r, it follows again that IR I = 1 
exactly for real E and therefore 

R = e-I17j1l2+2u) exp[iK -1'I-o(E,K)], (Al3) 

with 'I-o still analytic in E on DE' bounded as K - 00 and real 
for realE. 

For I = 0 (K), this result contains (A6) and it appears a 
plausible conjecture that (Al3) holds for all angular mo
menta because the root roof U/ - E moves with increasing 1 
close to the point where order and argument of the Bessel 
function in (A 7) are equal, and for large order 21 + 1, that is a 
turning point where the Bessel function has an Airy repre
sentation21 corresponding to that encountered in (A3). A un
ified representation of the wave function tPr for all angular 
momenta might therefore exist, and would yield a further 
clarification of the quantization rules. 

Since a uniform approximation of t/lr up to the central 
singularity r = 0 of the potential (which is not mapped on 
any 50) is obtainable only in terms of; 1/2 = ;1], this is the 
variable used in the mathematical theory21; besides, 50 
differs from 1] only by correction terms tending to zero in the 
wave region as K - 00, and mathematical usage favors sim
ple variables uncontaminated by correction terms. That can 
be shortsighted, for in terms of1], the wave representation of 
tPr is given already by (A9), but the corresponding reflection 
coefficient 

R7j = e- 37Ti
/2 exp[iK -1'I-7j(E,K)] 

is quite different from (A6) and agrees with (A13) only for 
1 = O. Its use in the eigencondition would lead to an integer 
quantization rule, unless proper account, after all, is taken of 
the difference between 50 and 1]. 

The case of zero angular momentum I = 0 is exceptional 
in that a treatment of reflection on the basis of (1) is depen
dent on the premise that (1) can be regraded as valid uniform
ly for r> O. If that is accepted and if the usual20 (p. 103) 
condition t/J(O) = 0 is applied, the case 1 = 0 will be seen to be 
included in the analysis just given. For I> 1, the premise is 
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only that (1) can be extended into the core to radii <K -2. 

APPENDIX B: PROOF OF EIGENVALUES 

A useful approach to the determination of the eigenval
ues may be based on the analytic dependence of the scatter
ing structure on the energy E, which follows directly from 
Schrodinger's equation (4). To this end, the dependence on E 
of the characteristic form of (11) will now be considered for 
fixed quantum numbers n, 1 and for a./ixed, large wave-num
ber scale K such that minreR U/(r) = Umin has a negative 
upper bound and - a < Er(n) + a <maxreR U/(r) = UM for 
some fixed, small a > O. 

As connection functionals, n and'I-j for j = 0,1,2 are 
analytic in E on the intersection DE of the domains on which 
the turning points rslE) and their derivatives drJdE are 
defined for s = 0, 1, and 2 by 

U/(r.(E)) = E. 

Since the domain of U (r) is assumed (Sec. II) to include (0, 00 ) 

and the r. are real positive for real E E (Umin'UM ), DE con
tains a neighborhood of that real E interval. Admittedly, ro 
may be within distance 0 (K -2) of the singular point r = 0 of 
U(r), but thendrofdE = O(K -4) only, so that no severe re
striction on DE arises therefrom. Accordingly, 

DE=>{O<ReE<UM-a, lImE I <8.1 =S, (Bt) 

for some 8. > 0 and independent of K. A close, lower bound 
for the width 28. of the strip S (Fig. 3) of analyticity of the 
connection functionals would be pleasing, but must depend 
on closer specification of the potential U (r) within the very 
general class admitted in Sec. II. 

From (16), since F = Uk) - E = 0 at r = r.(E), 

1 Ir
•
IE

) aF. 5 ~(E) = - [Fo(r)] -112_0 dr 
2 rotE) aE 

also exists on DE' and for real Er , 

5 ~(Er,K) = ~i7Tl2f'IEr - U/(r)I-1/2 dr-:l=O. (B2) 

The phase integral (17) is similarly analytic on the strip S; 
admittedly, it has a singular point at E = 0, but this singular
ity has no adverse effect on the following and places no addi
tional restriction on 8 •. 

The reflection coefficient R is also analytic on S, by (18), 
and it cannot have a root in S. The common factor Yo in (14) 
and (15) is27 exp[ - K(5b + 5wl] (I + O(K -I)}, and since 
5b and 5w are analytic, Yo I cannot vanish either in S. Ac-

,--- ----, 
I, S J 

--~-----------+~---. ~ 
HE 'U 
-----'''' 

FIG. 3. The strip S in the complex E plane, and a disk N E' 
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cordingly, ~o and ~ I (Sec. VI) are also analytic on S and any 
eigenvalueoflife T>~28s Um) must be a root of ~o + ~I inS 
(unless Re E differs from UM by less than the arbitrarily 
small a> 0) and conversely, any root of ~o + ~I in S is an 
eigenvalue. 

The quantization rule (20) assures precisely one real root 
E, of ~o in S for the given n and by (B2), it is a simple root. 
Since ~o is effectively a function of KE, rather than E, there 
is a ~ > 0 and independent of K such that the function ~o(E) 
maps any disk N E about E, of radius < ~I K one-to-one onto 
an image NA with simply connected boundary aNA' A 
choice of the disk radius as small as 

IK5~(E,lI-lexp[ -K5b(E,)] =~E 

suffices to assure 1~1/~01 < Ion aNA and, since 5b(E,) >0, 
even moderately large K will make ~ E < ~s and < ~ I K. By 
Rouche's theorem, accordingly, ~o + ~I must have precise
lyone, simple root En in thesmalldiskNE ofradius~E about 
~. . 

Conversely, 5 ~ is pure imaginary and 5 b' real, at real E, 
so that a positive ~I ".K~s and independent of K assures 
1.101> 0 and Re 5b ~a > 0 in S for 0 < 11m E I "~I/K. If an 
eigenvalue E. of multiplicity p can be found in S (Fig. 3), 
then any disk about E. of radius d II K (with d I independent 
of K) must have a perimeter on which ~(E) winds p times 
around the origin and on which 1.1/(.10 + adl < 1, pro
vided dl is small enough, but exceeds a sufficient multiple of 
exp( - 2Kalp). By Rouche's theorem, such a disk must con
tain a root of ao(E). For large K, a choice making d I < ~ 1/2 
can assure all this and hence, if E. is not one of the eigenval
ues En' then di/K + lImE. I >~I/K, so that E. has rela
tively short life 

T <fZK 1(~IUM)-;:::;;rm~I-I(2mIUm)1/2 

(Fig.1). 
The condition Re E < U M - a with fixed a> 0 is suffi

cient for these proofs, but unlikely to be necessary, because 
Re5b~OforrealE"UM' while 15~ 1-00 asE-UM , so that 
the conjecture is plausible that a could be replaced by al K to 
carry the preceding arguments even closer to the potential
barrier top. A proof of this extension, however, would re
quire a closer analysis of the functions l:j and n than appears 
profitable, since a different representation of the scattering 
coefficients is more effective for the study of barrier-top phe
nomena. 

APPENDIX C: EIGENVALUE APPROXIMATIONS 

The full, quasistationary quantization rule (23) has the 
exact representation 

exp[ - 2K5w(En) + (2n + 1 + 20')1Ti - il:(En)IK 
+ ve-KS,J.Enl _ ve-Ksb(Enl] 

= 1 + (i - l)exp( - 2K5b(En) + iw(En)IK), (C1) 

where l: = l:o + l:l -l:2' W = -l:l - iKlog(l + nIK), 
and for the sake of clarity of structure, the notation sup
presses the residual dependence of 5 w' 5 b' l:, and w upon K, 
since the main K dependence has, for large enough K, al
ready been made explicit. In the redundant terms, v is a 
number independent of E and K. The following addresses 
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the situation in which K is large enough and the energy level 
is kept sufficiently below the barrier top for 15 b (E) I not to be 
small. 

A procedure adequate for the proof of Appendix B was 
to define an E,(n) by a direct extension 

2K5w(E,) = (2n + 1 + 2u )1Ti - il:(E,)/K (C2) 

of the bound-state quantization rule to quantum numbers n 
and energies E, beyond those at which bound levels can ex
ist. If now l:(E,) is to be determined quantitatively, e.g., by 
its complete asymptotic expansion with respect to K, then 

2K5w(E,) = (2n + 1 + 20' )1Ti - il:(E,)/K + ve -KS,J.E,1 
(C3) 

is entirely equivalent to (C2) in the standard mathematical 
sense of asymptotics. If (C3) determines E" then (C1) be
comes 

exp[2K {5w(E,) - 5w(En)J + iK -I {l:(Er) -l:(En)J 

_ ve- 2KSb ] 

= 1 + (i - l)exp( - 2K5b(En) + iw(En)/K), (C4) 

and since 5w and l: are analytic, lEn - Er I must be very 
small and an obvious, close approximation to exp[ ] in (C4) 
is 1 + [ ], while a consistent approximation to the braces is 
that linear in (En - Er), so that 

2K (E, - En)5 ~(E,){ 1 + il:'(E,)/(2K 25~) J - ve - 2KSb 

_(i_1)e- 2Ksb{1 +O(K-I)j, 

with primes denoting again d IdE. From (B2), 5 ~ = il5 ~ I, 
and to the same order of approximation, 

E -E __ 1 +(l-v)i e- 2Ks,J.E,I{1 +O(K-1)J 
n, 2K 15~1 ' 

(C5) 

instead of (22). Of course, the rough steps from (C4) to (C5) 
could be imprOVed to match the accuracy of those from (C 1) 
to (C4) by working out the full asymptotic expansion 

of the brace in (C5), but this would not change the factors in 
front of the brace. 

The choice v = 1/2 gives Connor and Smith's~ first 
approximation for life and linewidth, but of course, the stan
dard mathematical sense of approximation in terms of ex
pansions or series admits any other number v equally well! 

Mild objections to an arbitrary choice of v arise when it 
is observed that (C3) does not determine a strictly real E,(n), 
unless v is purely imaginary. A desire to preserve the com
plex-conjugate symmetry structure in the energy plane 
created by conservation of probability suggests that only 
such v should, perhaps, be used. In that case, v influences 
only Re(En - E,) in (C5), and all that we have done by the 
introduction of the redundant terms into (C1) and their sub
sequent use in (C3) and (C5) was to shift a correction term 
from the first step (C3) of approximation to the second step 
(C5) or vice versa. Indeed, v = - i is an attractive choice 
annihilating Re(E n - E,} to first order, and if the procedure 
is executed a little more systematically, it permits us to deter-
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mine Er(n) from a modification of (C3) so that 
Er(n) = Re En' exactly. Whether that be the most rational 
guideline for the organization of the approximation proce
dure, must depend largely on taste or special cases. The 
choice v = 0 in Sec. VI served only the purpose of easing the 
reader's task by writing the first step (20) as a literal exten
sion of the familiar quantization rule. 

The point to be noted is how, in a context demanding 
exponential precision, whether by rigor or de/acto, the cus
tomary approximation rules, proven universally reliable 
over many generations and proven "mathematically cor
rect," can become unreliable to an unsettling degree. Simi
larly disturbing issues arise in the application of numerical 
analysis in such a context. 

It may be appropriate to add here that the apparent dis
crepancy between (21) and the formula4-6 of Connor and 
Smith has prompted careful checks on the calculations re
ported here and earlier,27 which have shown (21) to be not 
misprinted; with the exact interpretation of (20), it is the 
correct first approximation for long life. Connor and Smith,6 

on the other hand, have demonstrated numerically that just 
the right use of their different formula can produce results of 
remarkable, quantitative excellence. The present study does 
not go far enough to indicate more than a glimmer of the 
reason for that; the exact result (23) holds the key. 
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many more references can there be found. 
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Previo~sly de~ved Blatt-Jackson type formulas for Coulomb corrected scattering lengths are 
generahzed to mclude the effect of an additional strong interaction potential in first Born 
approximation. It is shown that the strong model dependence on the hadronic interaction is 
considerably reduced as soon as the finite extent of the charge is taken into account. 

I. INTRODUCTION 

From the point of view of experiment, charged particles 
are particularly suited for the investigation of the interaction 
between hadrons. On the theoretical side, however, this 
raises the problem of combining (resp. disentangling) the 
proper short-range hadronic forces from the electromagnet
ic ones. Here it is important I to take into account not only 
the Coulomb force but also other effects such as vaccum 
polarization and electromagnetic orbit-orbit interactions. 

The theoretical questions raised by this superposition of 
forces are characterized by the fact that the effective expan
sion parameter e2

/ k of the Coulomb interaction becomes 
large at small energies. The Coulomb effect at low energies 
eludes a perturbative treatment. This is particularly signifi
cant in the discussion of hadronic interactions in the low
energy limit; see, e.g., the Landau-Smorodinski version for 
charged particles of the effective range expansion for the 
scattering phase shift. To deal with this situation it is helpful 
that one can treat in closed form the superposition of the 
Coulomb force with part of the short-range interaction in the 
zero-range limit. This treatment2-4 not only gives approxi
mate formulas for scattering amplitudes, scattering lengths, 
level shifts in mesonic atoms, etc., but also a systematic ex
pansion for the corrections due to finite range of the ha
dronic forces. To make the approach--of expansions around 
zero range-into a practical tool for the discussion of 
charged few-body systems it is desirable to further include 
other "small" but not necessarily short-range effects such as 
the non-Coulomb electromagnetic forces in a systematic 
way. Earlier studies of the scattering length in particular 
models have indicated that such effects should be significant, 
e.g., in discussion of the charge symmetry of the nucleon
nucleon system. In the present paper we present a consistent 
theoretical method for their inclusion as perturbations of the 
zero-range-plus-Coulomb model and exemplify this method 
for the scattering length. 

Based on appropriate scaling techniques (following the 
low-energy expansion in Ref. 5) we generalize previously de
rived Blatt-Jackson type formulas for Coulomb corrected 
scattering lengths by including the effect of an additional 
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strong interaction potential in first Born approximation. 
Our main results show that under the assumption of charge 
symmetry the strong model dependence on the hadronic in
teraction inherent in Blatt-Jackson type formulas if point 
charges are considered is strongly reduced as soon as the 
finite extent of the charge (described by a suitable charge 
form factor) is taken into account. 

In Sec. II we first treat strongly interacting particles and 
extend some of the results in Refs. 2 and 5 concerning the 
short-range (E-) expansion of neutral scattering lengths. The 
inclusion of an additional hadronic interaction potential in 
first Born approximation (based on the Gell-Mann-Gold
berger formula) is discussed at the end of Sec. II. Strongly 
interacting pointlike charged particles are considered in Sec. 
III. The results of Ref. 2 concerning the short-range expan
sion of Coulomb modified scattering lengths are extended 
and again an additional strongly interacting potential is 
treated in first Born approximation. A comparison of Cou
lomb modified scattering lengths and their neutral counter
parts exhibits a strong model dependence on the hadronic 
interaction due to the pointlike character of the charges. In 
Sec. IV we remove the pointlike nature of the charge and 
explicitly introduce a charge form factor to describe the fin
ite extent. As described above this results in a considerable 
reduction of the model dependence when comparing 
charged and neutral scattering lengths under the assumption 
of charge symmetry. Our final formula [cf. Eq. (4.49)] pro
vides an extremely simple and handy tool for the comparison 
of the ISO proton-proton and neutron-neutron scattering 
lengths. Strongly singular interactions are briefly treated in 
Sec. V. 

II. ZERO-RANGE DISTORTED BORN APPROXIMATION 

Throughout this section we assume the potential VI to 
be a real-valued measurable function on (0, ~ ) obeying 

foR drlrVI(r)1 <~, Loo dr rl VI(r) I <~, 
for some R > O. (2.1) 

Given condition (2.1), the following self-adjoint Hamilto
nians (defined as form sums6

) are introduced in the Hilbert 
space L 2((0, ~ )): 

d 2 

ho = - dr' '@(ho) = H ~,2((0, ~ )) (Ref. 7), (2.2) 

hi = ho+ VI' (2.3) 
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hl(E)=ho+(1 +A,IE)VI' A, 1e9P\{0}, E>O, (2.4) 

hI,,, = E- 2 U"h l (E)U E- 1= ho+(1 + A, IE)E- 2 VI,E> 

E>O, VI,E(r) = VI(r/E), (2.5) 

where UE , 

(U"f)(r) = E- I
/
2 f(r/E), E>O, feL 2((0,00)), (2.6) 

denotes the unitary scaling operator in L 2 ((0, 00 )). Of special 
interest are the regular FI(r), FI(E,r), FI,E(r) and irregular 
GI(r), GI(E,r), GI,,,(r) solutions associated with (2.3H2.5). 
From now on, to avoid complex expressions, we mainly dis
cuss the quantities associated with hl(E) [from which the one 
corresponding to h I can be obtained by taking the limit 
E-<l+ and those for h I,E are given by scaling arguments, cf. 
Eq. (2.5)]. As discussed in Appendix A, regular and irregular 
solutions associated with hl(E) uniquely fulfill the integral 
equations 

FI(E,r) = r - l'dr'(r' - r)(1 + A,IE)VI(r')FI(E,r'), (2.7) 

FI(E,r) = ff I (E)r - (00 dr' go(r,r')(1 + A,IE)VI(r')FI(E,r'), k ~~ 
GI(E,r) = I + Loodr'(r' - r)(1 +A,IE)VI(r')GI(E,r'), (2.9) 

where 

{
r', r' <r, 

go(r,r') = 
r, r'>r, 

(2.10) 

denotes the "unperturbed" Fredholm Green's function asso
ciated with ho and ffM) is the Jost function corresponding 
to hl(E), i.e., 

YI(E) = I + 100 
dr(1 +A,IE)VI(r)FI(E,r) 

= W(GI(E).FI(E)), (2.11) 

where 

W(G,F)=G aF _FaG 
ar ar 

(2.12) 

denotes the Wronskian of G and F. If ffl==ffl(O) 
= W(GI.FI) represents the Jost function associated with hi 

we have to distinguishS the following. 

Case L' ff I ¥= 0, That is, hi has no zero-energy resonance 
[and hence FI(r) and GI(r) are linearly independent]. 

Case n' ff I = 0. That is, h I has a zero-energy reso
nance,4,8-10 

In the latter case (which turns out to be the important 
one for applicationsS

), FI and GI are multiples of each other. 
Therefore, in case II we introduce the irregular solution G I 
for h I as the unique solution of 

GI(r) = [1 00 
dr' r'VI(r')FI(r')] -Ir 

+ Loo dr'(r' - r)VI(r')GI(r'). (2.13) 

Note that GI(r) fulfills W(GI.Ft) = 1 (cf. Appendix A). In 
connection with Eq. (2.13) it is important that one can prove 

100 

dr' r'VI(r')FI(r')¥=O if ffl = 0 (2.14) 

(cf. Appendix A). This solves a problem raised in Ref. 8 (cf. 
also Appendix C in Ref. 10). 

The importance of case II, i,e., of ff I = 0, for certain 
kinds of applications has been discussed in great detail in 
Ref. 5. Here it suffices to note in case II, h I,E describes a 
Hamiltonian with effective range parameter of order 0 (E) 
which converges to the point-interaction Hamiltonian in 
L 2((0, 00)) in norm resolvent sense as E-<l + (in case I, h I,E 
converges to ho as E-<l+). More precisely, if r l denotes the 
effective range parameter corresponding to h I then as E-<l + 
theeffectiverangerl,E ofh I,E obeysrl,E = Erl + O(~), Asa 

.. ....0+ 

consequence, h I,E is able to model hadronic interactions by 
choosing E small enough. From now on we always assume 
case II (ff I = 0), 

Next we study the low E behavior of ff I(E). For this 
purpose we first note that (in case II) ff I (E,r) [in addition to 
Eq. (2.7)] also uniquely satisfies 

FI(E,r) = FI(r) - A,IE l'dr' gl(r,r')VI(r')FI(E,r'), 

where 

gl(r,r') = GI(r)FI(r') - GI(r')FI(r) 

(2.IS) 

(2,16) 

denotes the Green's function associated with hI' Iteration of 
Eq. (2.15) yields 

FI(E,r)~+FI(r) -A,IE[l'dr' Ff(r')VI(r')]GI(r) + A, IE [l'dr' GI(r')VI(r')F1(r')]FI(r) 

+ A, ~~[l'dr' FI(r')VI(r')GI(r')f: dr" F~(r")VI(r")]GI(r) -A, ~~[fdr' Ff(r')VI(r') 

xl" dr" FI(r")VI(r")GI(r")]GI(r) -A, f~[l'dr' Gf(r')VI(r')l" dr" F~(r")VI(r")]FI(r) 

+ A, ~ ~[l'dr' FI(r')VI(r')GI(r') l"dr" FI(r") VI(r")GI(r") ]FI(r) + 0 (~), (2.17) 

where by the relations analogous to those of (A4HA 15) in Appendix A, (1 + r) -10 (e) is uniformly bounded with respect to 
r>O. Obviously FI(E,r) is entire in E,r. Inserting expansion (2.17) into Eq, (2.11), observing ffl = 0, (2.1) and Lebesgue's 
dominated convergence theorem after some integrations by parts yield 
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3'1(E)~+ -AIE[LOO dr rVI(r)FI(r)] -ll°Odr F~(r)VI(r) + A ~e[l°O dr rVI(r)FI(r)] - I 

X {f" dr F;(r)0;(r)Ldr'[F;(r')]2 - 1"" dr[F;(r)]2Ldr' F;(r')O ; (r')} + O(~). (2.18) 

Clearly 3'1(E) is entire with respect to E. 

By scaling arguments, Eqs. (2.7) and (2.11) imply 

FI,E(Er) = EFI(E,r), (2.19) 

3' I,E = 3' I(E), (2.20) 

GI,E(Er) = GI(E,r), (2.21) 

where the left-hand sides of Eqs. (2.19)-(2.21) correspond to h I,E' 
Moreover, introducing the scattering length al(E) associated with hl(E) (cf. Appendix C) we get for E small enough 

al(E) = [3'I(E)] -1(1 + AIE)l"" drrVI(r)FI(E,r). (2.22) 

Equations (2.19) and (2.20) imply 

al,E = Eal(E), (2.23) 

where al,E denotes the scattering length corresponding to h I,E' In particular, Eqs. (2.17), (2.18), (2.22), and (2.23) finally yield 

al,E E-=:;J -Ali"" dr Ff(r)VI(r)] -1[1"" drr VI (r)FI(r) r -E[l°O dr Ff(r)VI(r)] -1[1"" drrVI(r)FI(r) r 
+ E[I"" dr Ff(r)VI(r)] -11

00 
drrVI(r)FI(r) {1°Odrr VI (r)OI (r)Ldr' Ff(r')VI(")-I"" drrVI (r)FI(r)fdr' 

XOI(,,)VI(")FI(r')} - E[I"" dr Ff(r)vI(r)] -2[i"" dr rVI(r)FI(r) ] 2 {i""dr F; (r)O; (r)fdr' [F; (r')] 2 

- i"" dr [F; (r)] 2i'dr' F; (")0 ; (r')} + 0 (e) = a\O) + Ea\l) + 0 (e). 
° ° E-+O+ 

(2.24) 

As has been discussed in Ref. 5, a\O) represents the scattering 
length of the point interaction Hamiltonian mentioned 
above. For the generalization of the result (2.24) to non
spherically symmetric interactions cf. Refs. 2 and 5. At this 
point we note that a I,E would be of order 0 (E) as E-o + if one 
considers case I (3' I ¥O) instead of case II (3'1 = 0). 

In order to take into account leading-order effects of an 
additional potential gV2, gEfJt, we assume V2 to be a real 
measurable function obeying 

lR drl V2(r) I < 00, Loo dr r I V2(r) I < 00 

for some R > O. 
We define the form sum in L 2((0,00)) 

hE(g) = hl,E +gV2, 

(2.25) 

(2.26) 

and note that the regular solution associated with h" (g) ful
fills 

FE(g,r) = FI,,,(r) - g Edr' gl,,, (r,r')V2(")FE(g,r'), (2.27) 

where 

gl,E(r,") = GI,,, (r)FI,E(") - GI,E(r')FI,E(r). (2.28) 
By the Gell-Mann-Goldberger formula (cf. Appendix C), 
aE(g), the scattering length associated with hE(g) for E and Igl 
small enough, is given by 

aE(g) = al,E + aI2,E(g), 

where 
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(2.29) 

(2.30) 

and 

= 3'1,E + g i"" dr G1,E (r)V2(r)FE (g,r). (2.31) 

Clearly, FE (g,r) as well as 3' 12,E (g) are entire in g (apply
ing, e.g., Poincare's theorem II and dominated convergence) 
and thus for E small enough, aI2,E(g) is analytic ing around 
g = O. The leading contribution is given by the so-called 
Born term a~2,E(g) 

B Loo 
[FI,E(r)]

2 

a I2,,,(g) =g dr -- V2(r). 
° 3'tIE) 

(2.32) 

Equation (2.8) and (2.18)-(2.20) then imply (r' = Er") 

_I,E_ = r _ (1 + AlE) dr" r" VI(r") E ~E,r F (r) i'IE F( ") 

3'1,.. ° y I,E 

_ (1 + AIE)r (00 dr" VI(r") FI(E,r") 
J/E 3'1,E 

= r + [AliOO dr Fi(r)VI(r)] - 1 
£_0+ 0 

X [I"" dr r VI (r)FI (r) r 
- (1 + AIE)r (00 dr' VI(r') FI(E,") + 0 (E), (2.33) 

J/E 3'1 (E) 
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where 0 (E) is uniformly bounded with respect to r>O by the 
remark following expansion (2.17) and by condition (2.1). 

Since 

1
(1 +AIE)rl"'dr' VI(r') F1(E,r') I 

,1£ Y1(E) 

<const(~)[ 1 + (~)] - J: dr' r'(l + r'JI V1(r')I, 

(2.34) 

we obtain 

FI.£(r) = r + [AI ('" dr Ff(r)Vl(r)]-1 
Y I .£ £-+0+ Jo 

X [l"'dr rVI(r)Fl(r)f + 0(1) 

= r - a\O) + 0(1), (2.35) 
£---0+ 

where o( 1) is uniformly bounded with respect to r>O. Apply
ing Lebesgue's dominated convergence theorem finally 
proves 

a~2(g) =g i'" dr[r - a\0)]2V2(r) + go(l) (2.36) 

and thus 

a£(g) = a\O) + Ea\l) + gi'" dr[r - a\01]2V2(r) 
£--+Il+ ° 

+ O(~) + go(l) + O~). (2.37) 

where a\Jl, j = 0,1 are defined in Eq. (2.24). 
In case V2 is nonlocal and/or contains a velocity de

pending part l
, a~2.£(g} in Eqs. (2.36) and (2.37) has to be re

written in the form 

a~2.£(g) = g fO r dr ¢'(r)( V21P)(r), 

with 

¢'(r) = 1 - a\O)r- I. 

(2.38) 

(2.39) 

In particular, if V2 is local but nonspherically symmetric, 
Eq. (2.36) can be generalized to 

a~2.£(g) =g(417) -I r d 3x ~(lxIlV2(x), (2.40) 
J.9P 3 

under suitable conditions on V2• 

III. COULOMB-PLUS-ZERO-RANGE DISTORTED BORN 
APPROXIMATION AND POINT CHARGES 

In this section the real-valued potential VI is assumed to 
fulfill 

i
R 

dr rlVI(r)l < 00, L"'dreb'IVI(r)! < 00, 

for some b,R > O. (3.1) 

Analogously to Sec. II we introduce in L 2(0,00)) the Hamil
tonians (form sums) 

hy=ho+rr- I, .@(hy)=H~·2((0,00)), r>O, (3.2) 

hl.£-y{E) = ho + Err-I+Ay(E)VI' E> 0, 

Ay(E) = 1 + AloE + Ao1rc In c, Alo,A.01e~, (3.3) 
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hl,r.£ = c-2U£hl,£-y(E)U £ I 

= ho + rr- I +Ar (c)c- 2VI ,E' 

c>O, VI,E(r) = V1(r/C). (3.4) 

If Fr (r)(Gr (r)) denote the (ir)regular zero-energy solutions 
corresponding to hr 

Fr(r) = r-lI2rl/2/1((41'r)1/2), (3.5) 

Gr(r) = (4rr)1/2Kl((4rr)1I2) (3.6) 

[/IIz), K 1(z) the modified Bessel functions of order one12
], 

then F 1,£-y(c,r)(G 1,£-y(C,r)), the (ir)regular zero-energy solu
tions associated with h 1,£-y(E), uniquely fulfill 

FI.£-y(E,r) = r - I dr'(r' - r)[ Ar(E)VI(r' ) 

+ Er(r') - 1 ]FI.£-y(c,r') (3.7) 

as well as 

FI.£-y(E,r) = FI(r) - I dr' KI(r,r'){ [Ar(EI - 1] VI(r') 

+ cr(r') -I}FI.£-y(c,r' ) (3.8) 

and 

GI.£-y(c,r) = G£-y(r) + Ar(c)i'" dr' KEr(r,r')VI(r') 

X GI.£-y(E,r'), (3.9) 

K£-y(r,r') = G£-y(r)F£-y(r') - G£-y(r')FEr(r) (3.10) 

Iil(r,r') defined in Eq. (2.16)]. Similarly the Jost function 
YI.Er(E) corresponding to h 1.£-y(C) reads 

YI.£-y(E) = 1 + Ar(c)l'" drG£-y(r)VI(r)FI,£-y(c,r), (3.11) 

and the Coulomb modified scattering length a 1,£-y (E) is given 
by 

a1,£r(E) = [Y 1.£-y(E)] - 1Ar(E) lao dr F £-y (r)V1 (r)F1 ,£-y (E,r), 

(3.12) 

as long as Y l,Er (E'J:;f O. By the scaling property in Eq. (3.4), 
by Eq. (3.7), and from 

Fr(Er) = EF£-y(r) = Er + !r(Er)2 + O(~), (3.13) 
£--+Il+ 

Gr(c,r) = G£-y(r) 

= 1 + crr In(Err) + [2 Ctf - 1 ] Err + 0 (~ In E), 
£--+Il 

+ (3.14) 

where CC denotes Euler's constant, 12 we get 

F1,r,E(Er) = cFI,£-y(E,r), 

YI,r,E = Y 1,£-y(E), 

GI,r,E(Er) = G1,£-y(E,r), 

(3.15) 

(3.16) 

(3.17) 

al,r,E = Eal,£-y(E), (3.18) 

where the quantities on the left-hand side of Eqs. (3.15)
(3.18) refer to h I,r .... 

Similar to Sec. II, h I,r,£ has a Coulomb modified effec-

tive range parameter of order rl.r." = Ero + o(E) as E-o+ 
......0+ 

and hence is able to model hadronic interactions of charged 
particles if one considers again case II, i.e., Y 1 = O. A care-
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ful analysis shows that this is still insufficient to get nontri
vial results for al,r," as E-<l+.2 In fact, the considerations 
following Eq. (3.21) imply that the assumption 

YI=O 

and 

is needed. It turns out that if and only if both conditions in 
assumption (3.19) are fulfilled, h I,r," converges in norm re
solvent sense to the Coulomb plus point interaction Hamil
tonian as E-<l +. If at least one condition in (3.19) is not 
fulfilled, h I,r," simply converges to hy as E-<l+.2 

AOI = [1"0 dr F~(r)Vl(r)] -Ii'" dr rVI(r)Fl(r) (3.19) 
Adopting conditions (3.19) for the rest of this section we 

now study YI,r," as E-<l+. Iterating Eq. (3.8), one obtains 

x {[Ar(E) -1] VI(r') + Er{r,)-IJ +A ~I yc In2 E{GI(r)fdr' FI(r')VI(r')GI(r')f'dr" Fi(r")VI(r") 

- GI(r)fdr' Fi(r')VI(r')f'dr" FI(r")GI(r")VI(r") - FI(r)fdr' Gi(r')VI(r')f'dr" Fi(r")VI(r") 

+FI(r)fdr' GI (r')F1 (r')VI(r')f: dr" FI(r")GI(r")VI(r")} + O(c In E), (3.20) 

where e- br O(c In E) is uniformily bounded in r>O for all b>O by the estimates (Bl) and (B2) of Appendix B. Inserting 
expansion (3.20)into(3.11), observingEqs. (3.15), (3.19) and Y I = o yields by (3.1) and dominated convergence after various 
integrations by parts 

YI,r," = YE[2~ - 1] ('" dr rVI(r)FI(r) - AIOE[ ('" dr rVI(r)FI(r)] - 1('" dr VI(r)Fi(r) + yE In(y) 
.. ---.0 + Jo Jo Jo 

x i'" dr rVI(r)Fl(r) + yE i'" dr rVI(r)Fl(r) + 2YE[l'" dr rvl(r)Fl(r)] -Il'" dr FI(r)F; (r)ln(r) 

+ yc In E[i"" dr rVI(r)Fi (r)] - 2[i"" dr rVI (r)F1 (r) ] 3 { - i"" dr[ F; (r)] 2 f dr' F; (r')G; (r') 

+ i"" dr F;(r)G ; (r)fdr'[F;(r')]2 - i"" dr rVI(r)Fl(r) + i""dr Fi(r)Vl(r)J + O(c In E). 

Equations (3.11), (3.12), (3.15), (3.18), and (3.21) finally imply 

al,r," ~+i"" dr rVI (r)FI(r) { 2y~ i"" dr rVI(r)Fl(r) - AIO[i"" dr rVI(r)FI(r)] - Ii"" dr VI(r)Fi (r) 

+ yin (Y)i"" dr rVI(r)Fl(r) + 2y [i"" dr rVI (r)FI (r) ] -1"" dr FI(r)F; (r)ln(r)} - I 

- YE In2 E[i"" dr VI(r)Fi(r)] -2[i"" dr rVI(r)Fl(r)]4{ - i"" dr[ F; (r)]2fdr' F; (r')G; (r') 

+ i"" dr F; (r)G; (r) f dr' [F; (r')] 2 - i"" dr r VI (r)F1 (r) + l"" dr Fi (r) VI(r)} {2Y~ i"" dr rVI(r)Fl(r) 

- AIO[i"" dr rvl(r)Fl(r)] - Ii"" dr VI(r)Fi (r) + yin (Y)i"" dr rVI(r)FI(r) + 2y [i"" dr rvl(r)Fl(r)] - I 

X i"" dr FI(r)F; (r)ln(r)} - 2 + 0 (E In E) 

== a\~~ + (E In2 E)a\~~ + 0 (E In E). 
.. ---.0+ 

A comparison with Ref. 2 (where also nonspherically sym
metric interactions VI are discussed) shows that a\~~ repre
sents the Coulomb modified scattering length of the Cou
lomb plus point interaction Hamiltonian. Again we are 
interested to take into account in leading order of the cou
pling constant g the effect of an additional (real-valued) po
tential g V2, gEfYI. Assuming 
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i
R 

drl V2(r) I < 00, L"" dr ebrl V2(r) I < 00, 

for some b,R > 0, 

we introduce in L 2((0, 00 )) the form sum 

hr, .. (g) = hl,r," +gV2· 
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The regular zero-energy solution associated with hy.E (g) ful
fills 

Fy.E(g,r) = FI.y.E(r) - g r dr' gl.Y.E(r,r')V2(r')Fr.E(g,I), ~ . 

(3.25) 

where 

gl.r.E(r,r') = GI.r.E(r)FI.r.E(r') - GI.y.E(I)FI.r.E(r). (3.26) 

As discussed at the end of Appendix C the Gell-Mann
Goldberger formula for ar.E (g), the Coulomb modified scat
tering length associated with hy•E (g), reads for E and Igl small 
enough 

ar.E(g) = al.r.E + a12•r.E(g), 

where 

(3.27) 

(g) = (00 d FI.r.E(r) V. () Fr.E(g,r) (3.28) 
aU •r.E g Jo r.'7 2 r.'7 (g) ° l.r.E 12.r.E 

and 

.'712•r .E (g) = .'71.r.E + g 1
00 
dr GI.r.E (r)V2(r)Fr.E (g,r). 

(3.29) 

Again by Poincare's theoreni;11 Fr.E(g,r) and .'712•r.E(g) are 
entire with respect to g. Since .'712•r .E (g) and .'71.r.E are non
zero for E small enough, aI2,r,E(g) is analytic in g around 
g = 0 and we introduce the Born term a~2.r.E(g) 

B i ood [FI •r .E (r)]2 a12•r.E (g) =g r -- V2(r). 
° .'71.r.E 

(3.30) 

With the help of the Fredholm integral equation for F l.r.E (r) 
we obtain by Eqs. (3.13H3.16) and (3.21) (cf. Sec. II) 

FI.r.E (r)/.'7 I.r.E 

= Fr(r) - Gr(r){A } -I (00 dl I VI (I)FI (I) + 0(1) 
£-+0+ Jo 

(3.31) 

where 0(1) is uniformily bounded with respect to r>O and 
{A } is defined by 

{A I = r[2~ - 1] 1
00 

dr rVI(r)FI(r) - AJO 

From 

X [1"0 drrVI(r)FI(r)] -11
00 
dr VI(r)F~(r) + rln (r) 

X 1
00 
dr rVI(r)FI(r) + r 1"0 dr rVI(r)FI(r) 

+ 2r [LOO dr rVI(r)FI(r)]-1100 dr FI(r)F; (r) In (r). 

(3.32) 

!
Ar(E)Fr(r) (00 dl GEr(I)VI(I) FI.Er(E,I) ! 

J/E YI.Er(E) 

<const r-IFr(rl! {A } 1- l(rlE)[ 1 + (rIE)] -I 

X (00 dl 1(1 + 1)1 VI (r') I = 0(1), as E-o+, (3.33) JrlE 
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we finally get as ,in Eq. (2.35) 

FI.r.E(r)IFI.r.E ~+Fr(r) - a\~~Gr(r) + 0(1), (3.34) 

wherebyEqs. (3.33)and(BI),e- br 0(1) is bounded uniformi
Iy in r>O for all b > O. An application of Lebesgue's dominat
ed convergence theorem then yields 

a~2.r.E(g)~+g 1
00 
dr[ Fr(r) - aT.~Gr(r)]2V2(r) + go(l), 

(3.35) 

and hence 

a (g) = a(OI + (E In2 E)a(11 + gi
OO 
dr[F (r) r.E I.y I.y Y 

£-+0+ ° 
- a\~~Gy(r)]2V2(r) + O(EIn E) +go(l) + O~), 

(3.36) 

where a~y,j = 0, I were introduced in Eq. (3.22). 
If V2 contains nonlocal and/or velocity-dependent 

parts I or if V2 is local but nonspherically symmetric, Eqs . 
(3.35) and (3.36) can be generalized according to Eqs. (2.38)
(2.40) 

Finally, we discuss an application of Sees. II and III 
concerning the comparison of charged and neutral scatter
ing lengths. 

Assuming charge symmetry, i.e., 

(1 +AIEo)Vl(r) = [I +AloEo +AolrEo In Eo] VI(r), (3.37) 

whereAol is given by (3. 19) and Eo = rofrl with ro the numeri
cal value of the range of the nuclear force (rl the effective 
range parameter of hi)' and taking IA-IEol = II - Ay(Eo)\ 
<lgl<l, one obtains from Eqs. (2.36) and (3.36) the approxi
mations 

and 

[aEO (g)] - I::::: [a\OI] - I - g 1
00 

dr{ [a\OI] - Ir - I} 2V2(r) 

(3.38) 

[ar.EO(g)] -I::::: [a\~~] -I - g 1
00 

dr{ [a\~~] -IFy(r) 

- Gy(rWV2(r), (3.39) 

and hence by Eqs. (3.37) and (3.22) 

[ ay.Eo 
(g)] - I::::: [ a

Eo 
(g)] - 1 

+ r[ 2~ + 21
00 
dr ;I(r~; (r)ln ~~], (3.40) 

where terms of order 0 (gy2 In2 r) have been neglected and 
where 

;I(r) = - [LOO dr rvl(r)FI(r)] - IFI(r), 

(3.41) 

denotes the zero-energy resonance function of h I normalized 
to ;I(r) = 1+ 0(1). In the special caseg = 0, Eq. (3.40) has 

1"-+00 
been derived in Refs. 2 and 3 and independeatly in Ref. 4. In 
partic., approximation (3.40) exhibits a strong model de
pendence of this Blatt-Jackson type formula expressed by 
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the presence of the zero-energy wave function ~l(r) as dis
cussed in details in Ref. 2. For original references as well as 
the literature related to Eq. (3.40) we refer to Refs. 13-15 and 
the literature in Refs. 2-4. 

IV. EXTENDED CHARGES 
In this section we extend our previous considerations 

and include a description of extended charges in terms of 
form factors. 16 

Let cpc: (O,oo)-g,fl be a locally absolutely continuous 
function with 

L"" dreb'ICPC(r) - 11 < 00, forsomeb,R>O (4.1) 

In addition we assume that 

ICPC(r) - CP('olr"l.,;;const r"+p., 

for some CP~OIEg,fl and for some p, v> O. 

Next we introduce in L 2((0,00)) 

h ~y(E) = ho + Eycf>C(Er)r- l
, 

.@ (h ~y (E)) = H ~,2((0, 00 )), E, Y > 0, 

h ~ = E- 2 UEh ~y(E)U;-1 = ho + ycf>C(r)r- l
, 

.@ (h ~) = H ~,2((0, 00 )), 

(4.2) 

(4.3) 

(4.4) 

hLEy(E)=h~y(EH(I+AIE)VH E>O, A I Eg,fl , (4.5) 

h~,y'E =E- 2 UEhLEy(E)UE- I =h~+(l +AIE)E- 2VI,E' 

E>O, VI,E(r) = VI(rIE), (4.6) 

where VI is real valued and obeys condition (3.1). For rea
sons analogous to those in Sec. II we assume case II, i.e., 
Y I = 0 throughout this section. The (ir)regular solutions 
F~,Ey(E,r) [G ~'Ey(E.r)] associated with h ~,Ey(E) uniquely obey 

F~'EY(E,r) = r - fdr'(r' - r)[(l + AIE)VI(r') 

+ Eycf>C(d)(r') - I ]F~'EY(E,r'), (4.7) 

F~'EY(E,r) = FI(r) - fdr' KI(r,r')[AIEVI(r') 

+ Eycf>C(d)(r') - I ]F~,Ey(E,r'), (4.8) 

F~'EY(E,r) = F~(E,r) - f dr' 8"EY(E,r,r')(1 + AlE) 

X VI(r')F~'EY(E,r'), (4.9) 

GLEY(E,r) = G~(E,r) + 1"" dr' ~y(E,r,r')(l +AIE) 

X VI(r')G ~'EY(E,r'), (4.10) 

where gl(r,r') has been defined in Eq. (2.16) 

8"EY(E,r,r') = [Y~(E)] - I [G~(E,r)F~(E,r') 

- G ~y(E,r')F~(E,r)], 

Y~(E) = W(G~(E),F~(E)). 

(4.11) 

(4.12) 

Here F~(E,r)[G~(E,r)], the (ir)regular solutions corre
sponding to h ~(E), uniquely fulfill 

F~y(E,r) = F EY(r) - EY [dr' gEY(r,r') [cpC(d) - 1] 

(4.13) 
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G~(E,r) = GEy(r) + EY 1"" dr'gEy(r,r')[ cpC(d) - 1] 

X(r')-IG~(E,r') (4.14) 

[Fy' Gy, gy were introduced in Eqs. (3.5), (3.6), and (3.10)]. 
For E small enough the Coulomb modified scattering length 
associated with h ~.EY(E) is given by 

a~,Ey(E) = [YLEy(E)] -1(1 +AIE)i"" dr F~y(E,r) 
X VI(r)F~'EY(E,r), (4.15) 

Y~'Ey(E) = W(G~'EY(E),F1.EY(E)) 

= 1 + [Y~y(E)] -1(1 +AIE)i""drG~(E,r) 

X VI(r)F~'EY(E,r). (4.16) 

Scaling properties of Fy(r), Gy(r) [cf. Eqs. (3.13) and (3.14)] 
and Eqs. (4.7) and (4.10) imply 

F~(Er) = EF~(E,r), (4.17) 

G~(Er) = G~y(E,r), (4.18) 

Y~ =Y~y(E) 

= 1 +Yi""drGy(r)[CPC(r)-l]r-IF~(r), (4.19) 

F~,y'E(Er) = EF~'EY(E,r), (4.20) 

G~,y,E(Er) = G~'EY(E,r), 

YLY,E = Y~'Ey(E), 
(4.21) 

(4.22) 

a~,y'E = Ea1.Ey(E). (4.23) 

As in Sees. II, and III, the quantities on the left-hand side of 
Eqs. (4.20)-(4.23) belong to h ~,y,e 

Following our strategy in Sec. II and III, we again con
centrate on the small E behavior of Y~'EY(E). Iterating Eq. 
(4.8), we obtain 

F~,Ey(E,r) = FI(r) -AIEGI(r)i'dr' Fi(r')VI(r') 
E--o+ 0 

+ A I EFI(r)[dr' GI(r')FI(r')VI(r') 

- EI + "ycf>('oIGI(r)[dr' Fi(r')(r')V-I 

+ EI + "ycf>('OIFI(r)fdr' FI(r')GI(r')(r't+ I 

+ {
O(EI+,,+p., if v+p<l, 
° (c), if v+,u>l, (4.24) 

with,u,v> 0, v< 1. Heree - b, ° (e l + v+p.l if v +,u < 1 [resp. 
e - b, ° (e) if v + ,u> 1] is uniformly bounded with respect to 
r>O for all b> 0 by estimates of the type (B 1). 

Next we have to expand G ~y (E,r). Taking d = r" in Eq. 
(4.14) leads to 

G~(E,r) = GEy(Er) + ey r"" dr" gEY (r,r" IE) [CPC(r") - 1] 
JE' 

x(r")-IG~(r"). (4.25) 
Using 

gEy(r,r" Ie) = E-IgEY(Er,r"), (4.26) 

Eq. (4.19), and several integrations by parts one infers after a 
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straightforward but lengthy calculation that 

[Y~] -IG~y(E,r) 

= 1 + EYr In (y) + 2'6' Eyr + [Y~] - I 
£--0+ 

XEyr roo dr' In(r') ~{Gy(r')GCy(r')[<I>C(r') - 1] J Jo dr' 

(r)l+v {O(EI+V+I-') lI.+v<1 _ EI + v __ y<I>~ + ' r- , 

1 + v ( ) ° (~), # + v;;> 1, 

#>0, O<v< 1, (4.27) 
whereO(E I +v+l-')if# + v< 1 [resp.° (e)if# + v;;> 1] isuni
formly bounded with respect to r;;>O. Insertion ofEqs. (4.24) 
and (4.27) into (4.16), observing Y I = 0, and several integra
tions by parts finally lead to 

Yt£y(E)~+ EY In(y)l°O dr rVI(r)FI(r) - AIE[l°O dr rvl(r)FI(r)] -1100 

dr Fi(r)VI(r) + Ey2'6' l°Odr rVI(r)Ft(r) 

1
00 Loo d + [Y~] - lEY 0 dr rVI(r)Ft(r) 0 dr' In (r') dr' {Gy(r')G ~(r') [<I>c(r') - 1]J - Et + vy<I>(O) 

X [1 00 

dr rvl(r)Ft(r)] - 1100 

dr Fi(r)rV- I - EI + Vy<I>(O) 100 

dr Ft(r)(r')V- 1+ EI + V(l + v) - ly<I>(,O) 

{

O(EI+V+I-') v+#<l, 

xiOOdrr1+VVI(r)FI(r) + ' #'V>O, v<l. 

o ° (e), v+#;;>I, 

(4.28) 

In the special case v = 1 the corresponding expansion of YI.£y(E) can be easily obtained. Since the result involves consider
ably long expressions we omit the details. Next we note that Eq. (4.2), together with 

F~(E,r) = r - Ey f dr'(r' - r)<I>C(€r')(r') - IF~y(E,r') (4.29) 

immediately imply 

# + v;;> 1, 

For v;;> 1 the corresponding expansion reads 

oty.£ = E0I.Ey(E) ~ o~~ + ° (E), (4.32) 
E~+ 

where the ° (E) term can be written down explicitly. In order 
to avoid too lengthy expressions we omit further details. 

As in Secs. II and III we finally introduce an additional 
interactiong V2, gEf7l. Assuming V2 :(O, 00 J-~ to be measur-
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I 
able and 

lR dr!V2(rJl < 00, Loo dr eb'!V2(r)! < 00, 

for some b,R > 0, 

we define in L 2 ((0,00)) 

h ~.E(g) = h ~.y.E +gV2• 
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The corresponding regular function uniquely fulfills 

F~.E(g,r) = F~.r.E(r) - g [dr' t;.r.E(r,r') 

X V2(r')F~.E(g,r'), (4.35) 

,..c (r r') - [yc ] -I [Gc (r)Fc (r') .51.r.E' - l.r.E l.r.E l.r.E 
- G tr.E(r')F~.r.E(r)]. (4.36) 

For E small enough the two-potential formula (cf. Appendix 
C) then implies for a~.E(g) the Coulomb modified scattering 

length of h ~.E (g) 

aC (g) - aC + aC (g) r.E - l.r.E 12.r.E' (4.37) 

where 

L

"" FC (r) F C (g r) 
aC (g) = dr _I._r _ V (r) r.E ' 

12 g yc 2 yc (g) 
o l.r.E 12.r.E 

(4.38) 

and 

y~2.r.E(g) = y~.r.E + g I"" dr G~.r.E(r)V2(r)F~.E(g,r). (4.39) 

Similar to Sees. II and III, Poincare's theorem II implies that 

Pr•E (g,r) and y~2.r.E (g) are entire with respect to g. Conse
quently, for E small enough, a~2.r.E(g) is analytic in g around 
g = O. As usual, the Born term is defined by 

(4.40) 

In order to expand (4.40) with respect to E around E = 0 we 
again introduce the Fredholm integral equation correspond

ing to F~.r.E(r) and obtain (cf. See. II) 

Ftr.E(r)/Y~.r.E 

= F~(r) - G~(r){B} -IL"" dr' r'VI(r')FI(r) + 0(1) 
E-O+ 0 

i "" FC (E r') + (1 +AIE)F~(r) dr G~(Er')VI(r') I.Er ' , 
rlE Y~.EY(E) 

(4.41) 

whereof 1) is uniformly bounded in r>O and {B } is defined by 

{B } = r 1n(r) I"" dr rVI(r)FI(r) - Al [I"" dr r 

X VI(r)FI(r)] -II"" dr Fi(r)VI(r) 

+ 2rCG' I"" dr rVI(r)FI(r) 

L"" L"" d + r[ y~] - I dr rVI(r)FI(r) dr' In(r)-, 
o 0 dr 

X (Gr(r')G ~(r')[ <l>C(r') - 1] }. (4.42) 

From 

1
(1 + AIE)F~(r)i"" dr' G~(Er)VI(r') F~':r(E,r) I 

rlE YI.EY(E) 

<const r-IF~(r)1 {B } -ll(r/E)[ 1 + (r/E)] -I 

we finally infer 

FC (r) 
l.r.E = FC (r) _ actO) [yc ] - IG c (r) + 0(1), (4.44) yc E-O r I.r r r 

l.r.E + 

where, by Eqs. (4.43) and (B1), e - br 0(1) is bounded uniform
ly in r>O for all b > O. Lebesgue's dominated convergence 
theorem then yields 

a~f.r.E(g)~+g 1"" dr{F~(r) 
- a~~ [Y~] -IG~(r)}2V2(r) + go(l), (4.45) 

and thus 

aC (g) = actO) + EVac(l) + gL"" dr{FC (r) r.E I.r I.r r 
o 

- a~~ [Y~] -IG~(rWV2(r) 

{
O(EV+It), v+,u<l} (1) 0 1,.2) + O() 1 +go + 1.'), 

E, v+,u> 
,u>0, O<v<l, (4.46) 

wherea~~,j = 0,1, were defined in Eq. (4.31). Ifv> 1 we have 

a~.E(g) = a~~ + g I"" dr{F~(r) - a~~ [Y~] -IG~(rWV2(r) 
+ ° (E) +go(l) + O~). (4.47) 

At the end we again discuss the application of Sec. III, 
i.e., we compare charged and neutral scattering lengths tak
ing explicitly into account the finite extent of the charge 
[described by <l>c (r)]. To include realistic interactions we take 
v = 1 for the rest and again suppose IAIEol<lgl<l (Eo 
= rolrl as in See. III). Assuming charge symmetry we ob

tain from Eq. (4.47) the approximation 

[a~.Eo(g)] -I::::: [a~~] -I- gl""dr{ [a~~] -IF~(r) 

- [Y~] -IG~(rWV2(r). (4.48) 

Equation (4.48) together with Eq. (3.38) [cf. Eq. (4.32)] and 
an expansion for small values of r finally yields 

[ a~.Eo (gl] - I 

::::: [ aEo (g)] - I + r{ 2 CG' + I"" dr In(rr) :r [ <l>C(r)] }, 

(4.49) 

where terms of ° (f ln2 r) have been neglected. 
A comparison ofthe results (3.40) and (4.49) shows that 

the strong model dependence exhibited in the point Cou
lomb case is reduced to higher-order effeets [i.e., the zero 
energy solution t,61(r) appears in higher orders only] as soon 
as the finite extent of the charge (i.e., <l>c # 1) is taken into 
account. Equation (4.49) offers a handy tool for the compari
son of charged and neutral scattering lengths by identifying 
a~.Eo (g) with the I So proton-proton scattering length and 
aEo (g) with the ISO neutron-neutron scattering length. 

v. STRONGLY SINGULAR PERTURBATIONS 

Finally, we discuss strongly singular interactions of the 
type/3r- 2 + yr-l, -1 </3 <i, r>O. In contrast to Sees. 11-

X r"" dr' r'(l + r')1 VI(r'lI = 0(1), 
JrlE E--+<>+ 

(4.43) IV we now confine ourselves to the short-range limit E-o+ 
and hence directly implement an additional zero-range in-
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teraction by choosing appropriate boundary conditions at 
r = ° [instead of considering Ar (E)E- 2 VI.E(r) and taking 
E-o+]. Under suitable conditions on the additional ha
dronic interaction potentialgV2 we again study the associat
ed scattering length in first Born approximation. 

Let hP•r denote the closure of the minimal di1ferential 
operator hP•r in L 2((0,00)) 

h· d2 +/3 -2 + -I 1 /3 3 .... 0 P.r=-d~ r rr, -4< <4' r .... , 
(5.1) 

~ (hp•r ) = CO' ((0,00 )). 

Then, as is well known, hP•r has deficiency indices one and 
all self-adjoint extensions haJJ.r may be parametrized by17-19 

ha •p•r 

d
2 

+/3 -2 + -I = - d~ r rr, 

- 00 <a< + 00, -! </3 <a, r>o, 

~(ha,fJ.r) = {/eL 2((0,00 ))I/,/' eAC1oe((0,00); 

-47ralo+/I=O;-J" +/3r-21 
+rr- I /eL 2((0,00))}, (5.2) 

whereAC loe ((0, (0)) denotes the set oflocally absolutely con
tinuous functions on (0,00). Here 1o and I I are defined by 

10 = lim r P- 1I2/(r), lJ = (/3 + !)I12, 
r--oO+ 

It = lim r- P- 1I2 { I(r) -10 [r- P+ 112 + y2P 
r--oO+ 

x(r( - 2/:J)lr('l./J) + 1 - 2'ti')rP+ 112 

- r(2/:J - 1) - Ir-P + 3/2] j, 

if/3 #0 (5.3) 
[r(z) being the gamma function 12] and by 

10 = 1(0+), 

II = lim r- I
{ I(r) - 1(0+)[ 1 + rrln (rr)] j, 

,......0+ 

if/3= 0. (5.4) 

We note that the boundary conditions (5.3) are continuous at 
/3 = ° and indeed converge to those in (5.4) as {:J-o. If /3>i, 
hP•r is selfadjoint and hence no additional point (zero-range) 
interaction exists. If /3 < - !, hP•r is unbounded from below 
and thus not suitable for our purpose [if /3 = -! the bound
ary conditions (5.3) can be modified to apply again17

-
19

]. As 
mentioned in the beginning, ha,fJ.r describes a/3r-2 + rr- I 

plus zero-range interaction (if lal < (0). 
Next we introduce (ir)regular zero-energy solutions 

Fp.r(r) [Gp.r(r)) associated with hP.r 
Fp.r(r) = r- Pr(1 + 2/:J)rI/212/1((4rr)1I2), (5.5) 

Gp.,,(r) = 2rPr( 1 + 2/:J) - Ir1/2K2/J((4rr)1/2), (5.6) 

such that W(Gp.",FP.r) = 1. Defining 

FaJJ.,,(r) = Fp.,,(r) - aa.p."Gp.,,(r), (5.7) 

where 
- .2ll I aaJJ." = - 2/3 [47ra - r' (2'ti' - 1)] - , 

- 00 <a< + 00, (5.8) 

then by Eq. (5.3), FaJJ." andaa,fJ." are easily seen to be the 
zero-energy scattering wave function, respectively, the scat-
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tering length (induced by the additional contact interaction) 
associated with ha,fJ.r' In particular, taking /3 = 0, r = 0, 
aa.O.O corresponds toa\O) ofEq. (2.24) and taking/3 = 0, aa.O." 
corresponds to a\~~ of Eq. (3.22) if the boundary condition 
parameter a is chosen appropriately (cf. Refs. 2 and 5). The 
special case r = ° in (5.3) has been discussed in detail in Ref. 
20. 

Finally, following Secs. II-IV, we again consider the 
effeet of an additional (real-valued) potential gV2, gef!JI to 
first order in g. Assuming 

iR 

dr rl - 2/J !V2(r) I < 00, 

LOO dr rl + 2/11 V2(r) 1 < 00, if r = 0, 

Loo dr eb'l V2(r) I < 00, if r > 0, 

for suitable b,R > 0, 

we define in L 2((0, 00 )) 

ha,fJ.,,(g) = ha,fJ." +gV2· 

(5.9) 

(5.10) 

Then the regular solution Fa,fJ." (g,r) associated with haJJ." (g) 
uniquely fulfills 

FaJJ.,,(g,r) = Fa.p.r(r) - g L dr' gp.,,(r,r) 

X V2(r)Fa.p.,,(g,r), (5.11) 

where 

gp.,,(r,r) = Gp.r(r)Fp.,,(r) - Gp.,,(r)Fp.r(r). (5.12) 

Using (C M ,C M appropriate constants possibly depending on 
a,/:J,y) 

(5.13) 

and 

Igp.,,(r,r)1 <CM(r)-P+ 112 r P+ 112, r'<r<M, (5.14) 

which follows from monotonic increase of Fp.,,(r)/Gp.,,(r) 
[(FP.rIGp." )'(r) = G p-:/(r)> 0]. and standard estimates on 
Fp.r(r) and GP.r (cf. Refs. 12 and 21), iteration ofEq. (5.11) 
proves that Fa,fJ.r (g,r) is entire with respect to g (a fact which 
could also be derived from Poincare's theorem I I). Similar to 
Sees. II-IV, the scattering length aaJJ.,,(g) corresponding to 
haJJ.r(g) splits up into 

aa,fJ.,,(g) = aaJJ." + a12.a.p.,,(g), 

where 

is analytic in g near g = ° and 

(5.15) 

(5.16) 

YI2.a,fJ.,,(g) = 1 + g i oo 
dr Gp.,,(r)V2(r)FaJJ.,,(g,r). (5.17) 

As a result we immediately obtain for the first Born approxi
mation 

a~2.aJJ.r(g) = ioodr F!,fJ.r(r)V2(r), 

and hence 
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(5.19) 

with aa,{J,y and Fa,fJ,y(r) defined in Eqs. (5.7) and (5.8). The 
result (5.19) represents a generalization of the approach of 
Sees. II and III (if the zero-range limit is taken throughout) 
in the sense that an additional strongly singular potential 
fJr- 2 has been included. 

Obviously the above treatment extends to the case r < 0 
and to cases where the potential looks like fJr- 2 + rr- I

, 

-1 <fJ <~, rE~ in an interval (O,ro], ro > 0 and is smooth 
(e.g., continuous) in [ro, 00]. Instead of repeating the above 
arguments we end up with the following illustration. 

Example: Let 

{

c(r+ gy212) + 1 +grln(r) 

r<.R, 
4>(r) - (5.20) 

- const(1-r/ag ), ,..,R, R>O,' 

CE~" {O}, gE~ 
assuming (J,(J' to be continuous at r = R, and define the po
tential V to be 

VIr) = (J"(r)/(J(r). (5.21) 

Note that g V approximates a screened Coulomb potential 
gr- 19(R - r) if R is small enough. Calculating the scatter
ing length ag yields 

ag = (- 1 +gR +gCR 2/2)/(C +gCR +g+gln (R)). 
(5.22) 

Hence 

ag = aO +ga l + O~), aO = -lIC, 

a l = (aO)2[ln(R) + 1] - 2a°R + R 2/2, (5.23) 

and in particular a l coincides with the "renormalized 
expression" [cf. Eq. (2.36)] 

a l = 2Jf+ {f'" dr[r - aO]2V(r) + (aO)2[ln(c5) + 1] }. (5.24) 

ACKNOWLEDGMENTS 

F. Gesztesy gratefully acknowledges the kind hospital
ity and stimulating atmosphere at the Zentrum ftir Interdis
ziplinare Forschung der Universitat Bielefeld, Federal Re
public of Germany, during Research Project No.2 in 
mathematics and physics. 

He is indebted to the Alexander von Humboldt Founda
tion for financial support. 

APPENDIX A: ASYMPTOTIC RELATIONS 

Based on standard techniques (cf., e.g., Ref. 22), we de
rive asymptotic formulas for (ir)regular solutions associated 
with h I and prove the claim in Eq. (2.14) assuming condition 
(2.1). 

Introducing FI(r), GI(r), and HI(r) as the unique solu
tions of the integral equations 

FI(r) = r - i'dr'(r' - r)VI(r')FI(r'), (AI) 

GI(r) = 1 + 1000 

dr'(r' - r)VI(r')GI(r'), (A2) 

(A3) 
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one obtains 

F; (r) = 1 + 0(1), 
1'-+0+ 

- r iooo 
dr' VI(r')GI(r') + o(r), 

G; (r) = - (000 dr' VI(r')GI(r') + 0(1), 
r-<>. Jo 

- r iooo 
dr' VI(r')HI(r') + o(r), 

H; (r) = 1 - (000 dr' VI(r')HI(r') + 0(1), 
,--0+ Jo 

FI(r),:=ooor + r 1000 

dr' VI(r')FI(r') 

-i ooo 
dr' r'VI(r')FI(r') + 0(1), 

F; (r) ':=000 1 + i'" dr' VI (r')FI (r') + o(r- I), 

G(r) = 1 + o(r- I), 
7'-+000 

G '(r) = 0(r-2), 
7'-+", 

H(r) = r + 0(1), 

H'(r) = 1 + o(r- I). 
7'-+000 

(A4) 

(AS) 

(A6) 

(A7) 

(AS) 

(A9) 

(AlO) 

(All) 

(A12) 

(A13) 

(AI4) 

(AI5) 

Consequently, calculating Wronskians at r = 0 and r--+oo 
yields 

W(GI,Fd = 1 + 1000 

dr VI(r)FI(r) 

= 1 + i ooo 
drrVI(r)GJ!r)==..7I' (AI6) 

W(GI,HI) = ..7 I [ 1 - 1000 

dr VI (r)HI(r) ] + 1000 

dr r 

X VI (r)HI (r)1 000 dr' VI(r')GI(r') = 1, (AI7) 

W(HI,FI) = iooo 
dr rVI(r)HI(r) = iooo 

dr rVI(r)FI(r). (AI8) 

Now we specialize to case II, i.e., to..71 = O. Then (AI6)
(AI8) imply 

1 = W(GI,HI) = 1000 

drrvI(r)HI(r)1
OOO 

dr' VI(r')GI(r') 

= i
ooo 
dr rVI(r)FI(r)i

ooo 
dr' VI(r')GI(r'), (AI9) 

and therefore Eq. (2.14) follows. Obviously we have 
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GI(r) = [1'>0 dr rVI(r)FI(r)] - 'H,(r). (A20) 

APPENDIX B: ESTIMATES FOR COULOMB· TYPE 
SOLUTIONS 

Here we recall the estimates of (ir) regular solutions 
F,.y(r) [G I,y(r)] associated withh I,y = hy + VI' r> 0, where 
VI obeys the integrability conditions (3.1). Iterating the cor
responding Volterra integral equations (cf. Refs. 20) one ob
tains 

IF"y(r)l<const r'/4[r/(1 + r)]3/4e(4y,)IIZ, r>O, (Bl) 

IGI,y(r)l<const rl/4[r/(1 + r)] -1I4e-(4y,)IIZ. r>O. (B2) 

APPENDIX C: THE GELL-MANN-GOLDBERGER 
FORMULA FOR SCATTERING LENGTHS 

We indicate a proof of the Gell-Mann-Goldberger rela
tion for scattering lengths. 

Assuming Vj :(0, 00 )---+~, j = 1,2 to be measurable and 

LRdrrjVj(r)1 < 00, L""drrjVj(r)1 < 00, 

for someR >0 (Cl) 

we define the form sums in L 2((0, 00 )) 

hl(A I) = ho+AIVI, (C2) 

h(A I.A2) = hO+AI VI +A2V2, AjE~, j=I,2. (C3) 

According to Eq. (AlO), FI(AI,r), the regular solution asso
ciated with h (AI) fulfills 

FI(AI,r) = r -A,fdr'(r' - r)VI(r')FI(AI,r') (C4) 

and thus 

FI(AI,r),-.:-J 1 + AIL"" dr' vl(r')FI(AI,r')]r 

(C5) 

implying 

al(A I) = [1 + AIL"" dr' VI(r')FI(AI,r')] -IAI 

X L""dr rVI(r)FI(AI,r), (C6) 

where a I (A I) represents the scattering length of h I (A I) and we 
assume that h,(Ad has no zero-energy resonance, i.e., that 

1 + AIL"" dr VI(r)FI(AI,r)#O. (C7) 

Similarly, the regular solution F(A I.A2,r) corresponding to 
h (A I.A2) fulfills 

F(A I.A2,r) = r - fdr'(r' - r)[AIVI(r') +A2V2(r')] 

XF(A I.A2,r'), (C8) 
as well as 

F(A I.A2,r) =FI(AI,r) -A2fdr' gl(AI,r,r') 

X V2(r')F(A,.A2,r'), (C9) 

gl(AI,r,r') = [W(A,)] -'[GI(AI,r)FI(A"r') 

- G,(AI,r')FI(AI,r)], (ClO) 
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where GI(A"r), the irregular solution of hIlA,), obeys 

GI(AI,r) = 1 + A,l"" dr'(r' - r)VI(r')G,(AI,r') (Cll) 

and 

W(A I) = W(G,(Ad,F,(Ad) 

= 1 + AIL"" dr V,(r)FI(AI,r). 

Equations (C8) and (C9) imply 

FIlAI.A2,r) 

,-.:-"" 1 + L"" dr'[A,VI(r') +A2V2(r')]F(A I.A2,r') 

(CI2) 

- L"" dr' r'[AIVI(r') +A2V2(r')]F(A I.A2,r') + 0(1), 

(C13) 

as well as 

F(A,.A2,r) 

_ [1 +A2 r"" dr' GI(AI,r') V2(r')F(AI.A2,r')] 
""""" Jo W(AI) 

xFI(AI,r) - [A2L"" dr' F I (A I,r')V2(r') 

XF(A.A r')] GI(AI,r) +0(1). (CI4) 
I 2' WeAl) 

Assuming that h (A I.A2) has no zero-energy resonance, i.e., 
that 

1 + i""dr[A , VI(r) + A2V2(r)]F(A I.A2,r) #0, (CI5) 

the scattering length a(A,.A2) associated with h (A I.A2) is de
fined by [cf. Eq. (C13)] 

a(A I.A2) = {I + L"" dr[AIVI(r) +A2V2(r)] 

XF(A,.A2,r)} - Ii"" dr r[A I VI(r) 

+ A2V2(r)]F(A I.A2,r). (CI6) 

Inserting Eq. (C5) into (CI4), a comparison with (C13) finally 
implies the Gell-Mann-Goldberger relation (two-potential 
formula) 

a(A I .A2) 

= a (A ) + A r"" dr F&i,,r) V2(r) I I 2Jo W(A
I

) 

X F(A I.A2,r) 

W(A I) + A2Sodr' G,(AI,r') V2(r')F(A I.A2,r') 
(CI7) 

Equation (C17) is derived for short-range potentials Vj' 
j= 1,2. If ho in Eqs. (C2) and (C3) is replaced by hy, r>O 
and Vj' j = 1,2, obey 

LRdrrjVj(r)1 < 00, L"" dreb'jVj(r)1 < 00, 

j = 1,2, for some b,R > 0 (CI8) 
[instead of (Cl)], then Eq. (C17) also holds for the Coulomb 
modified scattering lengths associated with 
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hl,y(A I) = hy +A I VI' 

hy (A I.A.2) = hy + AI VI + A2 V2, r> O. 

(C19) 

(C20) 

For the proof one simply replaces the "free" (ir)regular func
tions r(1) by the Coulomb (ir)regular functions Fy(r) [Gy(r)) 
[cf. Eqs. (3.5) and (3.6)) and observes the estimates in Appen
dixB. 
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Fluid sources for Bianchi I and III space-times 
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Four analytic solutions to the Einstein field equations are presented. The solutions are 
parametrized to have either Bianchi I or Bianchi III symmetry. The associated fluid parameters 
are given and some of them are discussed in detail. 

I. INTRODUCTION 

Space-times admitting a three-parameter group of auto
morphisms are important in discussing cosmological mod
els. The case where the group is simply transitive over the 
three-dimensional, constant-time subspace is particularly 
useful for two reasons. First, Bianchi I has shown there are 
only nine distinct sets of structure constants for groups of 
this type so that the algebra may be easily used to classify 
homogeneous space-times. The second reason for the impor
tance ofthe Bianchi spaces is the simplicity of the field equa
tions. The relative ease of solution has made these space
times useful in constructing models of spatially 
homogeneous cosmologies. There is a large literature con
cerning specific Bianchi spaces which contain fluids with 
specified equations of state. A partial list is given in the bib
liography.2-17 

In this paper we present and discuss some solutions 
which can belong to either Bianchi type I or III. These solu
tions have a special interest as they allow one to investigate 
fluid behavior across two Bianchi types. The solutions we 
find are also locally rotationally symmetric and fit into type 
II of the classification scheme given by Stewart and Ellis. 18 

II. FIELD EQUATIONS AND THEIR SOLUTIONS 

The metric we consider is 

d~ = - dt 2 + rl{t)dx2 + r2{t)e- 2ax dy2 + r3(t)dr, 
(2.1) 

where a = 0 gives Bianchi I and a = 1 gives Bianchi III 
space-times. The field equations are G R /-W = I'V 

- ! gl'vR = 81TTl'v' 
The Einstein tensors G I'V for our metric are 

• • •• • • 2 
Goo = r3rl + r3r2 + rlr2 _ ~ 

4rlr3 4r3r2 4rlr2 rl ' 
(2.2) 

G 1 = _ r2 _ r3 _ Y3Y2 + rz + i1 
2r2 2r3 4r3r2 4rl 4n' 

(2.3) 

G~ = _1L_ r3 _ Y3Yl + 11 + i1 
2rl 2r3 4rlr3 4ri 4n' 

(2.4) 

ROl = +!!... YI _!!... Y2 . 
2 rl 2 r2 

(2.6) 

To find analytic solutions with Bianchi I and III sym
metry we consider loclllly rotationally symmetric metrics, 
with rl = r2' This metric falls into type II ofthe classifica
tion scheme given by Stewart and Ellis. 18 For this choice of 
r, G 1 is identically equal to G ~, and the isotropic pressure 
requirement for perfect fluid sources gives 

.. .. •• • 2 2 

h._.IL+ r3rl -~+~=O 
2r3 2rl 4rlr3 4r; rl . 

(2.7) 

The method we shall use to generate solutions to (2.7) is 
to assume a solution for rl(t) [orr3(t)] and then solveforr3(t) 
[or rl(t )]. At this stage the only criteria we use is the integra
bility of the field equations. We then will evaluate some of 
the physical parameters and discuss them. 19 

Solution 1: Assume r3(t) = C/o Then 

rl(t) = - (lICO)[A le' +A2e-(1I2)1 + 8a2], (2.8) 

with20 i = ~Cr/2t. The pressure and density are 

81Tp(t) = _ Co + ~ AIe' 
8 8 rl 

+ __ l_(A e
' 

-..!..A e-(1I2)1)2 + A 
8riCo I 2 2 , 

81TE{t) = _a
2 
__ 1_(A le

l _..!..A2e-(1/2)i) 
rl 4rl 2 

+ (AIe' - !Be-(1/2)i)2 _ A. 

8riCo 

(2.9) 

We have included the cosmological constant in Eq. (2.9) for 
generality. Its inclusion does not alter (2.7). As t-o 

81Tp(0) = _ Co (4AI + SA 2 + Sa
2
) 

8 (AI +A2 + 8a2) 

+ Co (AI -A2/2)2 A 
8 (AI +A2 + 8a2)2 + , 

817'£(0) = Co (2A I - A2 + Sa
2
) 

8 (AI +A2 + 8a2
) 

(2.10) 

+ Co {AI -A2/2)2 _ A 
8 (AI +A2 + 8a2)2 . 

At t-+(X), using rl(t) we find 
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81Tp( 00 ) = A - iCo, 8m;( 00 ) = aCo - A. (2.11) 

Choosing A = aCo, one can generate in a Bianchi III space
time, a variety of initial perfect fluids which expand at large 
times to a very dilute, essentially empty space solution. 

For example, choosingA2 = OandA I <0, we have, with 

A=iCo, 

81Tp(0) = Coa2( -IAII + t6a2)!( - IAII + 8a2)2, 
(2.12) 

81TE(0) = Coa2(3IAII- 16a2)!( - IAII + 8a2)2. 

Physical solutions correspond to 8 < IA II / a2 <: 16. 
The Bianchi I solution is a vacuum. In Bianchi III the 

solution is a fluid which can have an equation of state of the 
formp = aE with O<;;a < 1 at t = O. 

Solution 2: Assume Y3 (t) = CI cosz t. Then one finds 

YI(t) = (1!Co)(rl(t) + 202
), Co>O, (2.13) 

with t = ~(CoI2) (t - C2) and 

rl(t)=coS2(t)[AI-A2tantsect-A2Inlt :o:ii
t I]. 

The pressure and density are 

a2 C tan2 t 81Tp(t) = Co ___ ---,,0 __ 

YI 2 
2 - - 2 + (20 tan t -A2 sec t) + A, 

2C011 
2 2-

81Te(t) = ~Co tan2 t _ 4a tan t 
2 YI 

(2.14) 

+ 242 sec t tan t a2 

YI YI 

+ (1!2C011)[2a2 tan t - A2 sec t]2 - A. 

This solution could be valid over a range of time. 
Solution 3: 
(a) Assume Y3(t) = t 2, where t = Cit + C2, then one ob

tains 

(2.15) 

The pressure and density distributions are 

Ci a2 t 2a4 

81Tp(t) = - "'"'2 - - + --+ A, 
t YI 411Ci 

(2.16) 
3Ci a2 t 2a4 

81TE(t ) = ---::--z- + - + --- A. 
t YI 4Ci11 

As t-+oo,p(oo) = A and E(OO) = - A, so A = 0 would 
give a large time an essentially empty universe. As t ap
proaches zero we have 

C 2 a2C 2 1 
81Tp(0) = - -+ + a2 

--2-2 - - , 

C 2 411 C I YI 

3C 2 a2C 2 1 81Te(0) = __ I + a2 __ 2 ___ • 

C~ 411ci YI 

(2.17) 

For Bianchi I, a positive pressure is not possible with A = O. 
For Bianchi III, a proper choice of constants will produce a 
range of physical solutions. 
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For example, take CI and C2 as input, a2 = 1. Choose 
A2 = 1!C2. This choice sets a limit on A I 

AI> 1!2Ci, CI ;060, 

or (2.18) 

Al = n/2Cf, n> 1. 

This is required to keep Y I > 0 and maintain the signature. 
Here, n parametrizes A I' The pressure and density are 

81Tp(t )t 2 _ 1 2 1 
Ci - - - n - 1 + (n - If ' 

81Tf(t)t 2 _ 3 2 + 1 -...:.....:...-- +--
Ci n -1 (n - W 

Positive pressure requires n2 < 2 so range of n is 

1 <n2 <2. 

(2.19) 

The equation of state of this fluid can be written as p = aE, 
with 

1 3(n - 1)2 + 2(n - 1) + 1 
-=--'----'---'----'----''--
a 2 _n2 

(2.20) 

The positive pressure condition allows any a> O. A radi
ation equation of state a = ! corresponds to n = 1.22, and 
a = 1 is forbidden by the signature requirement n > 1. The 
allowed equation of states have any a < 1. 

(b) There are two additional solutions which we provide 
for completeness. 

(1): Given 

Y3(t) = C2, (2.21) 

one finds YI(t) = aZt 2 +Alt + A 2• The pressure and density 
are 

(2.22) 

For zero A, these describe an empty universe at large time. 
(2): Given 

YI = CO(Clt + c2)m and a = 0, 

one finds Y3 = (Cit + C2)", with 

2n(n - 1) - 2m(m - 1) + nm - nZ = O. 

The fluid parameters are 

81TP= Ci [m2 -m(m-l)], 
(Cit + CZ)2 4 

Ci (nm m2) 
81TE= (Cit + CZ)2 2+4 . 

(2.23) 

(2.24) 

(2.25) 

These fluid parameters go to zero at large time. Vacuum 
corresponds to m = 0 and to m = j, n = -~, the latter a 
Kasner solution.21 This fluid can have an equation of state 
p =aE, with 

a = (4 - 3m)/(m + 2n). (2.26) 

Equation (2.24) has two possible solutions, n = 2( 1 - m) and 
n = m. This allows an easy classification of possible fluids. 
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(11 a;l: 1: 

m=n=~(l+a), 

81Tp = 81TaE = 4C~a/3(1 + a)2(Cl t + C2)2. (2.27) 

For example, a radiation fluid corresponds to m = n = 1. 
(ii) a = 1: All m with n = 2(1 - m). There is an infinite 

set of solutions for the stiff fluid. We find 

81TP = 81TE = C~(4m - 3m2)/4(Cl t + C2)2. (2.28) 

Only those solutions with m2 < t m will correspond to 
physical fluids. An infinite sequence of hard universes has 
been noted before by Jacobs22 and Grabner and Hofreiter.23 

We believe our results are a simple case of their solutions. A 
recent method24 using metrically valid but unphysical fluid 
solutions to generate physical fluids makes these simple so
lutions valuable. 

Solution 4: Given rl(t) = a2t 2 + Cot + Cl> one obtains 

r3(t) = Ao + ~ In I 2a(a2t 2 + Cot + CI)1/2 + 2a2t + Col. 
a 

The pressure and energy density are 

C~ - 4a2CI 
81TP = + A, 

4ft 

C~ - 4a
2
CI + AI(2a2t + Co) _ A. 81TE=-----

4ft rl/2rl12 

Choosing Co = 0, A I = 0, and C) < 0 gives a solution 

4a21C I 81TP = I 

4ft 
4a2 1C I A I 2a2t 81TE = I + --:-"::--:-::-4ft rl/2ry2 

(2.29) 

(2.30) 

(2.31) 

This is a vacuum Bianchi I. In Bianchi III, a more complex 
fluid is obtained. For A I = 0, there is a stiff fluid equation of 
state. IZ 

III. DISCUSSION 

We have seen that the metric solution can generate very 
different fluid pressure and densities in the two Bianchi 
types. A convenient indicator of other possible differences 
are the velocity paremeters: expansion, vorticity, accelera
tion, and shear. For the metric we have discussed, all of the 
fluids are acceleration and rotation free, but they do have 
expansion () and shear p given by25 

() = Y3/2r3 + YI/r) , 

q 2 = A(Y/rl - Y3/r3)2. 
(3.1) 
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We find the shear can be very type dependent for our solu
tions. For example, in Solution 1, the effect of Bianchi type is 
largest at small times. For small times we find 

q z~ Co ( l.5Az + 8a
z 

2)2 (3.2) 
12 A) +A2 + Sa 

The model we gave, A2 = 0, gives a shear-free vacuum in 
Bianchi I and a nonzero shear in Bianchi III. It is clear that 
choosingAz = -16a2/3 would reverse this. Solution 3 shows 
similar effects for large times. 

In conclusion, we have presented four combined fluid 
solutions to Bianchi I and III space-times. The behavior of 
the fluid is type dependent and can be physically reasonable. 
Using metric solutions parametrized over several Bianchi 
types is a useful tool in constructing and studying fluid cos
mologies. 
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Generalized Kerr-Schild space-times for a perfect-fluid source are investigated. New Petrov type 
D perfect fluid solutions are obtained starting from conformally flat perfect-fluid metrics. 

I. INTRODUCTION 

This work is concerned with perfect-fluid solutions of 
Einstein's equations for a metric in generalized Kerr-Schild 
form. Since the original Kerr-Schild paper, ] a lot of general
izations of the Kerr-Schild ansatz have appeared.2 Bilge and 
Giirses3 have shown how the Newman-Penrose spin coeffi
cients, trace-free Ricci, Ricci scalar, and Weyl spinors trans
form under the most general Kerr-Schild transformation. In 
this paper we treat generalized Kerr-Schild metrics of the 
form 

(1.1) 

whereg,.p is the metric of any space-time,la is a null, geodes
ic vector field for the metric gaP' and H is a scalar field. 

As far as we know, no perfect-fluid solution of the Kerr
Schild type is known. All the solutions we obtain are of Pe
trov type D, and most of these are new since the velocity of 
the fluid does not lie in the two-space defined by the principal 
null directions of the Weyl tensor.4 

In Sec. II we obtain the Riemann, Ricci, and Weyl ten
sors of the metric g as functions of the Riemann, Ricci, and 
Weyl tensors of the metric g and the spin coefficients defined 
by a null tetrad associated with la. Our notation and calcula
tions are quite close to those of Taub (Ref. 2). Section III is 
devoted to writing down the equations in the case whereg is 
a conformally flat solution of Einstein's equations for a per
fect fluid. It is shown easily that the geodesic (shear-free) null 
vector fields in a conformally flat space-time are the geodesic 
(shear-free) null vector fields in flat space-time. Since the 
most general vector field of this kind is already known,5 one 
has great freedom in choosing the vector field la. Two cases 
appear depending on whether la is shear-free or not. They 
are studied in Secs. IV and V. Finally, in Sec. VI we give 
some examples of how the method works and some explicit 
solutions. 

II. THE RIEMANN, RICCI, AND WEYL TENSORS OF 
GENERALIZED KERR-SCHILD METRICS 

It is easily shown that6 

gaP =~p - 2Hla I P, 

la = la, lala = O. 

Then, we obtain for the Christoffel symbols 

(2.1) 

(2.2) 

rpA =rpA +ApA +2Hlalp lA II'VI'H, (2.3) 

where the rpA are the Christoffel symbols for the metric g 
and 

(2.4) 

or 

A PA = Hla SPA + Ip{/a VA H + HAA a) 

+ IA{/a Vp H + HApa) -lplA va H, (2.5) 

with 

S,.p=Va lp + Vpla' A,.p-==Va lp - Vp lao (2.6) 

Next, we compute the Riemann tensor from the expression 
(2.3) and we find the following: 

RpAI' = RpAI' +VAApl' -VI'ApA 

+ VA [2Hla lp II' JP V pH] 

- VI' [2Hla Ip IA lP Vp H] 

+A~A'-A~A', ~~ 

where R PAl' is the Riemann tensor for the metric g. Then, for 
the Ricci tensor we obtain 

- A A Rpl' = Rpl' + VA A PI' + 2Hlp IP VA A PI" (2.8) 

where Rpl' is the Ricci tensor for the metric g. After a long 
calculation it may be shown that 

VpA~A =NlpiA -IP<Pp{/p kA +IA kp) 

+ 'i{ Ip mA + IA mp) 

+ Omp mA + ~( lp mA + lA mp) 

+ Omp mA + r(mp mA + mA mp), (2.9) 

where we have chosen a null tetrad (I, k, m, m) for the metric 
gand7 

r-=={ p + p)Va (HI a) - 2H (pp + uu + r/Joo), (2.10) 

fi-==2uVa (HI a) - 2H (1/10 + 2 pu), (2.11) 

~=ma cPa - (P + ii + r)Va{Hla) 

- 2H [1/1] - piP + ii) - u(13 + a) - r/J0l]' (2.12) 

cPp-==Vp Va {HI a) - HVP V pip 

- 2{VP Ip)V pH + HI p Rp/J' 

N=-gPUVp Vu H+2{r+r)Va {Hl a) 

- 2H(k PVp Ip)(k A VP IA) 

- 2k a cPa - 2H [ "'2 + 1P2 + k p 1 U Rpu + 4A] . 

(2.13) 

(2.14) 

Therefore, if the metric g is given, the Einstein equations 

(2.15) 

are defined by (2.8) and (2.9). In particular, from (2.8), (2.9), 
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and (2.15) we o\)tain the inter.ting relation 

X/a Tal' = la Ra# + I#(IP <l>p + (x/2) T). (2.16) 

We distinguish two cases. 
(1) 1 a Ra# = all" In this case la is an eigenvector of TaP 

and then perfect-fluid solutions cannot exist. 
(2) I a Ra# =/-al,.. In this case TaP can be the energy-mo

mentum tensor of a perfect fluid. It is the purpose of this 
paper to study this case when both TaP and TaP are perfect
fluid energy-momentum tensors. 

Let (I a, k a, ma, rna) be a null tetrad for the metric g. 
Then 

7a = la, ka = k a + HI a, rna = ma, ffia = rna 

is a null tetrad for the metric 8. By using this null tetrad we 
compute the Weyl tensor and we finally obtain 

tpo = ¢o, tpl = ¢I' (2.17) 

3tp2 = 3¢2 - 2Hr/Joo - ~ V). [I). Va (HI a)] 

+ 3p[DH -H(p -p)], (2.18) 

tp3 = ¢3 - H¢I + ~ "f - 2Hr/J1O - (T -fJ - a)(DH - 2H p) 

- ~DH + p~H - H T( P - p) 
+ 2H 011' - P - a) + u6H, (2.19) 

tp4 = ¢4 + H2 ¢o - 2Hfl.u - ut:Jl + 2H uJi 

+ 4H U(r - r) - 2H2U(p -p) 

-~[~H-2H(fJ+a)] -A(DH-2Hp) 

+ (fJ + 3a - 2T)(~H - 2H(fJ + a)). (2.20) 

III. THE EINSTEIN EQUATIONS· FOR A CONFORMALLY 
FLAT PERFECT-FLUID METRIC gall 

Henceforth, we choose the metric g to be conformally 
flat; that is, 

¢o = ¢I = t/12 = ¢3 = ¢4 = 0 {:> gaP = r/J2 'TJaP' (3.1) 

where r/J2 is a positive function ofthe coordinates and 'TJap is 
the metric of flat space-time. Moreover, we assume that gaP 
is a solution of Einstein's equations for a perfect-fluid ener
gy-momentum tensor; that is to say 

RaP = X( TaP - ! gaP T), (3.2) 

TaP = ( q + p)Ua Up + pgall' ~p Ua Up = - 1. (3.3) 
All metrics of this kind are known: they are either general
ized interior Schwarzschild solutions or generalized Fried
mann solutions (Ref. 4). 

It may easily be verified that if gaP is a conformally flat 
space-time, and if la is a null geodesic (shear-free) vector field 
for gaP then it is also a null geodesic (shear-free) vector field 
for flat space-time. But the general solution for vector fields 
ofthis kind in flat space-time is known and is given byS 

1= du + Y d~ + Y d; + YY dv, (3.4) 

where Y is a complex function of the coordinates I u, v, ~, ; } 
verifying 

yay + yay _ ay _ yyay =0. (3.5) 
a~ a~ av au 

When la is also shear-free, Y is defined implicitly by 
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(3.6) 

where F is an arbitrary analytic function of three complex 
variables. The coordinates {u, v,~, t} are related with the 
usual coordinates of the Minkowski space-time by 

.j2u=t-z, .j2v=t+z, .j2~=x+iy, (3.7) 

and the metric gall may be written in these coordinates as 

gaP dxa dxll = 2<,62[ - du dv + d~ d;]. (3.8) 

Now, we choose the null tetrad associated with la as 
follows: 

I, k = r/J2 dv, m = r/J(d~ + Y dv). (3.9) 

Then, after a straightforward calculation, we obtain the 
spin coefficients 

'IT' = - a = - r/J -I rna Va r/J, r = -IL = r/J -I k a Va r/J, 
ay -ay 

p=r/J-2[PM+r/JlaVa r/J], PM= a~ -Ya;;' 

",,-I - ay 
1'=." 1'M +a, 1'M = --, au 

ay ay 
U=r/J-2 UM , uM=--Y-

a; au' 
K = E = A = P = v = O. 

(3.10) 

Moreover, it is well known that the null tetrad is defined up 
to a transformation of the form 

/'=1, m'=eiC(m+Z/), 

k 1= k + Zm + Zm + ZZI. 

We make such a transformation choosing 

Z= -mauallaua 
so that 

(3.11) 

(3.12) 

m'a Ua = O. (3.13) 

After this change of null tetrad, the new spin coefficients ares 

'IT" = 'IT' - DZ, K' = E' = 0, p' =p. 

u' = U, P' = Zu, a' = a + Z p, 

IL' =IL + Z'IT' + Z2U - 6'Z, 1" = l' + Zu + Zp, 

A I = Z'IT' + 2 Za + Z2 P - ;S'Z, (3.14) 

r' = r + Z1' + Z 2U + ZZ P + Za, 

v' = ZIL + ZZ'IT' + Z21' + Z3U + Z 2 Z p + 2Zr 

+ 2ZZa - fl.' Z, 
Hereafter, we shall drop the primes. 

We search for solutions8aP of Einstein's equations for a 
perfect-fluid energy-momentum tensor 

TaP = (q + P)ua up + P8aP, 

gaP Ua up = - 1. 

(3.15) 

(3,16) 

Taking into account all previous assumptions and re
sults, the Einstein equations (2.15), (2.8), and (2.9)-once 
they are projected onto the null tetrad-lead us to the fol
lowing set of equations: 
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(q + p)(/a uaf = (q + p)(/a Ua )2, (3.19) 

V" (l" Vp(B/P)] = X[~( q - 3.0) - ~(q - 3 p) 

+H(q+p)(/a ua )2], (3.20) 

r = (x/2)[ q - .0 - q + p], (3.21) 

N- [ q+p - q+p 
- X 4(/a Ua )2 4(/a Ua )2 

_ H2( q + p)(/a Ua)2 - 2H p], (3.22) 

1: =0. (3.23) 

Starting from (2.11), Eq. (3.18) becomes 

u[DB-H(p-p)] =0. (3.18') 

We can consider two cases. 
(A) u#O. Then Eq. (3.18') implies that we must have 

p = p, DB = O. (3.24) 

This case is studied in the following section. 
(B) u = O. Then (3.18') is automatically satisfied. This 

case is studied in Sec. V. 

IV. THE CASE a#O 

In this section we try to solve Eqs. (3.17)-(3.23) with the 
assumption u#O. 

Throughout this and the next sections we shall use re
peatedly (but not explicitly) the Bianchi identities and the 
Newman-Penrose equations for the metricga,8 (the Bianchi 
identities are given in the Appendix). Whenever we make 
some assumption or specialization we must restrict these 
equations in the appropriate fashion. The details are omit
ted. 

First of all, from (3.20), (3.21), and (3.24) we obtain q and 
.0 as functions of q, p, and H, 

xP = X p + 2H¢oo, 

X q = X q + 4H (p2 - uu) - 2H¢oo. 

Furthermore, from (3.19), (3.17), and (3.16), we get ua: 

(4.1) 

(4.2) 

(/a Ua )2 = X( q + p)(/a Ua )2[X( q + p) + 4H(p2 _ uu)] -I, 

rna Ua = O. (4.3) 

Then, we only must solve Eqs. (3.22) and (3.23). 
Starting from (2.12) and (2.13), making use of(3.24), and 

after some standard calculations, we obtain for (3.23) 

~H = 2H(a +P) -H1'-Hp(1'/u). (4.4) 

In the same way, it follows from (2.14), (3.24), and (4.1)-(4.4) 
that Eq. (3.22) becomes 

p!:J/ = H { p( JL + r + Y) + uA + ~(p(1'/ u)) 

+ p(1'/u)(a - {3) - I:&p - p2(1'1'/UU) 

- 4( ¢11/¢oo) (p2 - uu) - 2A} 

- (H2/¢oo)[(p2 - uuf - ¢&]. (4.5) 

From (2.18) and (2.19) with (3.24), (4.5), and (4.4) we get9 (for 
the sake of brevity ;P4 is not written here) 

267 

;Po = 0, 3;P2 = H (uu - p2 - ¢oo), 

;PI = 0, ;P3 = H (1'/u)(uu - p2). 
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(4.6) 

The question now is the following: Are Eqs. (3.24), (4.4), 
and (4.5) compatible? Since Eqs. (3.24) and (4.4) are linear in 
H, their compatibility with (4.5) (which is nonlinear in H) 
gives us an expression for H which is not, in general, a solu
tion of Eqs. (3.24), (4.4), and (4.5). In order to proceed we 
assume 

2 - "I, P - uu = 'f'oo' (4.7) 

so that Eq. (4.5) becomes linear as well. 
Keeping this in mind, the compatibility condition of 

(3.24) and (4.4) is simply 

17'=0 (4.8) 

and the compatibility condition of(4.4) with its complex con
jugate is the reality condition 

Q(~1' + 1'( {3 - a)) = o{~1' + 11 P - a)). (4.9) 

Furtherm~re, Eq. (4.5) now becomes 

!:J/ =H{2(JL+r+y) 

A 1 (r r) 1'1' } 
- 2 P -;; - '2 -;; + 0' - P uu ' (4.10) 

which is compatible with (3.24). Finally, a new integrability 
condition arises from (4.4) and (4.10): 

1:&1' + 3A l' + 1'(JL + r - Y) + 1'(r/u) + 2pii = O. (4.11) 

It is easily shown that this condition is compatible with the 
Newman-Penrose equations. 

We can summarize our results as follows: Let us choose 
the conformally flat perfect-fluid metric gaP and the null 
geodesic vector field /a such that they verify p = p, (4.7), 
(4.8), (4.9), and (4.11). Then, let us solve the integrable system 
of equations for H given by (3.24), (4.4), and (4.10). The new 
Kerr-Schild metric gaP is a solution of Einstein's equations 
for a perfect-fluid energy-momentum tensor (3.15), where q, 
.0, and ua are given by (4.1), (4.2), and (4.3). The Weyl tensor 
of these new solutions is (1' never vanishes) 

;Po = ;PI = 0, 3;P2 = - 2H¢oo, 

;P3 = - H(1'/u)¢oo, ;P4 = - H(r/uZ)¢oo' 

so that we have 3;P2;P4 = 2;p;, and therefore they are of Pe
trov type D. Since ;P3 and ;p 4 do not vanish, the vector field k a 

is not a multiple null eigenvector of the Weyl tensor, but /a 
certainly is. From (4.4) we have 

ita = ala + bk a 

and then ita does not lie in the preferred two-space spanned 
by the two multiple null eigenvectors of the Weyl tensor. 
Excepting the Wahlquist solution, no solutions of this kind 
were known up to now. 

V. THE CASE a = 0 

Now, we assume u = 0 so that the function Y of (3.4) is 
defined by (3.6) and also we have 

{3=A=O. (5.1) 

We define in this section 

U=8H-2Ha, V==DH-2Hp. (5.2) 

From (3.20), (3.21), (3.19), (3.17), and using the same proce
dure of the previous section we get 
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XP=Xp-DV- V(3p+p)- 3Hp2_4Hpp 

+ H p2 + 4 Ht/Joo, 

Xq=Xq+ Vip -pI -DV+ 3H(p2 +p2), 

(fa Ua )2 = 2t/Joo{X( q + p) + 4Ht/J00 

- 2[DV + 2Vp + 2Hp(p -pll} -I. 

Equations (3.23) and (3.22) become, respectively, 

t5V + (p +p)U + (T- a)V 

+H[pa+t5p+2T(p-p)] =0, 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

p!:JI = - H1l.(p + p) -lu + aU - rU - TU -I',v 

- 4Ht/J11 + H(r + r)(p - p) - (1/4;00) 

X [DV + 2Vp + 2Hp(p -pI] 

X [DV + 2Vp + 2Hp(p -pI 

- 4Ht/J00 - 8t/J11]' (5.7) 

In order to make compatible U and V we must have 

DU + (2,0 - p)U + (T + trW 
+H[pa+t5p+21T(p-p)] =0. (5.8) 

Also, U must verify the reality condition 

"3u + p!:JI + jiV - Ua + 2H p(r + r) = C.c. (5.9) 

Now, the Weyl tensor is given by 

tpo = tpl = 0, - 6tp2 = [D - 2(p -pI] V, 

tp3 = H [pa +"3 P + TIp - pI] + (2p - p)U, (5.10) 

tp4 = - ["3 - (3a - 2r)]U. 

In this paper, we only solve these equations under the as
sumptions 

p=p, V= -2Hp, (5.11) 

and so we have 

DH=O. (5.12) 

Then, Equations (5.6), (5.7), (5.8), and (5.9) become, respec
tively, 

T = 0, (5.13) 

p!:JI = H [ - 2ll.p + 21lP - 4p2(t/J11/t/J00)] - t5U + aU 

- (H2/t/J00)(p2 + t/J00)(p2 - t/Joo), (5.14) 

DU+pU=O, 

"3u - aU = t5U - aU. 

(5.15) 

(S.16) 

As in the previous section, in order to avoid nonlinear terms 
in H we assume 

p2 = t/Joo, (S.17) 

so that Eq. (S.14) may be written 

p!:JI = 2H [p(r + r) - 2( t/J11 + A)] - t5U + a U. 

(5.18) 

The compatibility of this equation with (S.12) leads us to 

IlP + t/J11 + A = O. (S.19) 
This condition eliminates many candidates for gaP (i.e., 

all generalized Schwarzschild metrics).IO Now, the integra
bility condition of(S.18) with Uis 
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p1l.U + "3t5U - 2li"3u - 2a8U 

+ U [3aa - P(SIl + 3r + r)] = O. (S.20) 

For the Weyl tensor we have 

3tp2 = - 2Hp2, tp3 = pU, tp4 = - ["3 - 3a)U. 
(S.21) 

Consequently, if we want to obtain Petrov type D solutions, 
that is to say 

3tp2 tp4 = 2tp;, 

we must have 

t5U = 3a U + U 2/H. 

We put 

f-==U/H 

(S.22) 

(S.23) 

and then Eqs. (S.15), (S.16), and (S.22) are written as follows: 

Df= -pJ, (5.24) 

"3f + f(a +1) = t51 + Ira + f), (S.2S) 

t5f=aj (S.26) 

On the other hand, bearing Eqs. (S.23HS.26) in mind, Eq. 
(5.20) becomes 

p1l.f - pf(1l + r - r) + fral- af - 4aa) 

+ ra + f)"3f= O. (S.27) 

Equations (S.24HS.27) are satisfied by choosing 

f=Aa, 

where A is an arbitrary real constant, and where two supple
mentary conditions remain: 

t5a = cr, ll.a = a[ Il + r - r + (aa/p)(S +A )). 

(S.28) 

These conditions are compatible with the Newman-Penrose 
equations. 

Now, we summarize our results in this section: Let us 
choose the conformally flat perfect-fluid metric gaP and the 
shear-free geodesic null vector field fa verifyingp = p. (5.13), 
(S.17), (S.19), and (S.28). Then we set U = AHa and we solve 
Eqs. (S.12), (S.18), and t5H = (2 +A )Ha. These equations 
always have solutions. The new generalized Kerr-Schild 
metric gaP is a solution of the Einstein equations for a per
fect-fluid energy-momentum tensor (3.1S), where q, p, and 
ua are given by (S.3HS.5) (when they are conveniently re
stricted to the case we have studied). The Weyl tensor of the 
new metrics is Petrov type D. Unless we have A = 0 or 
a = 0, reasoning similar to that in the previous section leads 
us to solutions previously unknown, as ua does not lie in the 
preferred two-space spanned by the two mUltiple null eigen
vectors of the Weyl tensor. In the cases A = 0 or a = 0 the 
solutions may belong to the family given by Wainwright. 11 

Obviously, we only have solved a very particular case in 
this section. Other more general cases remain for a subse
quent paper. 

VI. EXPLICIT EXAMPLES 

In this section we give some examples of how the equa
tions may be solved explicitly. We can assume two different 
forms for the metric gaP: the form manifestly conformally 

J. Martin and J. M. M. Senovilla 268 



                                                                                                                                    

flat as given in (3.8) and other forms in which the spin coeffi
cients of the null tetrad are adapted to the conditions ob
tained in Sees. IV and V, even though we do not know the 
conformal factor explicitly. In the first case the conditions 
on the spin coefficients become equations for the function Y 
of (3.4). Once we have obtained the function Y, we can solve 
the integrable equations for H. In the second case, we have 
the advantage that we do not need the conformal factor, 
which is unknown in many metrics. Next, we give some ex
amples for both cases. 

(1) In this example, we choose the conformally flat met
ric given by Oleson 12 in coordinates [XO, Xl, x2, x3 ) 

= [u,t, x, y) in the following form: 

gaP dxa dx P = t 3/2(dx - (21..{t) G,x dU)2 

+ ..{t (dy + 2..[t G,y dU)2 

- 2Gdtdu + 2G 2M du2, 

a 
x=-' , ax 

M (t ) = 2..{t(a2 + b 2t ), a, b = const, 

G(x,y, u) = g(x, u)h (y,u), g,xx + a2 g = 0, 

h,yy + b 2h = 0, p = (3/4t 3/2)(a2 - 7 b 2t ), 

12b 2 a 
q = p + ..{t' 1 = at' 

m = _1_ (t -1/4~ + it 1/4!..) , 
fU ax ay 

k = G -I( ~ + GM!.. + .J:.- G ~ - 2..{t G !..), 
au at..{t ,x ax ,y ay 

- 1 _ 1 (I" )2 1 
P = P = 2t' (1' = (1' = 4t' Ua = 2M' 

This metric verifies 

"'00 = 3(1'£7, p2 = 4u£7, 'IT = 0, 

so that the conditions (4.7) and (4.8) are satisfied. Then, a 
straightforward calculation leads us to 

r = (lIfU G)(t -1/4 G,x + it 1/4 G,y)' a = 0. 

Now, it may easily be verified that 

6r=8;;-. 

Therefore, condition (4.9) is also automatically satisfied. 
Next, we obtain 

'" = - 2b 2.Jt, r -:y = 2iG -2 G,x G,y' 

and after a little computation the condition (4.11) becomes 

G - G -I G G = 0, G - G -I Gy G u = 0. ,xu ,x .u ,yu .. 

Consequently, we must restrict the metric gaP to the case in 
which 

G(x,y, u) =g(x)h (y)n(u), 

where n(u) is an arbitrary function of the variable u. Once 
this restriction is imposed we know that the equations for H 
are compatible. The integration of these equations [(3.24), 
(4.4), and (4.10)) is standard and we finally obtain 

H = ch (y)l~(x), c = const. 

From (4.1H4.3) we have 
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(la ua )2= [2(M+H)]-I, maUa =0, 

XP=Xp+3HI8t 2, Xq=X(P+ 12b 21..{t). 

The final form for the metric gaP is the following: 

gaP dxa dx P = gaP dxa dx P + 2h (y)g-3(X)G 2 du2, 

G (x, y, u) = g(x)h (y)n(u), g,xx + a2 g = 0, 

h,yy + b 2h = 0, a, b = const. 

(2) The most simple metric gaP we can choose is the 
"flat" Robertson-Walker metric, that is to say 

gaP dx" dx P = 2R 2( - du dv + d; it), 
R = R(u + v), q = q(u + v), p = p(u + v), 

q= -3(q+p) !, R2=; qR4, =:t' 
t=(1/~)(u+v), la dxa=du+ Yd;+ Yd~+ YYdv, 

Ua dxa = - (R I~)(du + dv). 

Now, the function Z of (3.12) is given by 

Z= - YRI(l + YY), 

so that Eqs. (3.11) and (3.14) provide the null tetrad and the 
spin coefficients, respectively. The function Yis defined by 
(3.6). 

To satisfy Eqs. (5.13) and (5.19) it is necessary that 

y=o. 
Then (5.28) is automatically verified. Finally, the condition 
(5.17) leads us to13 

p = -jq, 

and therefore we must restrict the Robertson-Walker metric 
such that 

q=A 2IR 2, R=Be±Ct, C==~XI3A, A,B=const. 

Solving the integrable system of equations for H we easily 
obtain 

H = const. 

Consequently, we obtain the following solution: 

APPENDIX: BIANCHI IDENTITIES 

Next, we list the Bianchi identities for a conformally flat 
perfect-fluid metric. We choose the null tetrad (3.11) such 
that 

"'01 = "'02 = "'12 = I( = E = P - P = 0, 

A = (r/24)( q - 3p), "'00 = (r/2)( q + p)(la Ua )2, 

"'11 = (r/8) (q + pI, "'00 "'22 = 4rPil' 
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and then we have 

¢ooA = 2¢li;:;, ¢oo ii = 2¢1l(r + 17-), 

8( ¢11 + A) = 0, 8¢11 = 17-¢w P, =P, 
D ( ¢11 + A) P, ¢oo - 2 P ¢w 

6.( ¢1l + A) = 2p, ¢ll - P ¢22' 

8 ¢oo = (17- - 2(j - 2{3) ¢oo, 

26. ¢ll - D ¢22 + P ¢22 - 2p, ¢1l = 0, 

6. ¢oo - 2D ¢11 - 2p ¢ll + ¢oo(p, + 2r + 2yl = o. 
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A number of exact solutions for spherically symmetric nonstatic fluids of uniform density, 
surrounded by empty space, are derived and investigated. Solutions that represent expanding and 
contracting spheres, which tend asymptotically to static configurations described by the 
Schwarzschild interior solution (p = const), are obtained In some cases the motion of contraction 
or expansion is reversed, while in other cases there is no bouncing at all. Oscillating solutions are 
presented. 

I. INTRODUCTION 

In general relativity the first model of a perfect fluid 
sphere with uniform density was the well-known Schwarzs
child interior solution. It is customary to give this solution in 
the form l 

di2 = [A - B (1 - a2R 2)1/2j2 dT 2 

_ (1 - a2R 2)-1 dR 2 _ R 2 d02, (1) 

where d02 = (dO 2 + sin2 0 d¢2). 
The pressure p of the fluid is 

p =p[(2A /3)/(A - B(l- a2R 2)1/2) - 1], (2) 

wherep = (3a2/817') is the mass-energy density of the fluid, 
and A, B, and a are constants to be determined from the 
boundary conditions. 

The generalization of Schwarzschild's homogeneous 
fluid sphere problem to the case where the density p is a 
function of the time coordinate t has been studied by several 
authors. Pulsating models have been examined by Gupta2 

and Bonnor and Faulkes.3 Different aspects of the motion of 
uniform-density spheres have been investigated by Thomp
son and Whitrow,4 Bondi,s Taub,6 Nariai/ Banerjee,8 and 
Mc Vittie and Stabell.9 More recently Glass 10 and Knutsen ll 

have discussed the apparent horizons. Other interesting fea
tures of uniform-density models have been examined by Wy
man,2 Gorses and Gorsey,13 Krishna Rao,14 and CoOk.IS 
However, as far as the author knows, exact solutions corre
sponding to nonstatic spheres asymptotically tending to a 
static configuration described by the Schwarzschild interior 
solution [Eqs. (1) and (2)] have never been derived. It is the 
object of this paper to obtain this kind of solution. As a by
product of the investigation we find a family of oscillating 
solutions. 

The paper is organized as follows. The field equations as 
well as the conventions used are described in Sec. II. In Sec. 
III, we display the solutions. The discussion of the results 
and conclusions are given in Sec. IV. Finally, some details of 
calculations are included in the Appendix. 

II. THE FIELD EQUATIONS AND CONVENTIONS 

Let us consider a nonstatic distribution of matter repre
sented by a perfect fluid and which is spherically symmetric. 

In comoving coordinates the line element may be writ
ten as (see the Appendix) 

di2 = eV dt 2 - ((Z d"z _ R 2 d02, 

where v, a, and R are functions of t and r, and 

d02 = (dO 2 + sin2 0 d¢2), XO. I ,2.3=t, r, 0, ¢. 

The energy momentum tensor is 

Tpv = (p + p)Up Uv - pgpv' 

(3) 

(4) 

where UP is the unit four-velocity of matter, p is the energy 
density, and p is the isotropic pressure. Also, since we are in a 
comoving frame, 

(5) 

The conservation equations TPv;v = 0 in the comoving 
coordinate system yield 

v' = - 2p'/(p + pI, 
a +4(R/R) = - 'lp/(p +p), 

(6) 

(7) 
where dots and primes denote differentiation with respect to 
t and r, respectively. 

The Einstein field equations relate the mass-energy 
m(r, t) within the sphere passing the point (t, r, 0, ¢) to the 
density p(r, t ) and pressure p(r, t ); viz, 

2m(r, t) = R [1 + e - v R 2 - e - a R '2], (8) 

m' = 41rpR 2R', 

m = - 417'pR 2R, 

(9) 

(10) 

There are five equations (6)-(10) and six unknowns; 
namely, m, p, p, v, a, and R. The problem becomes determi
nate if we consider a perfect fluid with spatially uniform 
density[p'(r, t) = 0]. With this condition weintegrateEq. (9) 
to obtain 

m(r, t) = (41r/3) p(t)R 3 + I(t), 

where i(t ) is an arbitrary function. For interior solutions we 
require the vanishing of Rand m at the center of the symme
try r = O. Then I(t) = 0 and 

m(r, t) = (417'/3)p(t)R 3. (11) 

Differentiating Eq. (11) with respect to t and employing Eqs. 
(7) and (10), we obtain 

a=2R/R, 

which has the integral 

a = 2lnR +F(r), 

where F is an arbitrary function of r. 

(12) 

(13) 
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When choosing the line element in the form given by Eq. 
(3), we have the freedom to perform the coordinate transfor
mation 

t = t (i), r = r(r), (14) 

which leaves the comoving nature of coordinate system un
changed. 16 Thus, introducing a new radial coordinate r, de
fined by 

e F(r)/2 dr = Ora, 

and using (13), the line element (3) becomes 

ds2 = e>V' t) dt 2 _ e I'cr. t )(d rz + rz d02), 

where e 1'/2 = R a. 
The new mass function will be given by 

(15) 

2m(r, t) = 1 + e-V[~(reI'/2)]2 _ e-I'[~(reI'/2)]2. (16) 
re 1'/2 at aT 

In what follows we shall use the line element in the form 
given by Eq. (15) and suppress the bar over r. 

The Einstein field equations for the line element (15) 
read 17 

81Tp=e-1' L+~+f-l __ _ 
(

,2 'v' , + v') 
4 2 r 

-v(" + 3· z /lit) -e f-l 4f-l -2' 

81TP = e I' f-l + - + 1""' __ _ 
_ ( "+ v" V,2 II' + v') 

2 4 2r 

-V("+ 3'2 /lit) -e f-l 4f-l -2' 

(17) 

(18) 

(19) 

(20) 

The last equation is easily integrated, with the result 

v = 2 In /l + A (t ), (21) 

where A (t) is an arbitrary function of t. 
The pressure isotropy yields the equation 18 

el'/Z(p," - f-l'Z/2 - f-l'lr) = \II(r), (22) 

where \II is an arbitrary function of r. 
Substituting the mass function (16) and Eq. (22) into Eq. 

(19), we get 

m = 41T pR 3 + r\ll(r) . 
3 6 

(23) 

From Eqs. (11) and (23) we obtain 

\II(r) =0. (24) 

Thus, the solutions with uniform density that satisfy the re
gularity condition R (0, t) = 0 and m(O, t) = 0 correspond to 
the choice \II(r) = O. 

Next, we shall assume that the fluid is bounded by emp
ty space. Then the exterior metric, in curvature coordinates, 
IS 

dsZ=(1-2MIR)dTZ-(1-2MIR)-ldRZ-R 2 d02
• 

(25) 

To match the interior metric (15) with the Schwarzschild line 
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element (25) the Einstein equations must be solved subject to 
the boundary condition 

m(ro, t) = M, ro = const, (26) 

where ro defines the outer boundary of the matter distribu
tion. The Eq. (26) implies that the pressure vanishes at the 
interface r = ro, i.e., 

p(ro' t) = O. (27) 

Finally, the time dependence of the boundary is given by 

Rb(t) = roel'(ro, t)lZ, (28) 

where subscript b means evaluation at the boundary. 

III. THE SOLUTIONS 

In this section we obtain some solutions for uniform 
density matter. 

Setting Z = e -1'/2 and \II(r) = 0 in Eq. (22) we have 

Z" -Z'lr=O. 

Integrating this equation, we obtain 

Z = e - /1,/2 = ! g(t )r + h (t ), (29) 

where g(t) and h (t) are arbitrary functions of t. 
Substituting Eq. (29) into (21) we get 

v =f-l + In[r + 2h (t)l,WW +A (t) + In,f(t). (30) 

As was pointed out before, we still have the freedom to 
perform the coordinate transformation t = t (t). Thus, defin
ing a new comoving time t by 

dt = g(t )~ (t )/Z dt, 

and using (29), the line element (15) becomes 

dsz = [r + 2h (t)lg(tW 

[~g(t)r + h (tW 

X [dt 2 
- .1 (dr + r d02

)]. (31) 
[r + 2h (t)lg(tW 

Henceforth, t will be used as the time coordinate and the 
bar will be suppressed. 

Using the field equations (17)-(19), we obtain 

81Tp = 6h (t )g(t ) + ~ ,f(t ), (32) 

= . t) [g(t)r + 2h (t)] 
p p( 3g(t )[r + 2h (t )lg(t)] - p(t). (33) 

The mass function is given by Eq. (16); viz., 

m(r, t) = re31'/Z[,f(t)l8 + g(t)h (t)]. (34) 

The boundary condition m(ro' t) = M yields 

[,fIt )/8 + g(t)h (t)] = M [~g(t) + h (t W. (35) 

Here, we have used the fact that no generality is lost if the 
boundary is given by19 

ro = 1. 

Equation (35) relates the functions h (t) and g(t). Thus, 
Eqs. (32)-(35) give the uniform-density solutions in terms of 
one arbitrary function [g(t) or h (t )]. 

We will not attempt to analyze all possible functions 
which satisfy Eq. (35). Instead we work out the specimen 
solutions, which are obtained under the assumption 

h (t ) = (aI2)g(t) + {3, (36) 
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where a and /3 are constants. 
Then Eqs. (32) and (33) yield 

p(t) = (3M /411-) [1/R !(t)], (37) 

p =P(t)Rb(t18 [(1 + a)/(r + a) - 1], (38) 

where Rb (t ) is, according to Eq. (28), given by 

Rb(t)= Hg(t)(1 +a)+/3]-I. (39) 

Substituting Eqs. (36) and (39) into (35), we obtain the 
equation which governs the evolution ofthe boundary; viz., 

R ~ = 2MRb(a + W - 4aR ~ + 4/3 (a - I)R! + 4/:J2R:. 
(40) 

The integration of this equation is not, in general, possi
ble in terms of elementary functions. Thus, in general, nu
merical integration would be needed. Nevertheless, there ex
ist a number of elementary particular integrals for some 
specific choices of a and /3. 

(i) First consider the casea#O,/3 = 0. We integrate Eq. 
(40) to obtain 

Rb(t)= [M(a+ W/2a] cos2 .j(i(t-to)' (41) 

Equation (37) yields the energy density, and from Eq. 
(38) we get p = 0. Thus, the solutions with /3 = ° represent 
oscillating dust spheres whose radius Rb lies in the interval 
[0, M(a + 1)2/2a]. In particular when a = 2 we have 
g(t) = h (t) and RbE[O, 9M /4]. 

(ii)Letustakeh (t) = O,i.e., weputa =/3 = OinEq. (36). 
Integrating Eq. (40), we get 

!JRb(t) = ± ~2M t + 2C. (42) 

The constant of integration C may be expressed in terms of 

Rb at the time t = ° as C = ~Rb(O). Then Eq. (42) yields the 
following cases: 

R ~)(t) = [(~2M /2)t - ~Rb (0)] 2, 

R ~)(t) = [(~2M /2)t + ~Rb(O)] 2. 

(43) 

(44) 

The solution given by Eq. (43) represents a dust sphere 
which starts to contract from the initial value Rb(O), reach-

ing the origin at the time l' = 2 ~ Rb (0)/2M . Afterwards, for 
t> 1', the boundary is expanding. The second case given by 
Eq. (44) has only expansion. 

The line element (31), in terms of the new radial variable 

u = 1/r, 

becomes 

(45) 

where R ~1 means R ~) and R ~) as given by Eqs. (43) and (44), 
respectively. 

(iii) Now consider h (t) = const. Putting a = OinEq. (36), 
wehaveh (t) =/3 #0. The energy density and the pressure are 
given by Eqs. (37) and (38). Using (31) and (39) we may write 
the line element in the form 

dr = lR~(t) {dt 2 -~dr + rd02)}. 
[r+/3(I-r)Rb(t)]2 I-

(46) 

Equation (40) becomes 

R ~ = 2MRb - 4{3R! + 4{32R:. (47) 
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Some features of the solutions of this equation may be 
exhibited by introducing the function 

V = 4{3/Rb - 2M /R!, (48) 

in terms of which Eq. (47) reads 

R~ =R:[4{32- V(Rb)]' (49) 

Thus, the region of allowed values of Rb is given by the 
inequality 

V(Rb)<;;4{32, /3 #0. (50) 

Figure 1 shows that for values of /3 in the interval (0, 8/ 
27M) there are two kinds of solutions. Solutions of region I 
represent spheres oscillating between zero and some value of 

Rb in theinterval(~M /2{3, ~3M /2{3). In region II we have 
contraction with subsequent bounce for some value of Rb 
(which depends on/3). In region III, for /3> 8/27M, Rb may 
change in the interval (0, 00) and there is no bouncing at all. 
Finally, for /3 = 8/27M, we integrate Eq. (47) to obtain 

R ~)(t) = 9M /{12 coth2
[ ~(t - to)] - 8}, (51) 

R ~)(t) = 9M /{12 tanh2
[ ~(t - to)] - 8}. (52) 

The first solution, given by (51), represents an expanding 
boundary surface which asymptotically tends to a sphere 
with radius Rb = 2.25 Mas t---+oo. Furthermore, we see that 
if we choose to = 0, then the sphere is concentrated at the 
origin at the initial time t = 0. The boundary surface crosses 
the horizon (Rb = 2M) at the comoving time 

tg = v'I coth- I (5/$i). (53) 

The second solution, given by (52), represents a contracting 
boundary surface which also tends to a sphere of radius 
Rb = 2.25 Mas t---+oo. To exclude negative values of Rb in 
the interval tE(O, 00) we choose to = v'I tanh -I ~ so that 
R ~)(O) = 00. 

III 

2 
3{3 -----

5 7 ~f.Q. R M b 

FlO. I. WhenpissuchthatO<4P 2 < Vmax wehaveO<p< 8/27Mand the 
boundary of the sphere may vary in region I or in region II. If 4P 2 = V max 

we have solutions asymptotically tending to a static sphere with radius 
Rb = 9M /4. The region III corresponds to an unlimited contraction (ex
pansion) of the fluid. 
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Substituting Eqs. (51) and (52) into (46), we obtain the 
line element for expanding and contracting solutions, re
spectively. Both so~utions have the same final (asymptotic) 
configuration described by the line element 

d~ = (27M)2r
4 {dt 2 _ ~dr + r d02)}. (54) 

16[r + 2]2 I-
The pressure and the energy density are given by 

p= ~p{1/r-lJ, (55) 

(56) 

Transforming (54H56) to Schwarzschild-like coordi
nates 

4 
t=--T. 

27M' 
4R 

r=~3~R-b~[I~+~~~I-~8R~~~9R~~~] 
we get 

ds2 = --- 1--- dT 2 (1 1 FITrR 2)2 
2 2 9 R~ 

_ (1 _.!~) -1 dR 2 _ R 2 d02 
9 R 2 ' 

b 

P =p -1 . 
[ 

2 ] 
3(1 - ~I - 8R 2/9R~) 

(57) 

(58) 

(59) 

Thus, we have obtained the Schwarzschild interior solu
tion [Eqs. (1) and (2)] with A = B = ! and 0 2 = 8/9R~. We 
notice that at the center of the distribution the pressure be
comes infinity. 

(iv) From Eq. (38) we see that the pressure for all config
urations with a > ° is finite and non-negative everywhere 
within the sphere. For the sake of simplicity we shall analyze 
the case a = 1. From Eqs. (31) and (39) we obtain the line 
element 

ds2 = 4[r + IPR W) 
[(r+ I)+,8Rb(t)(I-r)]2 

X [dt 2 
- (1/(r + W)(dr + r d02

)]. (60) 

The time history of the boundary is given by the equa
tion 

R~ =8MRb -4R~ +4tPR:. 

The region of allowed values of Rb is given by 

W(Rb)",82, 

where 

W(Rb) = 1/R ~ - 2M /R~. 

(61) 

In the case a = 1 different pictures may be obtained by 
specializing the choice of,8. For,8 = ° (see Fig. 2) we recover 
thesolutiongivenbyEq. (41) with a = 1.Ifwetake,82e(0, 1/ 
27M2) there will be, in general, oscillating and bouncing 
spheres in regions I and II, respectively. According to Fig. 2 
the radius of the oscillating spheres changes between zero 
and some value of Rbe(2M, 3M). 

The value of Rb for bouncing is larger than 3M. Fur
thermore, for,8 2> 1/27 M 2 the radius of the sphere changes 
in the interval (0, 00). Finally for,82 = 1/27M2, Eq. (61) is 
easily integrated to obtain 
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w 

III 

I 
27 M 2 ---------

FIG. 2. Was a function of Rb • The maximum of W corresponds to the 
asymptotic static configuration with radius Rb = 3M. The rqions I and II 
are separated from the region III by the line W = l/27M2. 

R ~)(t) = 6M /[3 coth2(t - to) - 1], 

R ~)(t) = 6M /[3 tanh2(t - to) - 1]. 

(62) 

(63) 

Equations (62) and (63) have the same physical interpre
tation as Eqs. (51) and (52) in the previous case. Solution (62), 
with to = 0, represents an expanding sphere, which, at the 
initial time t = 0, is concentrated at the origin and crosses 
the horizon at 

tg = coth- 1 2/../3. 

The radius of the sphere, as t_ 00, tends asymptotically to 
the valueR~) = 3M. 

The second solution given by (63) with to = coth- 1 1/ 
../3, is interpreted as a sphere contracting from infinity, 
which tends asymptotically to a static sphere with radius 
R~)=3M. 

The final configuration for both solutions is 

ds2 = 36M 2(r + W [dt 2 _ 1 (dr + r d02)] 
(br + 0)2 (r + W ' 

where 0 = 1 + 1/../3 and b = 1 - 1/../3, ob = ~, 

81rp = 2/9M2, 

P = (p/../3)[2/(r + 1) - 1]. 

With the aid of the transformation 

t= T/6M../3, 

r = oR /3M(I + ~I - 2R 2/3R ~), Rb = 3M, 

the static solution (64H66) becomes 

ds2 = [.J3 -J...~1- 2R.,]2 dT2 
2 2 3R~ 

_ (1 _ 2R 2) - 1 dR 2 _ R 2 do2 
3R~ , 

81rP =_2_[ 2 -1] 
9M 2 3 - ../3~I - 2R 2/3R ~ . 
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(64) 

(65) 

(66) 

(67) 

(68) 

(69) 
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This is the Schwarzschild interior solution with 

A = ,[3/2 and B = !. The radius of the sphere is Rb = 3M, 
and the pressure is finite throughout the matter. 

Finally, we would like to discuss further the motion of 
the sphere in the "system of the outside observer" defined by 
Eq. (25). 

The differential equation which describes the evolution 
of the boundary in terms of time T of a distant observer can 
be easily obtained by comparing the metric induced upon the 
boundary surface derived from Eq. (31) and the metric in
duced upon the same surface derived from Eq. (25), and us
ing Eqs. (36) and (40). We find 

(
dRb )2 = [2M(a + 1)2 - 4aRb + 4p(a - 1)R ~ + 4{;J2R n [ Rb - 2M ]2. 

dT R ~ 2f3Rb + a-I 
(70) 

Solving this equation we obtain the motion ofthe sphere 
as seen by an external observer. In the remainder of this 
section we analyze in detail the solution (i) and (ii) given 
above. First we analyze the oscillating solutions given by Eq. 
(41). Taking p = 0, a#O we integrate Eq. (70) and give the 
solution in the form 

e-IT- Tol/2M = (ky - 1)~1.Y) , (71) 

1 + y(k - 2) + 2"k - 1b _ y2 

where To is a constant of integration and 

/(y) = _ "k - 1 [k"y _ y2 + k; 2 cos-I(2y - 1)], 

(72) 

k = (a + WI4a, k>O, R" = 2Mky. 

From Eqs. (71) and (72) we find thaty< 1, which implies that 
Rb <M (a + W 12a. Moreover, these equations indicate that 
the approach to the gravitational radius (which occurs with
in a finite interval of comoving time t ) takes an infinite time T 
of a distant observer, as one would expect. On the other 
hand, taking derivative in (71) and using (72) we find the 
equation 

dRb = _ (T- To) ~2M(a + 1)2 - 4aRb (1- ~. 
dT IT- Tol la-11~ R---;'J 

(73) 

It shows, in particular, that for T < To the sphere is expand
ing and for T> To the sphere is contracting. Thus, the solu
tion under consideration (a#O, P = 0) represents a sphere 
which emerges into the exterior Schwarzschild space-time at 
T= - oo,reachingitslargestradiusRb = M(a + WI2aat 
the time T = To, after which the sphere begins to contract 
tending asymptotically as T ---+ + 00 again to radius 
Rb = 2M. 

Now we proceed to analyze the solution (ii). We inte-
grate Eq. (70) with a = P = 0 and find 

dR = ± @(1 _ ~, (74) 
dT "Rb RbJ 

A 2e±TI2M= [(~ -"2M)I(~ + "2M)]eG1Rb
), 

(75) 

where A 2 is a constant of integration, and 

G (Rb) = l~Rbl2M (3 + R"I2M). 

First choosing the upper sign in (74) and (75) we obtain 
an expanding sphere which emerges into the exterior 
Schwarzschild space time at T = - 00. Similarly, choosing 
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the lower sign we have a sphere which continually contracts 
to form a black hole. These both cases correspond to the 
solutions given, in a comoving frame, by Eqs. (43) and (44). 

IV. CONCLUSIONS 

In this work we have examined spherically symmetric 
distributions of uniform-density perfect fluid in the comov
ing frame. Imposing the requirement of regularity at the cen
ter, and exploiting the freedom to specify the coordinate sys
tem, we are able to give the uniform-density solutions in 
terms of one arbitrary function oft [Eqs. (32)-(35)]. Choosing 
this function in different ways, we gave some explicit exam
ples of the motion of uniform-density spheres; viz., the fol
lowing. 

(a) Expanding solutions representing spheres growing 
out of a singularity, crossing the horizon, and tending as
ymptotically to static spheres. Thus, we have here obtained 
examples of white holes. 

(b) Contracting solutions, which represent spheres 
shrinking from an initial highly diffuse state, towards static 
spheres. These solutions describe the collapse of spheres 
whose final states are close to that of a black hole, but are still 
outside the horizon. 

(c) Oscillating solutions, representing spheres whose 
boundary oscillates between the center and some value of R" 
which depends upon a parameter a [see Eq. (41)]. If this 
parameter is not larger than unity, then the sphere is always 
inside the Schwarzschild surface and a comoving observer is 
not able to send signals to the Schwarzschild external ob
server. For the values of a larger than unity the sphere 
crosses periodically (as seen by an observer comoving with 
the matter) the Schwarzschild surface. Since the approach to 
the gravitational radius takes an infinite time T of a distant 
observer, it follows that the oscillating solution under consi
deration [see Eq. (41)] can only be joined to a specific 
Schwarzschild exterior metric (with coordinate ranges 
R > R b , - 00 < T < + 00) for certain values of the comov
ing coordinate t. According to Eqs. (71)-(73) the matter 
emerges into the exterior space-time at T = - 00 and goes 
back only at T = + 00. Having reached the gravitational 
radius (as seen by a comoving observer) the sphere will con
tinue to contract arriving at the center within a finite comov
ing time t, after which the matter will expand approaching 
the Scharzschild sphere from inside and emerging into an
other distinct exterior space time, and so on. 

(d) Bouncing solutions representing spheres contracting 
from an initial value Rb (0) and reaching the center at the 
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finite time r [see Eq. (43)], after which the spheres are ex
panding. The interpretation of these solutions in terms of an 
external observer is given by Eqs. (74) and (75). 

Configuration of the kind (a), (b), and (c) have recently 
been found, in a different context, by Herrera and Ponce de 
Leon.20,21 

Finally we would like to conclude with the following 
remarks. 

(i) According to Bondi22 the largest value of the ratio of 
mass to radius, for perfect fluid, is 4/9. This maximum value 
is asymptotically attained in the solutions given by (51) and 
(52) for a infinite central pressure. 

(ii) We have analyzed only some solutions of the equa
tion of the surface [Eq. (40)). 
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APPENDIX: TRANSFORMATION TO THE COMOVING 
COORDINATE SYSTEM 

The most general metric form for a spherically symmet
ric space-time in "spherical" space coordinates r, 8, t/J, is 

ds2 = goo(r, t )dt 2 + g ll(r, t )dr 

(AI) 

where 

d02 = (d8 2 + sin2 8 dt/J2), XO. 1,2,3=t, r, 8, t/J. 
The direct calculation of the Einstein's equations for the 

line element (AI) shows that Toz = T03 = Tl2 = Tl3 = TZ3 

= O. What this means is that the motion of the fluid is radial. 
Therefore the four-velocity in the reference system of (A 1) is 

U I< = (Uo(r, t),U1(r, t), 0, 0). (A2) 

The arbitrariness in the choice of a reference system in 
general relativity allows us to subject the coordinates r, t to 
any transformation of the form 16 

r= r(r', t'), t=t(r',t'). 

Let the coordinates r' and t ' be defined as 

dt' =A -l(r, t)[UI dr+ Uodt 1, 
dr' = B -I(r, t)[ UO dr - U I dt 1, (A3) 

whereA (r, t )andB (r, t ) are factors defined to make the right
hand side of (A3) perfect differentials, and UI< = gl<a if . 

In these coordinates the metric has the diagonal form; 
namely 
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d~ = A 2(dt ')2 + B 2 (gOlR 11 - (gOI)2 ](dr')2 

+ g22(r', t ')d02, (A4) 

where the coefficients of (dt ')2, (dr')2, and d02 must be ex
pressed now as functions of t' and r'. The four-velocity be
comes 

U'I< = (A -1,0,0,0). (A5) 

Since the radial velocity vanishes at each point, it follows 
that the coordinates r' and t' are comoving with the matter. 
We denote the coefficients of (dt ')2, (dr')z, and dOz by eV

, 

- ea
, and - R 2, respectively. Then, dropping primes, the 

line element in such a comoving system is (we use c = 1) 

(A6) 

where v, a, and R are functions of t and r. The four-velocity 
is 

U I< = e - v/z&O. (A7) 

Thus, without loss of generality we can choose the co
ordinates rand t in such a way that, first, the metric has the 
diagonal form, and second, the coordinate system is comov
ing with the matter. 
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A generalization of the diagonal Weyl metrics, which is obtained by a Harrison transformation 
over the Ernst potential E, is presented. The Ernst potential is defined for a linear combination of 
the Killing vectors aT and au' The cases which correspond to Kasner and Voorhees metrics are 
analyzed in some detail. 

I. INTRODUCTION 

Methods of generating new solutions of the Einstein
Maxwell equations, starting with any particular solution, 
have been known for a long time and employed to obtain a 
large number of solutions. However, although the tech
niques are well known, the outcoming solutions are, in gen
eral, fairly complicated and it is thus very difficult to under
stand their structure and physical relevance. Care must be 
taken in selecting a seed solution; it must have a simple struc
ture and a physical interpretation. For instance, a conven
ient way to introduce a magnetic field in a given space-time is 
to apply a Harrison transformation 1; its importance in astro
physical situations is well recognized. Wald, 2 Ernst,3 and 
Ernst and Wild4 employed a Harrison-type transformation 
to magnetize black holes. Recently Iyer and Vishveshwaras 

magnetized all cylindrically symmetric vacuum metrics and 
Garda Dfaz6 and Garda Dfaz and Breton Baez.7 employed 
this technique to magnetize type D metrics. In this work, a 
simple family of vacuum metrics-the group of diagonal me
trics8 S (a,b,c/m) that contain as particular cases several solu
tions of physical relevance such as the Voorhees-Zipoy met
ric,9.IO the Kasner metric,l1 the Schwarzschild solution, 12 

etc.,-are magnetized by applying a Harrison transforma
tion to the Ernst potentials, which are determined for a lin
ear combination of the Killing vectors aT and au' Since the 
seed metrics S (a,b,c/m) are multipole moment solutions, the 
magnetized S (a,b,c/m) solutions will also be endowed with 
multi pole gravitational moments. 

In Sec. II, the new general solution, which has three 
additional parameters p = E + iB and aolbo, is presented. 
This metric structure is simple because the seed metric is 
vacuum type and diagonal. In general these metrics are 
twisted. In Sec. III the case when the combination of the 
Killing vectors aT and au reduce to a single vector au is 
discussed. This branch contains the known results of mag
netic universe13 (Melvin spaces), twisted magnetic universe, 1 

Schwarzschild magnetic black holes,2 and the new solutions 
corresponding to magnetized Kasner and Voorhees metrics. 
The general solution obtained in Sec. III with zero twist is 
again a diagonal metric. In Sec. IV, we discuss the case 
where the Killing vectors reduce to aT' A new magnetized 
fiat space is obtained. A possible interpretation of the new 
solution is an X-Y charged plane moving along the Z axis 

with constant acceleration. 

II. THE MAGNETIZATION OF S(a,b,c/m) METRICS 

In this section the S (a,b,c/m) metrics are magnetized by 
applying a Harrison transformation to the Ernst potential E, 

determined for a given linear combination of the Killing vec

tors aT and au given by K'" = acP"'T + bcP'" u' We employed 
the technique developed in Sec. V of Ref. 14. The seed metric 
S(a,b,c/m) can be written as 

S(a,b,c/m): g4 =/-1[g3 -~], (1) 

where K is the Killing form associated with a Killing vector 
K,..: K = K,.. dx'" = - aoC dr + boB du, whereas / is relat
ed to the Ernst potential E via 

~(E+E)=/:= -K"'K,.. =a~C-b~B, 
(2) 

from which one obtains 

E =/ - 2iaobom2S + iEo , S: = 2bp + 2cq - (1 + 2a)pq, 

(3) 

and g3 is a three-dimensional metric that is not altered by the 
Harrison transformation (Kinnersley group in general) and 
is given by 

g3 = (a~ C - b ~ B jAg2 + CB (bo dr - ao dU)2 . (4) 

The expression for the bidimensional metric g 2 as well as for 
A, B, C,a,b,andc, which define theS (a,b,c/m) metrics, can 
be found in Ref. 8. Here, Eo is an integration constant, and * 
denotes the Hodge star. 

To obtain the magnetized version we replaced the / and 
K in Eq. (1) by I' and K' defined by 

1'=//,,,,,2, "'=l-ppE, p:=E+iB, 
(5) 

with w determined by 

dw = - if-2(ppf*{(EE- 2/2H d(E- E) + 2n(E- E)dfl . 

(6) 
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with ao=l=O=l=bo and S: = 2bp + 2cq -11 + 20) pq. When ao 
or bo are equal to zero, Eq.(7) is still valid if we eliminate the 
Eolaobo term. 

The electromagnetic field associated with the new solu
tion of the Einstein-Maxwell equations is given by the two
form 

(() =/,-I[K' I\/, + *K'I\ /'], 

where /': = dt/J' , t/J': = pElt/I. 
(8) 

These new metrics are in general twisted, where the 
twist potential is given by the imaginary part of the Ernst 
potential, Eq. (3). 

III. MAGNETIZED SOLUTIONS WITH SO = 0 

In this section we analyze some particularly interesting 
cases when the associated Killing vector KI-' reduces to 
KI-' = 81-'q. The magnetized Sla,b,elm) metric restricted in 
this way has the simple structure 

g~ = 1t/l12[Ag2 - Cdr] + 1t/l1- 2 B [dO" + W]2, (9) 

whereas t/I and w reduce to 

w = ~m2Ipp)2{ - bp - eq + 11 + a)pq} d-r, 
(10) 

Notice that in this case the twist potential is the constant Eo' 
Furthermore if one takes Eo = 0, the electromagnetic 

two-form (() is given by 

(() = pd {-I B It/I) dO" + 2im2[bp + eq + 11 + a)pq] d-r} . 

111) 

Equations (9) and (10) contain as particular solutions a 
magnetized Schwarzschild black hole,3 a Melvin magnetic 
universe,3,13 and a twisted Melvin magnetic universe. How
ever, more general and interesting cases are the magnetized 
Kasner metrics and the magnetized V oorhees-Zipoy me
trics. These metrics are also contained in Eqs.(9) and (10) and 
we analyze them in the remainder of this section. 

A. Magnetized Kasner metric with So = 0 

Here, S(a,b,elm) = S(a,O,Olm) corresponds to the 
Kasner metric. This can be verified by applying the coordi
nate transformation 

u: = [(q2 - 1)(1 - p2Jr/2, v: = qp, 

with -r and 0" unchanged. 
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(12) 

(7) 

In this coordinatization, and with b = e = 0, Eqs, (9) 
and (10) take the form 

g~ = m21 t/lil [u2a(a + 1)ldu2 + dv2) - U - 2a dr] 

+ m2It/1l- 2u2(a + 1)[dO" + W]2 , 

W = ~m2Ipp)211 + a)v d-r, 

1t/l12 = 11 + ppm1u2
(a+ 1))2 + Ipp)2~ . 

(13) 

When a = 1, the twisted magnetized Kasner's Metric, Eq. 
(11), reduces to the twisted Melvin magnetic universe. Onthe 
other hand a magnetic universe is obtained when Eo is taken 
equal to zero Ito get the expression in cylindrical coordi
nates, one must apply the coordinate transformationS 
r: = mu, z: = mv, t/J: = 0", and t: = -r). When b = 0 = c and 
a = - 1, the corresponding germinalS(a,b,elm) metric is a 
Minkowskian space-time and the magnetized metric is also 
Minkowskian. 

If the twist potential Eo vanishes the electromagnetic 
two-form (() associated with the magnetized Kasner's metric 
is given by 

(() = m2pd {(u 2(a + 1)/t/I) dO" + 2il1 + a)v d-r} (14) 

B. Magnetized Voorhees-Zlpoy metric with So = 0 

When Sla,b,elm) = S(0,8,0Im) corresponds to the 
V oorhees-Zipoy metric, the twisted magnetized solution is 
given by Eqs. (9) and (10) with a = 0 = e and b = 8. For this 
case, the bidimensional metric g2 and the structural func
tions A, B, and Care 

g2 = (q2 - p2)1 - 62 [q:~ 1 + 1 ~:2 ] , 
A = m2(q2 - 1f((q + l)/(q - 1))6, 

B = m21q2 _ l)(lq + l)/lq _ 1))6(1 _ p2), 

C = m2(1q - l)1lq + 1))6. 

(15) 

If the distortion parameter 8 is equal to 1, the Voorhees 
solution corresponds to the Schwarzschild black hole and 
the magnetized solution obtained is a twisted magnetized 
Schwarzschild solution. 

This solution can be written in "spherical coordinates" 
by applying the coordinate transformation 

r: = m(q + 1), t = m-r , cos 0: = p, and t/J = 0" • 

(16) 

In these coordinates, the Eqs. (9) and (10) take the form 
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g~ = 1¢1 2 [ dr + r d(j2 _ (1 _ 2m) dt 2] 
1 - 2mr r 

+ 1¢1-2 r sin2 () [dt,6 + ¢~(pp)2r 

X cos () ( 1 - 2~) dt r ' (17) 

1¢12 = (1 + (pp) r sin2 (})2 + (ppf~ . 

The magnetized Schwarzschild black hole devised by 
Ernst corresponds to the nontwisted Eo = ° solution [see Eq. 
(17)]. The associated electromagnetic form is 

(JJ = pd {( - r sin2 
() I¢) dt,6 + 2ir cos () drj . (18) 

To obtain the analog to the twisted magnetized 
Schwarzschild solution but with negative mass, we take 
8 = - 1 and apply the coordinate transformation 

r=m(q-1), cos(}=p, t=mr, and t,6=u. (19) 

The resulting magnetized metric is as (17) when we change m 
to -m. 

IV. MAGNETIZED SOLUTIONS WITH bo = 0 

In this section we analyze another simple particular 
case: when the Killing vector is aT' i.e., KI' = 81:. Notice that 
this Killing vector is timelike. The resulting magnetized 
metric is 

g~ = 1¢12[Ag2+Bd~] -1¢1-2C[dr+w]2, (20) 

whereas ¢ and w reduce to 

w = - 4Com2(pp)2(bp + cq - apq) du, 
(21) 

1¢12 = (1- pp Cf + (pp)2~ . 

Notice that one can obtain Eq. (18) from Eq. (9) by changing 
B-+ - C, C-+ - B, u-+r, r-+u, and by changing w as given 
by Eq. (10) to was given by Eq. (19). The twist potential is 
constant (Eo) and if this vanishes the associated electromag
netic form is 

(JJ = pd {(C I¢) dr + 2im2[bp + cp - apq] duj. (22) 

As in Sec. III, the magnetized Kasner and Voorhees 
metric, now with bo = 0, are particularly interesting cases 
which we now analyze. 

A. Magnetized Kasner metric with bo = 0 

Taking S (a,b,cl m) = S (a,O,Olm) and applying the coor
dinate transformation (11) in Eqs. (20) and (21) we arrive at 
the metric 

g~ = m21¢12[u2ala+ II(du2 + du2) + U21a + II d~] 

_ m 21¢1-2u- 2a [dr+ W]2, 

W = + 4Co(pp)au du, 

1¢12=(1_m2ppu-2a)2+(pp)2Co . 

(23) 

If a = 0, the seed metric S (O,O,Olm) is a Minkowskian 
space-time and the magnetized metric Eq. (22) is also Min
kowskian. However, if the germinal metric is S ( - 1,0,0Im), 
Eq. (22) gives a new magnetic universe. In fact, taking the 
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twist Eo = ° and applying the transformation to "Cartesian 
coordinates" 

x = mu, y = mu , Z = mu cosh r, t = mu sinh r , 

(24) 

we obtain 

g~ = 1¢12 [dx2 + dy2 + z~ ~ :2dt] + 1¢1-2 (td~ ~~d:)2 , 
¢ = 1 - pp(r - t 2) . (25) 

The associated electromagnetic form is given by 

(JJ =pd { - (1I¢)(1 dz - z dt) + 2ix dyj 

= 2p{ (11,p2) dz /\ dt + i dx /\ dy j . (26) 

The electromagnetic field has a singularity defined by 
¢ = ° which is a Z = const plane moving with constant ac
celeration on z direction respect to Minkowskian space. 
Then, one can imagine this solution as generated by a 
z = const charged plane moving with constant acceleration 
in the z direction. However a detailed interpretation is still 
lacking. 

B. Magnetized Voorhees metric with bo = 0 

Finally when the germinal metric is S (a,b,c/ 
m) = S(0,8,0Im), Eqs. (20) and (21) take the form 

g~ = 1¢12m2(q + 1)6 [(q2 _ p2) 
q-l 

(
q2 _ 1)6 dq2 dp2 

X -- --+--q2_p2 q2_1 l_p2 

+ (q2 _ 1)(I_p2) d~] -1¢1-2m2 (: ~ :r 
X [dr-4Com2(pp)28pdu] , 

1¢1 2
= [1-ppm2(:~ :rr + (pp)2~. (27) 

In this case the corresponding Schwarzschild general
ization can be obtained by taking 8 = 1 and applying the 
coordinate transformation (16). To obtain the Schwarzschild 
generalization with negative mass, one takes 8 = - 1 and 
applies the coordinate transformation (19). In the first case, 
8 = 1, with Eo = 0, the metric and the electromagnetic forms 
are 

g~ = ,p2 [ dr + r(d() 2 + sin2 
() dt/i)] 

1- 2mlr 

_¢-2(1_
2
;)dt2 , (28) 

(JJ = m 2pd { ~ (1 - 2~) dt + 2i cos () dt,6 } 

= 2m2 p {r~ dr /\ dt - i sin () d(} /\ dt,6} , (29) 

¢= 1-ppm2 (1- 2;). 
The electromagnetic field has a singularity over the sphere of 
radius 
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r = 2m3 pp/(pp m2 
- 1), for pp m2 > 1, 

thus, this solution can be interpreted as a mass surrounded 
by a spherical charged layer. 
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Recently obtained results linking several constants of motion to one (non-Noetherian) symmetry 
to the problem of geodesic motion in Riemannian space-times are applied. The construction of 
conserved quantities in geodesic motion as well as the deduction of geometrical statements about 
Riemannian space-times are achieved. 

I. INTRODUCTION 

One of the most important applications of the knowl
edge of symmetries in physics is the construction of quanti
ties that remain constant during the evolution of physical 
systems. Noether's theorem 1 provides a strikingly simple 
way of testing whether a given infinitesimal transformation 
is a symmetry for a given Lagrangian system and associates a 
constant of motion to each (Noetherian) symmetry. On the 
other hand, the symmetries of the equations of motion con
stitute a larger set, which includes those (Noetherian) sym
metries of the Lagrangian. 2 Nevertheless, there were no sys
tematic ways of constructing constants of motion associated 
to non-Noetherian symmetries up to now. Recently, new 
kinds of Lagrangian symmetries could be defined in such a 
way that this new set (which includes Noetherian symme
tries) would be equivalent to one of symmetries of the equa
tions of motion.2 Furthermore, a systematic way of con
structing several constants of motion associated with each 
symmetry was provided. 2-6 

The purpose of this paper is to apply these new concepts 
and results to geodesic equations of motion in Riemannian 
space-times. 

The paper is organized as follows: In Sec. II we review 
and present new results on Lagrangian symmetries and con
stants of motion for first-order differential systems. In Sec. 
III we translate these results for second-order systems. In 
Sec. IV we apply these concepts to geodesic motion in Rie
mannian space-times. Section V is conclusions and outlook. 

II. SUMMARY OF RECENT RESULTS 

In this and the next sections we briefly sketch the meth
ods and summarize the main results of recent works2

-
7 to be 

used here. 
Consider a system of n second-order differential equa

tions 

-, Permanent address. 

?/_Fi(qj,gJ,t) =0, i,j= 1, ... ,n. (2.1) 

It is convenient for our purposes to define 

Xi = qi, xi+n = gi, fi =xi+n, fi+n = Fi(xj,xj+n,t), 

so that the first-order system of 2n equations 

XO - fO(xb,t) = 0, a,b = 1, ... ,2n, 

(2.2) 

(2.3) 

is equivalent to (2.1). Even if no Lagrangian exists for the 
system (2.1), there are infinitely many Lagrangians for sys
tem (2.3) (see Refs. 4,6, and 7). In fact, 

L = L (XO,xO,t) = fa (xb,t)W - r) (2.4) 

is a Lagrangian for system (2.3) if la satisfies 

d aF 
-la +lb -=0 
dt axa 

and 

det U ab ;f0, 

where 

and 

d r~+~. 
dt axa at 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

Equations (2.5) and (2.6) have infinitely many solutions.4 The 
equations of motion for (2.4) are 

EaL = Uab(Xb 
- F) = 0, (2.9) 

when Eqs. (2.5) are satisfied. We have used 

E L ==..E... aL _ aL . (2.10) 
a dt axa axa 

Equations (2.9) are equivalent to (2.3) if (2.6) holds. It is 
straightforward to prove that q obeys 

(2.11) 
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on account of (2.5). 
The infinitesimal transformation 

x,a = xa + E'rt(xb,t), /jt = 0, (2.12) 

is said to be a symmetry transformation for Eq. (2.3) if it 
maps any solution of(2.3) into another solution of(2.3), i.e., if 
TJa satisfies 

;t TJa - r.bTJb = 0, (2.13) 

to within terms of order E2. 
We consider local transformations (& = 0) only. The re

sults for /jt = ETJo can be reobtained by redefining a new local 
transformation ETJ,a = E(TJa - XaTJO). 

For details see Refs. 2 and 8. 
On the other hand, (Noetherian) Lagrangian symme

tries may be defined as follows. 
Consider the local infinitesimal transformation 

x,a = xa - /jxa(xb,t )==xa - E1""(Xb,t), & = O. (2.14) 

The new Lagrangian L ' is defined as usual: 

L '(x,a ,x,a,t) = L (xa ,xa,t ). 

The functional change of the Lagrangian is 

/jL ==L '(xa ,xa,t ) - L (xa ,xa,t). 

A straightforward computation yields 

/jL = aL /jxa + aL (/j~l'. 
axa axa 

(2.15) 

(2.16) 

(2.17) 

The transformation (2.14) is said to be a (Noetherian) sym
metry of the Lagrangian if 

/jL == - E d¢(xa,t). (2.18) 
dt 

The conserved quantity K associated with transformation 
(2.14) is 

K = :~ 1"" + ¢ = laya + ¢. (2.19) 

Conditions (2.18) can be equivalently stated as 

Ea/jL =0. (2.20) 

Note that /jL is a function of xa
, xa

, and t only [see Eq. 
(2.21)]. 

It can be easily seen that all Noetherian symmetries sa
tisfy (2.13) but the converse is not true.2

•
7.9 As a matter of 

fact, /jL can be identically rewritten as 

/jL = E[(la1""l' - 1""O'ab(Xb - fb)], 

and it can be proved that if 1"" satisfies (2.13) then 

Ea/jL = EAa bEbL, 

where 

Aa b = u*ac(O'-I)cb 

and 

a/· al· u* b = __ a ___ b, I·a =O'abyh. 
a axb a~ 

Equation (2.22) can be rewritten as 

Ea/jL IE,,£. =0 = O. 
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(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

Lagrangian symmetries defin~ by Eqs. (2.22) ~d {2.25) 
are completely equivalent to the symmetries of equations of 
motion defined by Eq. (2.13). For higher-order differential 
equations new concepts need to be defined2,9,Io in order to 
achieve equivalence between the two sets of symmetries. 

The concept introduced by Eq. (2.22) is sometimes 
called S equivalence2-7 and is related to the covariance of 
equations of motion under the symmetry transformation 
(rather than the invariance concept which defines Noether
ian symmetries). It has been proved2-6.9 that 

d 
-4=~ ~~ 
dt 

with 

Ik = tr Ak, k = 1,2, ... , 

and 

d 
-J=O, 
dt 

with 

(2.27) 

(2.28) 

J = la y a, (2.29) 

so that several conserved quantities Ik and J associated to 
one S equivalence symmetry transformation 1"". These re
sults can be easily reobtained·using Eqs. (2.5), (2.11), and 
(2.13). 

It is interesting to realize that the basic equations (2.5), 
(2.11), and (2.13) can be rewritten in a geometrical language I I 
as 

(2.30) 

(2.31) 

(at + .!ff)O'ab=a~;b + O'ab.cr + O'acr.b + O'Cbr.a = 0, 

(2.32) 

where at denotes partial differentiation with respect to time 
and .!f f stands for the Lie derivative alongfa . Note that I is 
a one-form,fand TJ are vector fields, and 0' as defined by Eq. 
(2.7), 

0' = dl, (2.33) 

is a two-form. 
Equations (2.32) [or (2.13)] define the symmetries of the 

problem (both for the equations of motion and Lagrangians) 
and are associated with the constants of motion defined by 
Eqs. (2.19), (2.27), and (2.29). For brevity, we will say that 
anyone-form I satisfying Eq. (2.30) is a Lagrangian and any 
vector field TJ, which is such that (2.32) holds, is a symmetry. 
Any two-form 0' such that Eqs. (2.31) and (2.33) [or (2.34) 
below] are fulfilled is a symplectic form. Note that in view of 
(2.33), 

dO'= O. 

If in addition, 

det 0'#0, 

the symplectic form is said to be regular. 

(2.34) 

(2.35) 

It is straightforward to prove that ifTJI and TJ2 are sym-
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metries, then a new symmetry 'Y/3 may be defined by 

a {f a a b a b (2 36) 'Y/3 =..z T/, 'Y/2 ='Y/2 ,b 'Y/1 - 'Y/1 ,b 'Y/2 . . 

Similarly, if I is a Lagrangian and 'Y/ is a symmetry, 7 defined 
by 

(2.37) 

is also a Lagrangian. Furthermore, if U is a symplectic form 
then iT, defined by 

iTab = .!£' T/uab =uab,c 'Y/c + Uac 'Y/c,b + Ucb 'Y/c,a' (2.38) 

is also a symplectic form. Note that iT can also be written as 

iT= d7, 

with 7 defined by Eqs. (2.37). 
Define 

7~ =Uab'Y/b. 

It is straightforward to see that 

7~ =7a -(lb'Y/b).a· 

Define iT~b as 

_, a7 ~ al;, 
Uab = axb - axa 

to get 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

In other words the new Lagrangians 7 and 7' defined 
through Eqs. (2.37) and (2.40) are trivially equivalent in the 
same sense that they differ by dJ and give rise to exactly the 
same equations of motion or, equivalently, to the same sym
plectic form iT as Eqs. (2.41) and (2.43) show. 

In summary, for any symmetry 'Y/, J is conserved. In 
addition, if'Y/ in non-Noetherian the quantities Ik are con
served, and if'Y/ is Noetherian, K is conserved. 

Furthermore, in case two or more symmetries 'Y/ i a are 
known one can, in addition, construct the constants Mij as 

Mij = 'Y/iaUab'Y//, i=/=j, (2.44) 

for each nontrivial u. The fact that the Mij are constant fol
lows from Eqs. (2.28), (2.29), (2.40), and (2.41). 

III. SECOND-ORDER FORMALISM 

In what follows we will make contact with the second
order formalism.2 

The local infinitesimal transformation 

q'i = qi + ESi(qj,qj,t), 8t = 0, (3.1) 

is said to be a symmetry transformation for Eqs. (2.1) if it 
satisfies2 

d d si_aFi d sj_aFisj=O 
dt dt aqj dt aqj 

to within terms of order E2, where 

d==Fi~+ 'i~+!.... 
dt aqi q aqi at 

(3.2) 

(3.3) 

Equation (3.2) will be called the symmetry equation. It is 
straightforward to prove that if Si satisfies Eqs. (3.2), then 
'Y/a , defined by2 
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i [;-i r/+n -_ ddt r i , 'Y/ = =-, ./ =- (3.4) 

satisfies Eqs. (2.13). 
It has also been proved that if a Lagrangian L (qi,qi,t ) 

exists for a second-order differential system like (3.1) then 
another Lagrangian L (qi,qi,1/,t), which differs from L by a 
total time derivative, can always be written as a linear combi
nation of the left-hand side of its own equations of motion/ 
that is, 

L (qi,qi,qi,t) = fli(t/,iI,t )(qi - F i), 

where 

L (qi,qi,t ) = L + dg(qi,qi,t). 
dt 

The functions fli have to satisfy7 

afli _ aflj = 0 
ail aqi ' 

d (d aFk) aF
k 

dt dt fli + flk aqi - flk aqi = 0, 

detAij =/=0, 

where 

A .. =~(d . + aFk) + aflj 
IJ aqj dtfll flk aqi aqi' 

in order that 

GiL=O 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

be equivalent to Eqs. (2.1). The (acceleration-dependent) 
Euler-Lagrange operator Gi is defined by 

d 2 a d a a 
Gi== - dt aqi + dt aqi - aqi' (3.12) 

It is straightforward to prove that if fli satisfies Eqs. (3.7)
(3.9), then la' defined by 

Ii = - (:t fli + flk ~ik). Ii + n = flo (3.13) 

satisfies Eqs. (2.5) and (2.6). 
The matrix U can be written as 

(B -A) 
U= AT C ' (3.14) 

withA Tij ==Aji , where A is defined byEq. (3.10), andB and C 
are defined as follows: 

a (d aF
k
). B .. = --. -fl· + Ilk --. +(1++''\ 

lJ aq' dt I r- aq' JI' 
(3.15) 

afli aflj 
Cij = aqj - aqi' (3.16) 

A Lagrangian L (qi, qi, t) for system (2.1) exists if and 
only if C = 0 and, in that case, A is symmetric.2,7 For the 
acceleration-independent Lagrangian L one may define 

(3.17) 

(3.18) 
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and prove that 

A= -W, 

B= -T. 

(3.19) 

(3.20) 

Let us consider the case when a Lagrangian L (qi,i/,t ) for 
Eq. (2.1) exists. Define II as 

II ==..!..8L =[aL. t i + aL. (t i)'], (3.21) 
€ aq' aq' 

associated with transformation (3.1). It is straightforward to 
provethatl 

(3.22) 

i.e., II has the structure (3.5) up to a total time derivative2 

and 

- - W f;-j -I'-i - - ij~ (3.23) 

satisfies Eq. (3.8) if t j solves Eq. (3.2). 
For the case of S equivalence, i.e., when C = 0 with 

- aili ailj c..=---
IJ aqj aqi' 

(3.24) 

it is easier to apply Theorem (2.26) because the h , given by 
Eq. (2.27), reduce t02 

Ik = 2 triM -1) = - 2 tr(AW- 1
), (3.25) 

where 

(3.26) 

For C #0, Theorem (2.26) applies as it stands. 
The dictionary provided to translate from a second-or

der to a first-order formalism allows us to construct the same 
conserved quantities described in Sec. II if the second-order 
equations do have a Lagrangian and their symmetries are 
known. If no Lagrangian for the second- (or any-) order set of 
differential equations exist, the first-order results of Sec. II 
may still be applied because first-order Lagrangians always 
exist.4 

IV. GEODESIC MOTION 

We will now apply the results summarized in Secs. II 
and III to the motion of a pointlike test particle moving in an 
arbitrary gravitational field, i.e., we study the conservation 
laws associated with the geodesic equation 

d 2qa dr/ dqr 
dr +rp~dsds=o (4.1) 

in an arbitrary Riemannian space-time with metric tensor 
ga(3(qYj. The Christoffel symbols 

(4.2) 

are defined as usual. The independent variable s is the proper 
time (we are taking the velocity oflight c = 1). 

Equations (4.1) may be obtained from the acceleration
independent Lagrangian (M is the mass of the particle) 

L = L (~,qa) = !Mgap(qYj d: 1: (4.3) 

or the acceleration-dependent one 
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L = L (qa,qa,qa,s) = - sMga(3qa(1/ + r r~qrif), (4.4) 

where 

I'-a = - sMgap(gYji/, (4.5) 

which satisfies Eqs. (3.7)-(3.9) with 

AAP = - Mg...". (4.6) 

A first-order Lagrangian for the (4.7), (4.8) set [equiva
lent to (4.1)], 

Md~ _pa=o (4.7) 
ds ' 

dpa +..!.. r apPpr = 0 
ds M Pr ' 

can be written as 

L = la(xa -fa), a = 0,1, ... ,7, 

where 

xa = qa, xa+4 = pa, fa = palM, 

f a+4 = - rp~pPprIM, 

(
d afPH) 

la = - dtl'-a +I'-p apa ' la+4 =I'-a' 

The matrix q is given by 

B ap = (gpr,a - garJ3)P r, 

C=O, 

and A defined by Eqs. (4.6). 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

In order to be able to apply the conservation laws de
scribed in the preceding sections to the problem of geodesic 
motion in Riemannian space-times, we write down the sym
metry equation for geodesics as 

D D f;-",+_I_ R J.t papPf;-r=o (4.14) 
Ds Ds ~ M2 aPr ~ , 

where 

8q"'==€t "'(qa,pP os), 

the Riemann tensor is 

(4.15) 

R'" a(3r=r~.r - r~rJ3 + ra$rp~ - rajrp~' (4.16) 

Px is defined by (4.7), and the covariant derivative along the 
geodesic is 

15 f;-",= d f;-", +..!.. r '" paf;-P (4.17) 
Ds ~ ds ~ M ap ~, 

with 

~'" = at'" d~ + at'" dpa + at'" , (4.18) 
ds aqa ds apa ds as 

or 

d t'" =..!.. (at'" pa _ at'" r U~pOpT) + at"'. 
ds M aqa apa as 

(4.19) 

Equation (4.14) is a generalization of the equation of 
geodesic deviation, which is usually written for a vector S'" 
depending on s only. 12 

The solutions to Eq. (4.14) give rise to conserved quanti
ties according to Eqs. (2.19), (2.27), and (2.29). 
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In what follows we find a few particular solutions to Eq. 
(4.14). 

(i) Consider the case 5'" parallel to P' , 

tl' = A (q,P,s)pl'. (4.20) 

It is easy to verify that, due to Eq. (4.8), 

(4.21) 

solves Eq. (4.14) in this case. Here C1 and C2 are arbitrary 
constants of motion of Eq. (4.1). In particular, 

tl =sPI' 

are solutions to Eq. (4.14) for any metric tensor. 
(ii) Consider the case 

5'" = SI'(q) 

only. 
In this case, Eq. (4.14) reduces to 

(SI';a;p + R I' apytr)papP = 0, 

which is solved by affine collineations. 13 Therefore 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

sl' = affine collineation (4.26) 

is also a particular solution to Eq. (4.14). Affine collineations 
may be defined by 

2"s,ra~=O 

and satisfy 

S3 a;p;y + R a Pr{JS/J = 0 

or 

(4.27) 

(4.28) 

S3Ia;/3);r = O. (4.29) 

Of course, Killing vectors (or motions), defined by 

2" xgl'v = 0 (4.30) 

and satisfying 

Xla;{J) = 0, (4.31) 

are special cases of affine collineations and are Noetherian 
symmetries of the Lagrangian (4.3). 

(iii) Consider now S such that 

R I' apr SY = O. (4.32) 

Equation (4.14) reduces to 

DDsI' = 0, (4.33) 
Ds Ds 

sothatsl' has to satisfy Eqs. (4.32) and (4.33) simultaneously. 
A particular solution to this problem is found in Ref. 14 for 
special metrics which admit constant vector fields. In fact, a 
constant vector field S41', which is a function of q only, is such 
that 

S41';v = 0, 

which implies (by repeated differentiation) 

R I' apy S4Y = 0 

and 
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(4.34) 

(4.35) 

(4.36) 

and therefore satisfies (4.32) and (4.33) simultaneously. Of 
course, it would be interesting to find more general solutions 
to the ansatz specified by Eqs. (4.32) and (4.33). 

Now we will write down explicitly the constants ofmo
tion associated with the symmetries we have found. 

Consider S t first. The only nontrivial constant of mo
tion it yields is 

(4.37) 

where 

if> = - ~PI'PI'. (4.38) 

The constant J 1 is trivially related to KI in this case. In fact, 

J1 = PI'PI'. (4.39) 

Of course, the traces theorem [(2.26) and (2.27)] is not useful 
for the Noetherian symmetries, because it gives constants 
which vanish identically. 

Let us now turn our attention to sl. This is a vector 
which gives rise to s equivalence and, in this case, the traces 
theorem yields numerical constants. Furthermore, 

(4.40) 

These results are not surprising because stand sl are 
symmetry transformations of geodesic motion for any met
ric and the associated constants should exist for any metric 
too, and they are therefore just functions of M 2. 

Consider sl now. Affine collineations ares equivalence 
symmetries. In fact, A 3ap, defined by Eq. (3.26), is 

A3ap = - M (S3a;13 + S3P;a )= - Mh ap . (4.41) 

The conservation laws (3.25) state that the traces of the 
powers of haP are just numbers. These are not dynamical 
statements and constitute rather geometrical laws, which 
may, of course, be independently obtained from Eqs. (4.29), 
say. This is so because haP is a function of qIl only, indepen
dent of PI' . Therefore, these conservation laws can give rise 
either to dynamical or to geometrical statements. We will 

find other geometrical laws further down. The constant J3 is 

J3 = PaS a
3 - (sIM)PaS a3;13pP, (4.42) 

Consider constant vector fields S41' . A constant vector 
field is a special kind of Killing vector and constitutes, there
fore, a Noetherian symmetry. The constants J and K coin
cide and they are 

J4 =K4 =PaS4a. (4.43) 

Consider now the matrices (T defined by Eqs. (4.6), (4.12), and 
(4.13) and 0-: 

0- = 2" S3 (T. (4.44) 

We can now write down the constants M and M asso
ciated with different symmetries. Consider the eight-dimen
sional symmetry vector 17~ associated with S~ (A = 1,2,3,4) 
according to Eq. (3.4). The following are new constants of 
motion: 

(4.45) 

M13=17~O-ab17~ =pahapfj;ypr, (4.46) 

M 23 = 17~o-ab17~ = (sIM)pahapS~;rPY - t;haPPp. 
(4.47) 
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By reiterating the procedure one may prove that the whole 
series of dynamical quantities (in terms of powers of the ma
trix h) 

N2j+ I = pa(hj)apr:;rpr, (4.48) 

N2j+2 = (s/M)pa(hj)apr:;rpr - t;(hj)apPP (4.49) 

are constants of motion. 
Similarly, using Eq. (3.23) repeatedly and the fact that 

Eq. (4.14) defines symmetries of Lagrangians for geodesic 
motion, one may prove that 

(4.50) 

is an affine collineation if ~ is (which can also be proved by 
the usual techniques of differential geometry, but in a more 
involved fashion). We have thus obtained another geometri
cal result using dynamical statements. 

Of course, one may continue combining these ideas to 
get new results, but we will leave these and concrete exam
ples for a future pUblication. 

V. CONCLUSIONS AND OUTLOOK 

We have applied ideas recently developed about La
grangian symmetries and constants of motion to geodesic 
equations and we have constructed several conserved quan
tities associated to symmetries. These new ideas allowed us 
to work with symmetries that are not point transformations, 
i.e., they may have an explicit dependence on the momentum 
(or the tangent vector) and have found with a unified formal
ism some constants that had been constructed using differ
ent techniques before. As far as we know the constants N are 
new. We have also found geometrical results using this dyna
mical idea. 
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It would be interesting in the future to present concrete 
examples for specific metric tensors with symmetries and 
include the study of projective collineations as well. We have 
left this part out to avoid making this paper unbearably long. 

ACKNOWLEDGMENTS 

One of us (S.H.) is deeply grateful to J. Rivero and S. 
Rassias for the kind hospitality extended to him at Universi
dad de Los Andes where part of this work was carried out. 

Thanks are also due to Comisi6n Nacional de Investiga
ci6n Cientifica y Tecnol6gica de Chile and Departamento de 
Investigaci6n Cientifica y Tecnol6gica, Universidad de San
tiago de Chile for partial support. 

IE. Noether, Nachr. Kon. Gess. Wiss. Gottingen, Math. Phys. KI., 235 
(1918); O. Lovelock and H. Rund, Tensors, Differential Forms and Vari
ational Principles (Wiley, New York, 1975); E. C. G. Sudarshan and N. 
Mukunda, Classical Dynamics: A Modern Perspective (Wiley, New York, 
1974). 

2S. Hojman, J. Phys. A 17, 2399 (1984). 
3S. Hojman and H. Harleston, J. Math. Phys. 22, 1414 (1981). 
4S. Hojman and L. F. Urrutia, J. Math. Phys. 22, 1896 (1981). 
5S. Hojman and J. Gomez, J. Math. Phys. 25,1776 (1984). 
<;g. Hojman and L. C. Shepley, Rev. Mex. Fis. 28,149 (1982). 
7R. Hojman, S. Hojman, and J. Sheinbaum, Phys. Rev. 028, 1333 (1983). 
8S. Hojman, J. Phys. A 17, L521 (1984). 
·S. Hojman and F. Zertuche, Nuovo Cimento B (to appear). 
IOL. Aulestia, F. De Lisa, and S. Hojrnan, "Lagrangians for dilferential 

equations of any order" (in preparation). 
liB. Schutz, Geometrical Methods in Mathematical Physics (Cambridge U. 

P., London, 1980). 
12S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1975). 
I3G. H. Katzin and J. Levine, J. Math. Phys. 18, 1267 (1977); 22, 1878 

(1981), and references therein. 
140. Kramer, H. Stephani, M. Mac Callum, and E. Herlt, Exact Solutions 0/ 

Einstein's Field Equations (Cambridge U. P., London, 1980). 

HOjman et al. 286 
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The extrema of the Euclidean Regge gravitational action are investigated numerically for some 
closed, compact, four-dimensional simplicial manifolds with topologies S 4, CP 2, and S 2 X S 2. 

I. INTRODUCTION 

Sums over geometries such as occur in the Euclidean 
functional integral approach to quantum gravity may be giv
en a practical meaning through simplicial approximation. In 
this approximation sums over smooth geometries are re
placed by sums over simplicial geometries built up out offtat 
simplices by the methods of the Regge calculus. 1 Simplicial 
geometries are specified by the way the simplices are joined 
together and by the squared lengths of their edges. A sum 
over different topologies is approximated by a sum over dif
ferent ways of putting simplices together. A sum over me
trics on a given manifold is approximated by a multiple inte
gral over the squared edge lengths of a collection of simplices 
which triangulate the manifold. 

Simplicial approximations to sums over geometries 
were discussed in general in the first paper in this series2 

(Paper I) where some references to the extensive earlier liter
ature may be found. The expectation value of some physical 
quantity A in the state of minimum excitation for closed 
cosmologies provides a typical example of such a sum. This 
might read 

(A) = Se d~l A (sj)exp[ - /(sJ] 
Se d~) exp[ -/(Sj)] , 

(1.1) 

where / is the Euclidean Regge gravitational action for a 
closed compact simplicial geometry. For simplicity we have 
illustrated only a sum over metrics on a fixed simplicial 
manifold. Both / and A are functions of the squared edge 
lengths So i = 1, ... ,n). The integral is a multiple integral over 
the space of squared edge lengths along some appropriate 
contour C with some appropriate measure. As throughout 
we use units where Ii = c = 1 and write the Planck length as 
1= (161TG)1/2

• 

In suitable limits the integral (1.1) can be evaluated by 
the method of steepest descents. This is the semiclassical 
approximation. The value of the integral is dominated by the 
contribution near one or more stationary points through 
which the contour can be distorted to pass. At these, 

aI =0. 
aS j 

(1.2) 

These are the simplicial analogs of the Einstein field equa
tions. Even when not quantitatively accurate the semiclassi
cal approximation often yields qualitative insight into the 
behavior of the integral in a straightforward way. 

The important quantities for constructing a simplicial 

sum over geometries and evaluating it in the semiclassical 
approximation are the Regge action and its stationary 
points. Methods for evaluating the action and the Regge 
equations (1.2) were reviewed in Paper I. In this paper we 
shall illustrate these methods by numerically evaluating the 
action and locating its stationary points for a few simple 
simplicial manifolds. We make no attempt to be exhaustive. 
We consider only the Regge gravitational action with posi
tive cosmological constant. In the continuum limit this is the 
action of Einstein's theory. We shall confine attention to 
compact simplicial manifolds which have no boundary. 
These are the important nets for evaluating expectation val
ues such as (1.1) (Paper I). We shall consider only real (Eu
clidean) edge lengths. Even if the contour of integration in 
( 1.1 ) is complex, the real stationary points seem likely to play 
a significant role in any semiclassical evaluation of the inte
gral. 3 Within this limited scope, however, we shall be able to 
illustrate how the Regge action approximates the continuum 
action, to display its values in a number of interesting cases, 
and to solve for the stationary points on simple manifolds 
with differing topologies. 

To evaluate the action one must first have a simplicial 
manifold. That is, one must specify a set of vertices, edges, 
triangles, tetrahedra, and four-simplices which make up a 
manifold with the desired topology. The specification of a 
simplicial manifold is discussed in Sec. II. Quoting largely 
from the mathematical literature we shall exhibit simplicial 
manifolds which are triangulations of S 4, CP 2, S 2 X S 2, and 
S)XS 3• 

In Sec. III we illustrate the evaluation of the action us
ing families of geometries on S4 and CP2. We compare the 
action of the most symmetric simplicial geometries with that 
of the most symmetric continuum geometries on these mani
folds. In less symmetric cases we illustrate the behavior of 
the action for homogeneous, anisotropic geometries and for 
geometries which are conformal deformations from the most 
symmetric cases. We shall recover features familiar from the 
continuum theory such as arbitrarily negative actions aris
ing from conformal deformations. 

Section IV is concerned with the solution of the Regge 
equations on S 4 and CP 2. Solutions are found by imposing 
symmetries. The eigenvalues of the matrix describing the 
second variation of the action at these stationary points is 
also calculated. A more systematic approach to solving the 
Regge equations is discussed in Sec. V and the difficulties for 
this method arising from the approximate diffeomorphism 
group of a simplicial geometry are illustrated. 
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II. SOME SIMPLICIAL MANIFOLDS 

A four-dimensional simplicial manifold is a collection of 
vertices, edges, triangles, tetrahedra, and four-simplices 
joined together such that a neighborhood of every point can 
be smoothly and invertibly mapped into a region of four
dimensional Euclidean space R4. In more mathematical ter
minology, a simplicial manifold is a simplicial complex 
which is a piecewise linear manifold.4 

A complex may be described by labeling its simplices 
and specifying how they are contained in one another. (Here 
and from now on we shall omit the qualification "simplicial" 
from manifold, complexes, etc., it being understood that the 
objects of interest in this paper are constructed from sim
plices.) A complex which is a four-manifold is homogeneous
ly four-dimensional. That is, every simplex of dimension 
k < 4 is contained in some four-simplex. Homogeneously 
four-dimensional complexes may be specified by labeling 
their k-simplices by integers from 1 up to the total number 
nk and then listing the vertices ofthe four-simplices. Such a 
list defines the vertex matrixj4(i,}} which gives the five ver
ticesj = 1, ... ,5 of the ith four-simplex. From this the vertices 
of the edges, triangles, and tetrahedra of the complex can be 
computed and in particular the matricesjk(i,}} which give 
the verticesj = 1, ... ,k + 1 of every k-simplex i. 

An alternative way of specifying a complex is to give its 
incidence matrices. We assign numbers 1, ... ,nk tolabelthek
simplices of the complex. The incidence matrixs ik(i,}) for 
j = 1,2, ... gives the labels of the k-simplices contained in the 
(k + 1 I-simplex i. Clearly the incidence matrices can be com
puted from the vertex matrices and vice versa. Given the 
matrix j4(i,)! which specifies the vertices of the four-sim
plices of a complex we can compute all the other ik andjk' It 
is not true, however, that given the matrix io(i,}}, which 
specifies which vertices are connected by edges, one can 
compute the rest of the complex. For example, there might 
be a complex with no> 5 vertices in which every vertex is 
connected to every other (we shall display some subsequent
ly), so that io(i,}} is always 1 for i :j:j. This io is the same as the 
io for the (no - I)-simplex. To be a four-dimensional com
plex the five-simplices, which could be constructed from the 
given edges, and the four-simplices in which they intersect 
must be left out and fo does not say which they are. 

Not every matrix j4(i,)} which specifies a four-dimen
sional complex specifies a manifold. A complex is a manifold 
if every point (including the interior points of the simplices) 
has a neighborhood which is homeomorphic to a ball in R4. 
A necessary and sufficient condition for a complex to be a 
manifold may be stated in terms of the star and link of a 
simplex. The star of a simplex u is the collection of all sim
plices which have u as a face together with all of their faces. 
The link of a simplex u consists of all simplices in its star 
which do not have u as a face. (See Paper I for some illustra
tions.) A complex is a four-manifold if and only if the link of 
every k-simplex is a (3 - k )-sphere.6 This is not a condition 
which translates very straightforwardly (if at all) into an al
gorithm for deciding whether a complex is a manifold or 
not.7 However, necessary conditions which are easy to test 
can be derived. For example, for the link of every tetrahe
dron to be a zero-sphere (two vertices), two four-simplices 

288 J. Math. Phys., Vol. 27, No.1. January 1986 

must intersect in exactly two tetrahedra or not at all. This is 
the analog of two triangles intersecting in exactly one edge in 
a two-manifold. In particular this implies that the total num
ber of tetrahedra and four-simplices are related by 

5n4 = 2n3 • (2.1) 

Another condition on the total number of simplices may be 
derived8 by fixing attention on a vertex u and considering the 
collection of simplices N (u) which is the star of u less its link 
and less the vertex u itself. The Euler number of any homo
geneously n-dimensional complex with mk k-simplices is 

n 

x= L (- Wmk' (2.2) 
k=O 

Since the link of a vertex of a four-manifold is a sphere with 
X = 2, and since the star of a vertex is a four-ball with X = I, 
the Euler number of N (u) vanishes. Summing this relation 
over all vertices of the manifold one finds 

2nl - 3n2 + 4n3 - 5n4 = 0 . (2.3) 

This is an example of a Dehn-Sommerville relation. 
Neither (2.1) nor (2.3) is sufficient to guarantee that a 

complex is a manifold. The absence of a straightforward 
combinatoric check of whether a complex is a manifold 
means that finding explicit simplicial manifolds with inter
esting topology is a challenging mathematical problem. In 
the literature (to quote a review of the three-dimensional 
problem9

) "explicit triangulations of topologically nontrivial 
three-manifolds have been observed only very rarely" and 
their construction by and large has been by special tech
niques. Given this situation we cannot attempt a systematic 
survey of four-dimensional simplicial manifolds. Rather in 
this section, drawing almost entirely on the mathematical 
literature, we shall exhibit a few examples. We shall classify 
them by the customary name of their topological space. The 
specific complex is then said to be a specific triangulation of 
the space. 

A.S4 

The surfaces of the tetrahedron, octohedron, and icoso
hedron are triangulations of the two-sphere. They are regu
lar in the sense that no vertex or edge is distinguished from 
any other. The analog regular triangulations of S4 are the 
surfaces of the regular solids in five dimensions, which are 
composed entirely of four-simplices. There are only two. 10 

The first is the surface of the five-simplex as obtained by 
joining each of six vertices in five-dimensional Euclidean 
space to every other vertex. Thus, no = 6, n l = IS, n2 = 20, 
n3 = 15, and n4 = 6. The second is the surface of the five
dimensional cross polytope {is. This may be constructed by 
taking five orthogonal axes, locating two vertices on each 
axis on opposite sides of the origin, and connecting each 
vertex to every other except its opposite. For /3s, no = 10, 
n I = 40, n2 = 80, n3 = 80, and n4 = 32. The vertex matrices 
of as and /3s are given in Table I. The regular nature of the 
triangulations as and/3s can be expressed concretely by giv
ing their symmetry groups expressed as operations on the 
vertices. I I The symmetry group of as is the permutation 
group on the six-vertices S6' In the context of the construc
tion described above the symmetry group of /35 consists of 
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TABLE I. Four-simplices of a" /3s, and CP ~ . 

I 234 5 
I 2 346 
12356 
I 245 6 
I 345 6 
2 345 6 

I 234 5 
I 234 6 
12357 
12367 
12458 
1 246 8 
12578 
1 267 8 
1 3 4 5 9 
1 346 9 
1 357 9 
1 367 9 
14589 
14689 
15789 
16789 
234510 
234610 
235710 
236710 
245810 
246810 
2 5 7 8 10 
267810 
345910 
346910 
357910 
367910 
458910 
468910 
578910 
678910 

CP~ 
no= 9, n4 = 36 

12456 
2 3 564 
3 164 5 
12459 
2 3 5 6 7 
3 164 8 
2 3 649 
3 1 4 5 7 
12568 
3 1 569 
1 2 6 4 7 
2 3 4 5 8 
4 5 789 
5 6 8 9 7 
64978 
4 5 7 8 3 
5 689 1 
64972 
5 6 9 7 3 
6 4 7 8 1 
4 5 892 
6 4 8 9 3 
4 5 971 
56782 
7 8 123 
89231 
97312 
7 8 126 
89234 
97315 
89316 
9 7 124 
7 823 5 
9 723 6 
7 8 3 1 4 
8 9 125 

permutations of the five orthogonal axes and the reflections 
in each. In more mathematical terminologyl2 it is the wreath 
product of the permutation groups 8 2 and 85 written 
8 2 wr 85, Less regular triangulations of 8 4 could be obtained 
by subdividing as or /35 in a systematic fashion or by subdi
viding the faces ofthe only other regular solid in five dimen
sions-the cube. 

B.Cpz 

A highly symmetric triangulation of CP 2 has recently 
been given by Kiihnel and Lassmann 13 and many of its beau
tiful properties explained in a lucid article by Kiihnel and 
Banchoff. 14 Their triangulation, which they denote by CP ~, 
has no = 9, nl = 36, n2 = 84, n3 = 90, and n4 = 36, so that 
the Euler number is indeed 3. They found their triangulation 
by a series of arguments that suggested nine vertices and 
then a computer search to see how a known list of eight 
vertex triangulations of the sphere could serve as links of a 
nine vertex manifold. Their vertex matrix for CP ~ is given in 
Table II. There is an edge connecting every pair of vertices 
and a triangle filling in every triple of vertices. The symmetry 
group of CP ~ is of order 54 and is generated by the permuta
tions 
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TABLE II. The action for equal-edged triangulation of S4 and CP2. 

Manifold Triangulation 

as 
/3s 

round sphere 

CP~ 

Fubini-Study 

a = (123)(465), 
/3 = (147)(258)(369), 
1" = (12)(45)(78) . 

a 

107.9 
81.1 
61.6 

50.4 

37.7 

The authors of Ref. 14 denote this by H S4 ' 

C. T4 

4.90 
2.80 

2.14 

(2.4) 

The most straightforward way to triangulate a two
torus is to represent it as a rectangle with opposite sides iden
tified, divide the rectangle into a sufficient number of smaller 
rectangles, and triangulate each one. An example is given in 
Fig. I(a). In four dimensions, an analogous triangulation of 
the four-torus T4 may be constructed by joining together 
triangulated hypercubes. This construction has been given 
in detail by Rocek and Williamsls and used by Hamber and 
Williams 16 in explicit calculations. The minimum number of 
hypercubes is 81. This triangulation has 81 vertices and 1944 

(a) 

(b) 

FIG. 1. Two triangulations of a two-torus. The identification of the opposite 
sides of a rectangle without twist produces a two-dimensional torus T2. Di
vision of this rectangle into triangles such that the conditions for a simplicial 
complex are satisfied produces a triangulation of T2. Two nine-vertex trian
gulations are shown. The triangulation (a) builds the torus out of standard 
squares and has two translation symmetries. Viewing the torus as S I xS I 
and applying the product construction described in the text to the product 
of two triangles produces the triangulation shown in (b). It is not as symmet
ric as (a). 
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four-simplices. The symmetry group clearly contains the 
symmetry group of the hypercubic lattice which makes T4. 

The straightforward triangulation of T2 shown in Fig. 
l(a) is not the one with the minimum number of vertices. The 
minimum numberis 7. Similarly, triangulations of T4 can be 
found with a smaller number of vertices than the hypercubic 
triangulation. KUhnel17 has exhibited a 31 vertex triangula
tion of T4. The vertex matrix for its four-simplices is generat
ed by taking the four-simplices (0,1,3,7,15), (0,1,3,11,15), 
(0,1,5,13,15), and (0,4,5,13,15) and applying the group 
x----+ox + 1, x----+o - x, x----+o2x to all the entries considered as 
elements of Z31' There results a triangulation with 704 four
simplices. 

D.S2XS2 

The product of two simplices is not another simplex but 
a cell. For example, the product of two edges is not a triangle 
but a quadrilateral. Cells, however, can always be divided up 
into simplices and furthermore in a way which does not in
troduce any new vertices. 18 In this way a triangulation of a 
product manifold can be generated from triangulations of its 
products. The simplest example is the construction of a 
triangulation of a two-torus T2 = S I xS I from the product 
of two "triangles," which are the simplest triangulations of 
S I. The result is a nine vertex triangulation of the torus (e.g., 
Fig. 1). 

The process of triangulating the cells can be system
atized as followsI8.19

; Consider the cell a'"Xo" which is the 
product of an m-simplex with an n-simplex. Number the 
vertices of a'" in some ordered fashion io < i I < ... < im and do 
similarly for 0", jo <jl < ... <jn' The vertices of the cell 
a'"Xo" are the pairs (ia,jp). The ordering of the vertices 
establishes a partial ordering on the pairs. We say (i,J1 < (k,/) 
if i <k, j d, or if i< k, j<l. A triangulation of the cell 
a'" X 0" is given by the k-simplices spanned by vertices 
(io,jo), ... ,(ik ,jk) such that 

(io,jo) < (il,jtl < ... < (ik,jd . (2.5) 

A triangulation of a product manifold may be obtained by 
triangulating the products of simplices in its factors in this 
manner. In the case of the torus described above this syste
matic procedure yields the rather unsymmetric triangula
tion shown in Fig. l(b). 

Applied to the product of two tetrahedra, the above pro
cedure yields a triangulation of S 2 X S 2. There are 16 vertices 
formed by the products (i,j) of the four vertices of each tetra
hedron, i = 0, ... ,3;j = 0, ... ,3. The four-dimensional cells are 
the products of the form u2xu2. The k-simplices of the 
triangulation are spanned by all sequences of the form (2.5) 
in which not all four vertices occur either in the sequence 
io, ... ,ik or in the sequencejo, ... ,jk' This condition arises be
cause the triangles in the factors of u2 X u2 have three ver
tices so that no more than three different vertices occur in 
any cell. This triangulation of S 2 xs 2 has no = 16, n I = 84, 
n2 = 216, n3 = 240, and n4 = 96. Like the triangulation of 
the torus exhibited in Fig. l(b), it is not very symmetric. 
There are 25 independent edge lengths. It is an interesting 
question whether there are more symmetric triangulations 
ofS 2 XS 2

• 
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FIG. 2. The action for some homogeneous, isotropic, simplicial four-geo
metries on S·. The figure shows the action for the four-geometries which are 
the boundaries of the five-simplex (as) and the five-dimensional cross poly
tope ( Ps) (the five-dimensional generalization of the octohedron). In these 
triangulations no edge is distinguished from any other. The action for the 
geometries of highest symmetry with all edges equal is plotted against the 
total four-volume V for the value of the cosmological constant correspond
ing to H 2 = 1. Also plotted is the "continuum" action for the round four
sphere. The actions are negative for small Vbut become positive at large V 
due to the cosmological constant term in the action. At the minimum there 
is a solution of the Regge equations with all edges equal. The triangulation 
Ps is more refined than as and better approximates the continuum action. 

E. S8XS' 

An 11 vertex triangulation of S 3 X S 1 has been construct
ed by Kuhne!. 20 It is generated by taking the four-simplices 
(0,2,3,4,5), (0,1,3,4,5), (0,1,2,4,5), and (0.1,2,3,5) and apply
ing the operation x----+ox + 1 to all vertices of each considered 
as elements ofZII . There result 44 four-simplices. 

III. EVALUATING THE ACTION 

The Regge action for a simplicial manifold consisting of 
collections of k-simplices l:k' k = 0,1, .... 4, is 

6H 2 

12/ = - 2 > V2(U)O(U) + -2 L Vir). (3.1) 
~2 1 TEl:. 

Here, we have written 3H 2/12 for the cosmological constant, 
Vk is the volume of a k-simplex, and 0 (u) is the deficit angle 
of triangle u. This is defined by 

O(u) = 211' - L o (u,r) , (3.2) 
... :::>0' 

where the sum is over the four-simplices r. which contain u, 
and 0 (u.r) is the dihedral angle between the two tetrahedral 
faces of r, which intersect in u. The volumes Vk and dihedral 
angles 0 (u.r) may all be expressed in terms of the squared 
edge lengths of the geometry through standard flat space 
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formulas. (How to do this was reviewed in detail in Paper I, 
Sec. III.) In this way the action becomes a function of the 
squared edge lengths ofthe simplicial geometry. 

For even the simple triangulations displayed in Sec. II 
the number of edge lengths is large enough that the func
tional form of the action can be readily displayed only on 
slices through the space of edge lengths. The symmetry of 
the triangulation often suggests suitable slices. In this section 
we display some numerical calculations of the Regge action 
on some obvious slices of the triangulations of S 4 and CP 2 

described in Sec. II. 
The edges of the triangulations as and /3s of S 4 are equi

valent in the sense that anyone edge is transformed into 
every other by the action ofthe symmetry group. It is there
fore interesting to investigate the action of the triangulations 
when all their edge lengths are equal; this turns out to be an 
interesting case for CP ~ as well. Equivalently one can quote 
the action as a function of the total volume of the closed 
geometry since the total volume of n4 four-simplices of equal 
squared edge lengths s is 

'" '" o 
u 

V = n4($196)r . (3.3) 

Lit 

FIG. 3. The action for distorted five-simplices. The figure shows a contour 
map of the action (divided by 100) for a two-parameter family of five-sim
plices in which all the edges are oflength L except for those emerging from 
one vertex which have the value L /(2 cos a). The cosmological constant has 
the value corresponding to H 2 = 1. As shown in Fig. 6, values of cos a near 
zero correspond to long thin five-simplices while small values of a corre
spond to nearly tlat five-simplices. The solid contour lines are spaced by 
units of 200 in I while the dotted ones are spaced by units of 2000. The 
contour lines become too closely spaced for clear display in the hatched 
areas at bottom and right. Contour lines are not shown for very small values 
of cos a because the author's calculation was not very accurate there. There 
are no five-simplices with a value of cos a greater than 0.81 because the 
four-simplex inequalities are not satisfied for larger values. The action is 
well behaved at this boundary of the space of edge lengths. The contour map 
shows the negative gravitational action associated with inhomogeneous 
conformal distortions. There is an extremum corresponding to all equal 
edges with a value of 4.9/. This extremum is a saddle point not a maximum 
or minimum. The action generally becomes positive at large L because of 
the positive cosmological constant term. For large L and cos a near 1, how
ever, the action does not become positive but remains negative. These values 
correspond to large but nearly zero volume four-geometries. They are direc
tions along which the sum over geometries evaluated along a real contour 
will not be exponentially damped. 
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On dimensional grounds the action at equal edge lengths 
must take the form 

1= - o(V 1/4)1/2 + 6H 2 V 1/4. (3.4) 

Table II shows the dimensionless parameter 0 for the trian
gulations as and /3s of S 4 and the triangulation CP ~ of CP 2. 

For the case of as and /3s this parameter agrees with that 
calculated analytically by Hamber and Williams. 16 Its agree
ment is thus a check of the numerical algorithm. 

Table II also shows the continuum value of the param
eter 0 for the metrics of highest symmetry. This is the round 
sphere metric on S 4 and the Fubini-Study metric21 on CP 2. 

The equal edged as, /3s, and CP~ may be considered as ap
proximations to these most symmetric continuum geome
tries. The simplicial actions lie below the continuum action 
for given V. In the case of S4, as one proceeds from as to the 
more refined triangulation/3s, the approximation to the con
tinuum action improves, as is shown more graphically in 
Fig. 2. The actions are negative for small Vas a consequence 
of the dominance of the curvature term and positive at large 
Vbecause of the cosmological constant term. The minimum 
of the action corresponds to a solution of the Regge equa
tions (1.2) as will be discussed in Sec. IV. 

Figures 3, 4, and 5 show the Regge action for S 4 evaluat
ed on some two-dimensional slices of the space of edge 
lengths. Figure 3 shows the action on a family of distorted 
five-simplices. All edges have the value L except for those 
emanating from one particular vertex which have the value 
L 1(2 cos a). A two-dimensional analog is shown in Fig. 6. 
For fixed L, as cos a increases from zero, the five-simplex 
ranges from "long and thin" to "short and squat." Beyond a 
value cos a e = (5/8)1/2, where it becomes degenerate, it is no 
longer possible to embed the five-simplex in five-dimension-

'" o 
u 

o 2 
Lit 

3 4 5 

FIG. 4. The action for distorted l1;s. This figure shows the action (divided 
by 100) for a two-parameter family of geometries which are the surface of a 
five-cross polytope. All edges have the value L except those emerging from 
one vertex which have the value L /(2 cos a). The family of geometries is 
thus essentially the same as that displayed in Fig. 3 but with a more refined 
triangulation of S4. The qualitative features of this map are essentially the 
same as those of Fig. 3 to whose caption the reader is referred for a descrip
tion. 
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Lit 

FIG. S. The action for some homogeneous anisotropic five-simplices. Iffour 
of the five edges emerging from anyone vertex of a five-simplex are assigned 
a value L and the remaining edge is assigned the value f L, there results a 
simplicial geometry which is homogeneous in the sense that any vertex is 
equivalent to any other, but anisotropic in the sense that not all directions at 
a given vertex are equivalent. A contour map of the action (divided by 100) 
for these geometries is shown here for the vlaue of the cosmological constant 
corresponding to H 2 = 1. Solid contour lines are spaced by intervals of 100 
in action and dotted lines by SOO. In the shaded regions the contours are too 
close together for clear display. The four-simplex inequalities are violated 
for sufficiently large f so that there is a boundary to the space of edge 
lengths. The action has a saddle point extremum at the isotropic (all edges 
equal) geometry previously shown in Fig. 2 and 3. 

al flat space even as it is impossible to embed the two-dimen
sional analog of Fig. 6 in three-dimensional flat space be
yond cos a e = (3/4)1/2. Embedability in a 
higher-dimensional flat space, however, is not a physical re
quirement for a four-geometry. The physical range of a ex
tends beyond a e to the value acrit where cos acrit = (2/3)1/2 
at which the volume of the four-simplices vanishes and the 
four-simplex analog of the triangle inequalities are no longer 
satisfied. 

One may think of the sequence of five-simplices generat
ed by varying a as produced by a conformal deformation of 
the equal-edged five-simplex. Following Rocek and Wil
liams, 16 a conformal transformation of a simplicial geometry 
may be defined by giving a function 0; on the vertices and 
then transforming the edge lengths as 

sij = O;Oj"fij . (3.5) 

Ifwetakesij =L,foralliandjandO; = 1,0nallverticesbut 
one where it equals 1/(2 cos a), we recover the sequence of 
distorted five-simplices. 

A contour map of the action for the two-parameter fam
ily (L,cos a) of distorted five-simplices is shown22 in Fig. 3. A 
similar family of distorted cross polytopes can be construct
ed by singling out the edges extending from a particular ver
tex. The contour map for this family is shown in Fig. 4. The 
two cases have essentially the same features: The action be
comes positive for large L where the cosmological constant 
term dominates. There is one extremum which has all edges 
equal (cos a = !). It is not a minimum or a maximum but a 

saddle point. In the directions of conformal deformation 
away from the extremum the action becomes significantly 
negative. This is a simplicial example of the nonpositivity of 
the gravitational action in the continuum theory.23 
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FIG. 6. A family of distorted three-simplices. The figure shows two-dimen
sional analogs of the distorted five-simplices whose action is displayed in 
Fig. 3. All the edges are equal except those emanating from the top vertex. 
The ratio of the two types of edges is controlled by the angle a. As a de
creases from 1T/2 to 0 one moves from a long and thin three-simplex, 
through shorter and squatter ones. Eventually at a value a. the three-sim
plex degenerates. For values of a smaller than a. the geometry is no longer 
embeddable in ftat threcHlimensional space. It remains a well defined two
geometry, however, since the triangle inequalities are not violated until 
a=O. 

The distorted as's and,8s's described above are inhomo
geneous in the sense that one vertex is distinguished from 
among all others. A class of homogeneous but anisotropic 
simplicial geometries may be produced by treating all ver
tices equally but by allowing different length edges to eman
ate from each vertex. For example, we can consider the five
parameter family of surfaces of the five-simplex obtained by 
allowing the five edges meeting in each vertex to take on 
different values. A simple example is the two-parameter 
family in which four edges have equal values and the remain
ing edge a distinct value. The action for such a two-param
eter family is shown in Fig. 5. The familiar saddle point ex
tremum is seen again on this new slice. 

While all the vertices of the triangulation CP; of the 
manifold CP 2 are equivalent, all the edge lengths are not. 
The edge lengths fall into two classes. For any pair of edges 
of a given class there is an element of the symmetry group 
HS4 which carries one edge into the other. With the labeling 
of the vertices used in Table I, one class (class I) consists of 
the edges (12), (13), (23), (45), (46), (56), (78), (79), and (89), and 
the other (class II) consists of all the rest. It is therefore inter
esting to plot the action when all the edge lengths of class I 
have the value LI and all those of class II the value Ln . Such 
a plot is shown in Fig. 7 for H 2 = 1. Again the familiar saddle 
point extrema of the action is observed at a point where 
LI = Ln· 

IV. SOLUTIONS FOR SIMPLICIAL GEOMETRIES WITH 
HIGH SYMMETRY 

Two things are important for the exploration of the se
miclassical approximation to a sum over geometries such as 
that of Eq. (1.1). First, one needs the extrema of the action, 
that is the solutions of the Regge equations 

aI =0, i= 1, ... ,n l • (4.1) 
as; 

Second, one needs the eigenvalues A;, i = 1, ... ,n l of the sec
ond derivative matrix of the action 

James B. Hartle 292 



                                                                                                                                    

FIG. 7. The action for the triangulation CP; of the manifold CP 2 plotted as 
a function of the edge lengths of the two types of edges. Here CP ~ has two 
classes of edges which are carried into each other by the action of its symme
try group. The action (divided by 10) is plotted here for H 2 = I against the 
two values of the edge lengths L) and L II' Solid contour lines are spaced by 
units of 10 and dotted lines by units of 50. The simplicial inequalities are 
violated in the shaded region to the left. Contours become too dense for 
display in the shaded region at the upper left. There is a saddle point extre
mum when L) =L II =2.14. 

1(2) = ~ (4.2) 
IJ aS

j 
aS

j 

evaluated at the extrema. The extrema determine where the 
action is to be evaluated in constructing the semiclassical 
approximation. The determinant of Ie) gives the contribu
tion from the integration over quadratic fluctuations about 
the extremum [see, e.g., Eq. (4.1) of Paper I]. This determi
nant is the product of the eigenvalues A j' 

For simplicial geometries in which the typical edge 
length is small compared to the curvature scale, there will be 
local regions containing many vertices in which the geome
try is essentially flat. Variations in the edge lengths corre
sponding to those induced by motions of these vertices in flat 
space will leave the geometry and hence the action approxi
mately unchanged. These variations are the analogs of the 
diffeomorphisms of the continuum theory.2,15 Their pres
ence is signaled by small eigenvalues Aj , which may require 
special treatment to evaluate the semiclassical approxima
tion accurately. The values of the individualA j are therefore 
of interest. 

In constructing the semiclassical approximation, solu
tions of(4.1) with both real and imaginary Sj are of interest, 
but the real solutions are easiest to find. One would expect to 
find real solutions for triangulations of manifolds for which 
real solutions of Einstein's equation 

RaP = (3H2//2)gap (4.3) 

exist in the continuum theory. There could also be "spur
ious" extrema of a simplicial action which do not correspond 
to continuum solutions; some have been reported. 24 The 
Euler number of a manifold for which there is a real solution 
ofEq. (4.3) must satisfy 

X>Q ~~ 

Thus, for the catalog of simplicial manifolds described in 
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TABLE III. Eigenvalues and multiplicities of a 21/ as, aSj at the stationary 
point. 

as {35 CP~ 
[4H- 2A PA. [4H- 2A PA. /4H- 2A PA. 

-0.27 9 -0.39 4 -0.72 6 
-0.11 5 -0.36 15 -0.67 2 
+0.11 1 -0.34 5 -0.37 5 

-0.30 10 -0.25 6 
-0.15 5 -0.16 6 
+0.23 1 -0.048 2 

-0.047 2 
-0.012 6 
+0.29 1 

Sec. II, we do not expect to find real solutions for triangula
tions of T4 andS I X S 3 whose Euler number vanishes. We do 
expect to find solutions for S4, Cp2, and S2XS2 for which 
continuum solutions exist. 

For simplicial manifolds of high enough symmetry that 
no edge is distinguished from any other, it is easy to find the 
solutions of (4.1) with all edges equal if they exist. With all 
equal edges, all the aI/ aS j are equal and one can easily calcu
late this one number and see where it passes through zero. 
We have carried out such a procedure for the triangulations 
a 5 andP5 of S4. As described in Paper I, aI/ aS j was comput
ed from 

J;=/2 aI = -2 L O(u)aV2 + 6~2 L aV4(1') =0. 
aS j O'E l:, aS j / TEl:. aS j 

(4.5) 

The value of the edge length Lex! for which the action is 
extremized is shown in Table II for a 5 and P5 • These corre
spond to the extrema located graphically in Sec. III. 

Figure 7 suggests that the extrema for CP ~ is found 
when all the edge lengths of the simplicial geometry are 
equal. We have verified numerically that all the J; are equal 
when all the edge lengths are equal by evaluating (4.5). The 
value of the edge length Lext' which extremizes the action, is 
quoted in Table II. 

The matrix I I~ at the stationary point can be straightfor
wardly computed by numerical differentiation of Eq. (4.5) 
and its eigenvalues and eigenvectors can be computed by 
standard numerical methods. The resulting eigenvalues A 
and their multiplicities p;., are shown in Table III for as, Ps, 
and CP ~. These eigenvalues and eigenvectors are classifiable 
by the irreducible representations of the symmetry group of 
the triangulation. Not all irreducible representations will oc
cur. Those that do occur and the corresponding multiplic
ities can be predicted as follows: The matrix I I~ may be 
viewed as the matrix elements of a linear operation on an n 1-

dimensional vector space in a basis in which there is a corre
spondence between the basis vectors and the edges in some 
standard order. We shall call this the edge vector space. A 
permutation of the vertices induces a permutation of the 
edges and thus a linear operation in the edge vector space. 
Since the symmetry group G of a simplicial complex is a 
subgroup of the permutation group on no vertices Sno' its 
elements p can be represented as matrices on the edge vector 
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space. These matrices give a representation of G which is 
reducible. The irreducible represenations that it contains are 
the irreducible representations that label the eigenvalues of 
I \~ and the dimensions of these irreducible representations 
are the multiplicities with which the eigenvalues occur. 

To find the irreducible representations of G, which are 
contained in the reducible representation on the edge vector 
space, one can analyze the characters of the reducible repre
sentation 1T(p) into the characters of the irreducible represen
tations i" (P) of G. That is, one forms 

(1r, i") = 2. L 7r(p)i"(P), (4.6) 
g pEG 

where g is the order of G. An irreducible representation i 
occurs (1r, i" ) times in 1r. 

The characters 1T(p) are easily seen to be 

1T(p) = (number of edges left unchanged by pl. (4.7) 

The characters X(I) are determined by the group G. For as 
the symmetry group is S6' For /35 it is S2 wr Ss as discussed 
in Sec. II. Character tables for these groups can be found in 
Ref. 12. A character table for the group HS4 of CP ~ was very 
generously computed for the author by Dr. J. Sax!. The re
sults of the above analysis are as follows: The IS-dimensional 
reducible representation of S6 splits as 15 = 1 + 5 + 9, 
where the factors are the dimensions ofthe irreducible repre
sentations. The 4O-dimensional reducible representation of 
S2 wr Ss splits as 40 = I + 4 + 5 + 5 + 10 + 15. The 36-di
mensional reducible representation of HS4 splits as 
2(1 + 1 + 1) + 4·6 + 2 + 2 + 2 where multiplication indi
cates an irreducible representation which occurs more than 
once. The multiplicities of the eigenvalues calculated nu
merically shown in Table III are consistent with this analysis 
although there is an unaccounted for degeneracy among five 
of the eigenvalues for CP ~. 

In each ofthecasesas,/3s, and Cp~,oneofthe eigenval
ues is positive and all the rest are negative. The eigenvector 
of the positive eigenvalue shows that it corresponds to a uni
form increase or decrease in the lengths of all edges. This 
reflects the fact that the stationary configuration is a mini
mum of (3.4). In all other principle directions the action is a 
maximum. Thus with these small number of vertices there 
are not enough degrees of freedom to represent the true 
physical degrees offreedom of the continuum theory. 

V. ITERATIVE SOLUTIONS 

Simplicial manifolds with a large number of vertices 
should not be expected to also possess high symmetry. Only 
for very special manifolds, therefore, can one expect to be 
able to use symmetry to find extrema of the action. In gen
eral one must simply solve the nl algebraic equations 

J; =12 a1 =0 (5.1) 
as; 

for the sets of n 1 squared real or complex edge lengths which 
extremize the action. 

The numerical problem of extremizing the action is a 
difficult one. One cannot use the familiar algorithms to 
search for maxima or minima because, as the examples in 
Sec. III show, the extrema are, in general, saddle points. 
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There appears to be no better way of locating saddle points 
than solving Eqs. (5.1) directly. 

The Newton-Raphson method is conceptually the sim
plest technique for solving a system of algebraic equations. 
Introducing vector notation in the edge vector space, one 
chooses an assignment of edge lengths s and attempts to 
solve for the displacement As to an assignment which will 
make f(s + As) = O. Expanding this requirement to first or
der in As one finds 

As = - [1(2)(s)] -I. f(s), (5.2) 

where 1(2) is the matrix of first derivatives of the field equa
tions or second derivatives of the action 

1 \2) = a/; =~ 
') . 

aSj as; as] 
(5.3) 

In the usual Newton-Raphson method one picks intelligent
ly a starting s, iterates Eq. (5.2), and hopes to converge to a 
solution. 

For simplicial manifolds with small numbers of vertices 
the Newton-Raphson method works well. For example, we 
have located the equal-edged extremum of as by starting 
with significantly differing edge lengths and iterating Eq. 
(5.2) less than ten times. 

For simplicial manifolds with larger number of vertices, 
the Newton-Raphson method is doomed to work poorly. It 
requires the inversion of the matrix 1(2). As has been dis
cussed in Sec. IV, one expects the approximate diffeomor
phisms of a manifold with a large number of vertices to mean 
that the matrix 1(2) will have near-zero eigenvalues corre
sponding to the directions along which the action is approxi
mately constant. In the limit of large no it is increasingly 
difficult to invert 1(2) and increasingly less lik~y to find a 
predicted As of reasonable size which does not violate the 
simplicial inequalities. We have verified this the hard way by 
attempting to solve the field equations for the 16 vertex 
triangulation of S 2 X S 2 described in Sec. II. This triangula
tion has 25 inequivalent edges. Evaluated at a typical point, 
approximately four of the 25 eigenvalues were near zero. We 
were unable to locate an extremum in a short time. 

Of course, there are many better algorithms for solving 
algebraic equations than the naive one (5.2) and some have 
been applied to the Regge calculus with success by Sorkin.2S 
It would be of interest to apply them here. 

The difficulty encountered in the Newton-Raphson 
method is generic. For large no, the extrema of the action lie 
in long "troughs" in the space edge lengths along which the 
action is nearly constant. There is an extremum, but it will be 
difficult to distinguish it from other configurations in the 
trough. This is no surprise and is in fact a familiar problem in 
general relativity. Einstein's equation does not possess a 
unique continuum metric for a solution but rather a family of 
metrics equivalent under diffeomorphisms. To pick out a 
unique solution one must specify a coordinate system or "fix 
the gauge." There are no exact diffeomorphisms of the gen
eral simplicial geometry but approximate diffeomorphisms 
produce an approximate ambiguity in the solution of the 
Regge equations in approximately the same way. 
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Regge manifolds are piecewise continuous manifolds constructed from a finite number of basic 
building blocks. On such manifolds piecewise continuous forms can be defined in a way similar to 
differential forms on a differentiable manifold. Regge manifolds are used extensively in the 
construction of space-times in numerical general relativity. In this paper a definition of exterior 
differentiation suitable for use on piecewise continuous forms on a Regge manifold is presented. It 
is shown that this definition leads to a version of Stokes' theorem and also to the usual result that 
d 2 = O. This is preceded by a discussion of certain geometrical properties of the Regge manifolds. 
It is shown that the version of Stokes' theorem presented here coincides with the usual definition 
when the Regge manifold is refined, by increasing the number of cells while keeping the total 
volume constant, to a smooth manifold. 

I. INTRODUCTION 

It is assumed that solutions of Regge's field equa
tions l-S, Regge space-times, are approximations, to a degree, 
of an Einstein space-time, this being a differentiable solution 
of Einstein's field equations. This assumption is based on 
two facts. First, the Regge and Einstein manifolds are equi
valent under a homeomorphism. Second, both sets of field 
equations are derived from the same action principle. It is 
therefore not unreasonable to expect that there should exist a 
correspondence between certain properties of the Regge and 
Einstein space-times. In particular the operation of exterior 
differentiation on an Einstein manifold should lead to a re
lated operation on a Regge manifold. 

The main result to be presented here is an operation on 
forms built on Regge manifolds which mimics the usual op
eration of exterior differentiation. This result6 is presented in 
Sec. IV. In Secs. II and III the basic notation and formulas 
are presented. Finally, in Sec. V, it is shown that this defini
tion reduces to the version usually employed on smooth 
manifolds. 

II. SIMPLEXES AND COMPLEXES 

The fundamental building blocks for the manifolds to be 
considered here are known as n-simplexes. They may be de
fined in a recursive fashion as follows. 

(i) A O-simplex is a single point. This object is also called 
a vertex. 

(ii) An (n + I)-simplex is constructed from an-simplex 
by first introducing one new vertex and then joining this 
vertex to each of the (n + I) vertices of the n-simplex, and 
second by demanding that any set of m vertices 
(I<m<n + 2) of the (n + I)-simplex is an (m - I)-simplex. 

(iii) A Lorentzian n-simplex is obtained by imposing a 
flat Lorentzian metric throughout the n-simplex. Only those 
n-simplexes in which the induced metric on each of its m
simplexes (O<m<n) is also flat will be considered. This has 
the effect of disallowing any n-simplexes with curved boun
daries . 

The obvious method of constructing an n-dimensional 
manifold is to glue together a collection of n-simplexes. The 
resulting object is referred to as an n-complex. To avoid cer
tain pathological cases the following restrictions are im
posed: (i) the region of the n-complex common to two or 
more adjacent n-simplexes is an m-simplex with O<m < n, 
and (ii) any m-simplex of the complex is contained within at 
least one n-simplex of the n-complex. 

The following notation is drawn, primarily, from Seir
fert and Threlfall. 7 

A typical n-simplex is denoted by q n (i), with the index i 
being the label which distinguishes this simplex from all oth
er n-simplexes. The set of all n-simplexes is represented by 
S". Each n-simplex contains exactly (n + I) vertices and is 
represented as follows: 

(2.1) 

where each of the ij is unique and is the label of a vertex of 
qn (i). The order in which the vertices are listed is unimpor
tant unless the simplex is oriented. One of the two possible 
orientations to the simplex is defined by reading the vertices 
in (2.1) from left to right. The opposite sense of orientation is 
obtained if any two vertices in the sequence are swapped. 
This is indicated by writing 

(io'" i j ••• ik ••• in) = - (io'" i k ••• ij'" in)' (2.2) 

provided that I=lk and j, k = 0, 1,2, ... ,n. 
An n-complex is denoted by Pn and represented by the 

formal sum 

Pn = LOjqn (i), (2.3) 
j 

with each OJ = 0, - I, or + 1. The coefficients 0 1 represent 
whether the associated n-simplex is present or not and what 
orientation it possesses in the complex. Complexes in which 
certain n-simplexes are absent are referred to as sub- or sec
ondary complexes. The original complex, when required, is 
referred to as the primary complex. 
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One particularly important sUbcomplex is the boundary 
of the primary complex. It is defined as follows. First sup
pose that Un (i) is represented as in (2.1). Then define the oper
ation 

{
( - W(ioil" •• i., .. i ), 

Un (ilij ) = (ioil'" iJij ) = 0 'f" J.. n. • (2.4) 
, 1 Ij IS not In 'o'II,. .. ,ln • 

The symbol A over ij indicates that the vertex ij is ex
cluded from the list. The boundary of an n-simplex Un (i) is 
defined as 

aun(i) = LUn{iliJ 
iJ 

Similarly for an n-complex 

apn = 'LaiUn{ilJ). 
i,j 

(2.5) 

(2.6) 

Obviously Un (il J) is also a simplex and thus the oper
ation (2.5) maybe applied twice. However from (2.2) and (2.4) 
it is clear that 

Un (iI jlk ) = - Un (ilk I J). 

This leads to the usual result 7 

a2Un (l) = O. 

III. THE METRIC FRAME OF A SIMPLEX 

A. The natural frame 

(2.7) 

(2.8) 

One of the easiest ways of ensuring that the metric of a 
simplex is flat is to demand that all ofthe metric coefficients 
are constant throughout the simplex. Of course there are 
other frames in which the coefficients are not constant and 
yet the metric is flat. For simplicity such frames will be ig
nored. 

It will be convenient to distinguish between the terms 
"coordinate frame" and "metric frame." The term "coordi
nate frame" will be used to refer to a frame possessing co
ordinates but not a metric. In a "metric frame" there are 
both coordinates and a metric. A very useful metric frame, 
the natural frame, will now be described. 

Choose one n-simplex, Un (1), and label its vertices from 
o to n. Adopt the vertex (0) as the origin of the coordinate 
frame. The basis vectors for this n-simplex are chosen as the 
n vectors that join (0) to the remaining vertices, i.e., along 
those legs connected to the origin. The coordinate frame is 
chosen such that the coordinates of the vertices are 

Uo(O) = (0) 

uo(l) = (1) 

uo(2) = (2) 

(ifo) = (0,0, '" ,0), 

(v'j') = (1,0, '" ,0), 

(lit) = (0,1, '" ,0), 

uo(n) = (n) 

In short 

(vi.:) = (0,0, ... ,1). 

{
o, if n = 0, J.t = 1,2, ... ,n, 

vi.: = £u
n

, l'fn > 0, 12 u_ J.t = , , ... ,no 
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(3.1) 

Denote the basis vectors by ep.. Then any point P in the 
simplex is described by the vector 

P = :xJLep., with each :xJL>0 and I:xJL..;;; 1. (3.2) 

The requirement that:Ip. xl' ..;;; 1 ensures that the vector does 
not pass through the face opposite the origin. This completes 
the construction of a coordinate frame for this simplex. A 
metric frame will now be constructed by introducing the leg 
lengths Lij and the metric components gp.,,' 

Denote the proper distance between the vertices (i) and 
(j) by Lij . If all the gp.v are known then, using (3.1), the Lij 
would be computed as 

L~i =gjj, l..;;;i..;;;n, 

L 7j = (gjj - 2gij + gjj), l..;;;i,j";;;n and i=/:j. 
(3.3) 

In this instance there is no summation over repeated indices. 
Solve these equations for the gp." to obtain 

gjj=L~I' l..;;;i..;;;n, 

gij = (L ~i + L ~j - L 7j)/2, l..;;;i,j..;;;n and i=/:j. 
(3.4) 

So far nothing has been said about the signature of the 
metric. For a physically realistic space-time, in the sense of 
general relativity, the signature must be Lorentzian (i.e., 
- + + +). Thus it is clear that not all of the leg lengths 

can be specified without restriction. However, this restric
tion is somewhat weak for it is possible, in all but a few 
exceptions, to make small arbitrary changes in the Lij and 
yet not change the signature. Therefore assume that the sig
nature is Lorentzian for each and every n-simplex of the 
primary complex. In a later paper a technique of construct
ing an n-simplex will be described by which the signature 
may be guaranteed to be Lorentzian. 

A knowledge ofthegp." also enables the computation of 
areas and volumes of n-simplexes. Define the measure of an 
n-simplex, Un' as the n-fold integral 

M (Un) = ( rg)1/2 d nx , (3.5) 
In-simPlex 

where n g is the determinant ofthegp.,,' The limits of integra
tion are easily deduced from (3.1). For example, for a four
simplex, the four-dimensional measure is 

M(U4) = (4g)1/2 

X i l ii-XI ii-Xl_X:, il-X:I-X:,-::c' dx4 dx3 dx2 dXI, 

since 4g is a constant. In this instance the repeated integral 
has the value 1!, in the general case of (3.5) the value is lin!. 
Since the signature of the metric may be indefinite it is possi
ble to obtain an imaginary value for M (Un ). This is an unnec
essary complication and will be avoided by using the abso
lute value of n g in (3.5). Thus the measure of an n-simplex, 
Un, is 

M(un ) = (lin!) (abs(ngW/2. (3.6) 

B. The general frame 

On occasions it may be useful to employ a frame other 
than the natural frame. For example, if a study of the proper-
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ties of a group of simplexes is to be made then it may be 
necessary to build a metric frame covering all simplexes of 
the group. Clearly the natural frame is inappropriate in this 
example. The construction of a general class of metric 
frames will now be discussed. Once again assume that the 
glSv are constant throughout each n-simplex and that the 
basis vectors are chosen as a/ax'" . 

Consider a complex with one or more n-simplexes. To 
each vertex, Uo(l), of this complex, associate n coordinates, 
x'" (i). Provided the topology of this complex is not too pecu
liar, it should be possible to choose these coordinates so that, 
for each and every n-simplex, the coordinates constitute a 
coordinate frame for that simplex. This condition simply 
ensures that locally (Le., within one n-simplex) the coordi
nate frame is n-dimensional. Assume that such a choice can 
and has been made. 

The components of the vector joining uoU) to uo(i), de
noted by D'(iJ), have the values 

LIS(iJ) = x"'(i) - x"'{j). (3.7) 

The values of the glSv are obtained by solving the equation 

L;j = glSvL lS(iJ1L V(iJ). (3.8) 

Since there are n(n + 1 )12 leg lengths in each n-simplex and 
a similar number ofglSv 's there may exist a unique solution of 
(3.8). That a unique solution does exist is guaranteed by the 
earlier requirement that the coordinate frame be everywhere 
n-dimensional. 

Noti~ that the values of the glSv need not be the same in 
each n-simplex. Thus there may be discontinuous changes in 
the glS" across the interfaces between pairs of n-simplexes. 
Consequently there results a possible ambiguity in the pro
cess of raising and lowering indices. For example suppose 
the leg (i)) is common to two n-simplexes. Then the values of 
LIS (i J) with the index lowered may depend upon the choice of 
simplex in which the computation was performed. There is 
of course no ambiguity in the LIS (ij). It would therefore be 
inaccurate to write LIS (ij) as the lowered version of LIS (ij), 
however, in most applications it will be clear which n-sim
plex is intended. 

Consider one m-simplex Urn = (iail'" irn) in an (m + 1)
complex and now define the following quantities 

L f = L P.(iaij ), for j = 1,2, ... ,m, 
(3.9) 

with etr·.l = + 1, - 1,0 when IItv· .. p) is either an even, 
odd, or a nonpermutation of(ij .•• k), respectively. For ex
ample, for m = 3, 

Lp.vP(u3) = LfL ~L f -L rLiL f + L rL fL~ 
-L fL~L~ +L fLiL ~ -LfLfL~. 

The following expressions, shown only for m = 3 but easily 
generalized, are all derived from the definition (3.9): 
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LP."P(u3) = eg~LfL jL (, 

Lp.vP(u3) = e~~~NfL jL (, 

L p.vP(u3) = eI.I.,;p:L a(ul)L PY(U2)' 

L p.vP(u3) = el.l.aP:Na(ul)L PY(U2), 
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(3. lOa) 

(3. lOb) 

(3.lOc) 

(3.1Od) 

with U2 = one face of u3' u l = one leg of U) but not of U2, 
N" (U2) = the projection ofLQ (UI) onto the normal tOU2' and 
N f = the projection of L f onto the normal of its adjacent 
face. 

Now let L (u,,) = the measure of the parallel n-cube 
formed from the n legs 

(iail), ... ,(ioi,,) of iT" = (iail''' i,,). 

It is well known that 

nIL 2(U,,) = L(p.)(u,,)L (p.)(u,,), with (/1-) = (/1-1/1-2" • /1-,,). 
(3.11) 

Alternatively L (u,,) can be computed by an integration like 
that in (3.5). In this case the limits ofintegration must now be 
chosen to cover an n-cube rather than an n-simplex. The 
result of this integration is similar to (3.6) with the exclusion 
of the nt, thus 

(3.12) 

As the measure of any simplex must be a property of that 
simplex alone, it follows that any ambiguity in the computa
tion of, for example, LlSv (U2) must be resolved in the process 
of computing L (U2)' This circums~ance is also evident from 
the fact that (3.11) is a scalar equation. 

For the remaining part of this section it is assumed that 
the dimension of the complex is 3. After presenting andjusti
fying the definition of exterior differentiation the result will 
be extended to higher dimensions. 

Consider a typical three-simplex U3' Suppose that U 3 has 
U2 as a base and that 0"1 isa leg of 0"3 but not of U2' Then from 
(3. We) 

L PP.V(u3 ) = L P(ul)L P.V(u2) 

- L P.(UI)L P"(U2) + L V(ul)L PP.(U2)' (3.13) 

Now suppose that n P (0"2) is a unit vector normal to the base 
u2 • Then a contraction of (3.13) with n P results in 

n p(u2)L PP."(U3) = n p(U2)L P(UI)L P.V(U2)' 

However, n P (U2)L P (u d is the projection of L P in the direc
tion of n p' which is just the height of U I above U 2, which in 
turn is just L (u3)/L (U2)' This leads to 

L P.V(u ) L PP."(u ) 
_-,-,2::.... _ n (u)) (314) 

L (U2) - P 2 L (U3) . . 

This expression will be used to obtain a relation between a 
sum of a two-form over a two surface and a sum of a three
form over a three-surface. A similar relation, on a smooth 
manifold, will involve the exterior derivative of a two-form. 
The essence of our definition of exterior differentiation is 
that it is chosen so as to mimic the usual form of Stokes' 
theorem. 

The expression (3.14) is easily generalized to complexes 
of dimension greater than 3. Suppose that U m _ I is one face 
of U m and that U m is one m-simplex of an m-complex. If the 
unit inward normal to U m _ I is n P (u m _ I ) then 

L P.,JJ2·· ·P.m-l(u
m 

_ I) L P.,JJ2·· ·p.m(u
m

) 

L(O"m_d =np..(um_d L(u
m

) (3.15) 

This expression can be proved with techniques similar to 
those that led to (3.14). 
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IV. EXTERIOR DIFFERENTIATION 

Consider a complex P3 that has been subdivided into a 
set of three-simplexes. The integral of any two-formA • over 
a two-dimensional subcomplex P2 of P3 is defined, in a coor
dinate frame, as 

I(p2,P3) = ~ i A :v(xajdxl"' I\dxv. 
O'zm pz 0'2 

(4.1) 

Similarly, the integral of a three-form B • over the complex is 
defined as 

I(P3) = u,~p,LB :vr(xa)dxl"' I\dx
v 
I\dx

T

• (4.2) 

Define the quantities Al'v(u2) and BI'VT(U3) via the equations 

Al'v(U2)M(U2) = LA :v(xa)d 2S, (4.3a) 

BI'VT(u3)M(U3) = i B :vr(xa)d 3S, 
u, 

(4.3b) 

with di Sand M (Ui ) being the differential and total measures 
oftheu;. respectively. The Al'v (u2) andBI'VT(u3) are the aver
ages of their associated forms over the simplexes U 2 and U 3• 

The relations (4.1) and (4.2) may now be rewritten as 

I (P2, P3) = .L Al'v (u2)L I'V(U2) (4.4a) 
0'2in P2 

and 

I(P3) = .L BI'VT(u3)Ll'vr(u3)· (4.4b) 
O']in P3 

Suppose now that the subcomplex P2 is the boundary of P3' 
Our aim is to show that I (a P3' P3) may be evaluated either 
directly from (4.4a) or via an expression similar to (4.4b). The 
expression (4.4a) may be rewritten as a sum over all u3 's of 
the complex by introducing 

J(U3) = k Al'v(u2)LI'V(U2). 
0'2lnaUJ 

(4.5) 

Then 

I(ap3,P3) = .L J(u3), (4.6) 
O"Jin PJ 

since all U2'S on the interior of P3 will be counted twice, each 
with opposite orientations, and will therefore cancel each 
other. Substitution of (3.14) in (4.15) and the resultant 
expression in (4.6) leads to 

I (a P3' P3) = .L Al'v(U2)L I'V(U2) 
0'2ina p3 

.L .L n p(U2)Al'v(u2)L (U2)L PI'V(U3)· 
u,in p, u,inau, L (U3) 

This expression is greatly simplified by writing 

A (U2) = Al'v(u2)L I'V(u2), 

and 

for then 
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(4.7) 

(4.8a) 

(4.8b) 

I(ap3,P3) = .L A (u2) = .L dA (u3)· (4.9) 
0'2in a P3 U3in P3 

In this form the similarity of this expression with the usual 
continuum form of Stokes' theorem is quite apparent. The 
relation (4.8a) defines the value of the two-formA on U2 and 
(4.8b) defines its exterior derivative evaluated on u3• 

An analysis similar to that which lead to (4.8a), (4.8b), 
and (4.9) may be applied to complexes of dimension other 
than 3. Consider a complex Pn of dimension n. Suppose 
there is defined an m-formA (um) on each oftheum 's of Pn' 
Thus put 

(4.10) 

Then the exterior derivative of A evaluated on U m + I is de
fined as 

X L(um
) Ll'rP""l'm(u ) (4.11) 

L() m+I' 
um + 1 

and Stokes' theorem takes the form 

I(aPm+ I,Pm+ d = .L A (um) 
uminaPm+ I 

~ dA (um + d. (4.12) 
um+1mPm+1 

If the complex consists of only one U m + I then this 
expression reduces to 

dA (um+ I) = .L A (um)· (4.13) 
O'minaum+ 1 

This provides an alternative yet equivalent method for com
puting the exterior derivative. In some situations this expres
sion may be more useful than (4.11). As an example it will 
now be shown that the value of a form, twice exterior differ
entiated, is zero. Consider a set ofnumbersB (um _ I) on the 
U m _ I of Pm _ I' Suppose that each number arose as the 
value of an (m - 1)-formB on each of the Um_ 1 of Pm+ I' 
The exterior derivative of B, evaluated on each U m' gives rise 
to another set of numbers A (um ) distributed on the U m of 
Pm+I' Thus 

A(um)=dB(um)= .L B(um_d· (4.14) 
urn_lioMm 

Now the exterior derivative of A (u m) is 

umin~m+l Um_~aumB(Um-I)' 
However each U m _ I is counted twice, each time with oppo
site orientations, thus 

dA (um+ l ) =ddB(um) =0. 

Exactly the same result occurs in the continuum theory of 
differential forms. 

As another example consider the flux of a constant vec
tor A, with components AI' , over the surface of one m-sim-
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plex in an m-complex. Clearly this quantity vanishes and is 
expressed as 

0= 2: A I'nl'(O"m_l)L(O"m_d. 
um_1iniJum 

As this expression is true for any constant field A it follows 
that 

0= 2: nl'(O"m_l)L (O"m_ d· 
U m _ lin aurn 

Unfortunately, since nl' need not be continuous across each 
0" m _ l' this expression cannot be applied directly to com
plexes of more than one m-simplex. However after a contrac
tion with L I'I'JJI.,' .. I'm - 1(0" m ) and using (3.15) this expression 
reduces to 

o = 2: L I'JJI.," . I'm - 1(0" m _ d, 
O'm _ lin8um 

which is easily extended to complexes, thus 

o = 2: L 1',1',' .. I'm - 1(0" m _ 1 ). 

um _ tin 8Pm 

This expression can also be proved directly from the defini
tion (3.9). 

V. THE CONTINUUM LIMIT 

The definitions (4.10) and (4.11) may be extended to 
complexes built from blocks other than simplexes. For ex
ample, an initial manifold could be constructed by piecing 
together a sequence of three-dimensional cubes. Each such 
cube could be subdivided, by the addition of extra vertices, 
legs, and faces, into a set of three-simplexes thus producing a 
three-complex. To this complex the identity (4.12) would 
apply. However the terms of this expression may. be re
grouped so that those terms involving the faces of the three
simplexes are combined into terms involving the faces of the 
cubes. Similarly the terms involving the three-simplexes 
would be grouped into terms involving the cubes. In effect 
the expression (4.12) is unaltered except that the objects in 
the summation are now parallelograms and parallel cubes 
instead of triangles and tetrahedrons. 

To show that the similarity of (4.9) and (4.12) with 
Stokes' theorem is not just a consequence of formal algebraic 
manipulations, the nature of (4.9), over a sequence of com
plexes, will now be investigated. The following assumptions 
are necessary. 

(i) The dimension of the complex is 3. A similar analysis 
may be used for higher dimensions. 

(ii) The sequence of complexes converges, as the number 
of 0"3'S is increased without limit while keeping the total mea
sure, fixed, to a smooth differentiable manifold. 

(iii) The 0"3'S of each complex are sufficiently small that 
the values of A !v on the faces 0"2 of 0"3 may be derived from a 
Taylor series based at some point within 0"3' Thus 

(5.1) 

with ~xa = x a - xg, and xg is the point, within 0"3' from 
which the Taylor series is developed. 

(iv) All 0"3'S are three-cubes (parallelepipeds). 
For a cube the inward pointing normals for two opposite 
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faces are equal apart from their directions. Thus the terms in 
(4.8b) may be regrouped as 

dA (0"3) = 2: np(0"2)aAI'V(0"2)L (0"2)L P/'V(0"3)' (5.2) 
three adjacent L (0"3) 

faces 

However, from (4.3a) 

aAl'v(0"2)L(0"2) = L_U2.A!v(XU)d2S, (5.3) 

with 0"2- being the face opposite 0"2' Substitution of(5.I) into 
(5.3) and noting that A !v and A !v,p are constant throughout 
0"3 results in 

aAl'v(0"2)L (0"2) =A !v,p L_U2'~XP d 2
S. 

By projecting ~xp onto the normal and tangential vectors of 
0"2 it is not hard to show that this last integral equals n p L (0"3)' 
Thus 

aAl'v(0"2)L (0"2) = A !v,pn P(0"2)L (0"3) 

and consequently (4.8b) becomes 

dA (0"3) = A !v,p 2: na (0"2)n P(0"2)L UJ'V(0"3) . 
three adjacent 

faces 

But from (3.1Oa) and (3.1Ob) the summation reduces to 
LPI'V(0"3)' Thus 

dA (0"3) = A !v,p(0"3)L P/'V(0"3) 

and (4.7) becomes 

I (a P3' P3) = 2: Al'v(0"2)L I'V(0"2) 
U2iniJ p3 

= 2: Al'v,p(0"3)L P/'V(0"3)' 
U3in p'J 

withAl'v,p(0"3) =A!v,p' 

(5.4) 

This last result shows clearly that this definition of exte
rior differentiation does reduce to the usual form when the 
Regge manifold and the forms built on it are made smooth 
and differentiable. 

VI. CONCLUSION 

It has been shown that the concept of exterior differenti
ation has a natural extension to the Regge calculus. Results 
similar to (4.9) may be found in references 8-10. The motiva
tion for the development of a Regge version of exterior dif
ferentiation arises in the attempt to show that certain Regge 
expressions "converge" to their usual classical counterparts 
under certain conditions. An example of this process, that 
our version of Stokes' theorem reduces to its usual form 
when applied to differtiable forms, has been presented in Sec. 
V. A more ambitious project would be to prove (or disprove) 
that the Regge field equations reduce to the Einstein field 
equations when an appropriate limiting process is applied. 
This may form the basis of a future investigation. 
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The mathematical methods used to average a function of energy over the Maxwell-Boltzmann 
(MB), Bose-Einstein (BE), and Fermi-Dirac(FD) statistics are compared. Blankenbecler's 
method converts the FD integrals into a series of differentiations which converge rapidly if the 
Fermi energy is large compared to kT. The BE integrals may be obtained from the corresponding 
MB integral by setting the chemical potential equal to zero and multiplying by a slowly 
converging numerical series. In each case a single integral of general form is used to calculate 
familiar quantities like chemical potential, energy, and heat capacity. 

I. INTRODUCTION 

The purpose of this paper is to illustrate three conven
ient, but very different, mathematical methods used to aver
age a function of energy over a Maxwell-Boltzmann (MB), 
Bose-Einstein (BE), or Fermi-Dirac (FD) distribution. 

When these distribution functions are seen in compact 
form they appear to differ only slightly: 

(1) 

Each is a function of energy E, Boltzmann's constant k, tem
perature T, and chemical potential fl. From a physical as 
well as a mathematical point of view, the three numbers in 
the denominator are crucial. The zero is associated with MB 
statistics, the minus one with BE, and the plus one with FD. 
It is helpful to write ( 1) in terms of the dimensionless param
eters x = E/r andy = flh. 

II. THE MAXWELL-BOLTZMANN INTEGRALS 

As a first example, we average CEP over the MB distri
bution. 

1MB = C E E = CeYrP+ I xPe-xdx L"" P d L"" 
o exp[ (E - fl)h] 0 

= CeYrP+ Ir(p + 1). (2) 

This expression yields familiar results I for the chemical po
tential, energy, and heat capacity for a classical gas. 

(a) The chemical potential can be obtained by setting 
p =! and C = (21 + 1)(V IW)(2M lfil)3/2, where I is the 
spin, V is the volume, M is the particle mass, and Ii is 
Planck's constant divided by 211". This integral is the density 
of states averaged over the distribution and is equal to N, the 
total number of particles. Solving for y = fllkTyields 

fl = kTln[ n/(21 + l)nQ ], (3) 

where n = N IV is the particle concentration and 

nQ = (Mr/21Tfi2)3/2 (4) 

is the quantum concentration. MB statistics are applicable 
for n<nQ • 

(b) The energy and heat capacity follow directly from 
(2) and (3) forp=~: 

U=~NkT, 
(5) 

C = (dU) = 2.Nk. 
v dT v 2 

III. THE BOSE-EINSTEIN INTEGRALS 

As a second example, we average CE P over the BE distri
bution.2 

(6) 

We set exp( - y)::::: 1, an approximation we justify later. Di
vide the numerator and denominator of the integrand by 
exp(x) and note that 

e-X 00 

---= L e- mx. 
l-e- x 

m=1 

Then 

IBE:::::CrP+ I L"" xl'Le-mxdx, 

withy' = mx, 

IBE = I _1_ CrP+ I ("" y'Pe ->-' dy' 
I mP + I Jo 

= I-1
-CrP+ lr(p+ 1). 

I m P + 1 

(7) 

(8) 

Comparing (8) with (2), 

"" 1 
IBE = L-- [IMBe- Y], (9) 

I mp + 1 

where the exp( - y) in the square brackets is a function of the 
chemical potential (3). 

Equation (8) or (2) and (9) can be used to calculate the 
Einstein condensation temperature, the chemical potential, 
the energy, and the heat capacity for a degenerate boson gas. 

(a) The number Ne ofbosons in excited energy states is 
the density of states summed over the BE distribution. Take 
p =! and C = (V 14r)(2M lfil)3/2 for a spinless particle. 
Then from (8) 

Ne = 2.612 nQ V. (10) 

The Einstein condensation temperature T E is defined as that 
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temperature for which Ne = N, the total number of parti
cles. Using (4) for nQ 

T = ..!..(_n_)2/3 2'1T'1f . 
E k 2.612 M (11) 

(b) The chemical potential below TE is small and nega-
tive. If No is the occupation number of the ground state ener
gy, 

or 

1 
No= e- Y -l::::: -;=---J.l-Ik-T-' 

J.l-::::::=' - kT INo· 

Here 

No = N [1 - (T ITE)3/2]. 

(12) 

(13) 
(c) The calculation of the internal energy U BE requires 

p = 3/2. It follows immediately that 

U = ~ _1_ (~) 3NkT 
BE m~1 mS / 2 n 2 

= 1.341 (:Q ) 3N:T. (14) 

This expression invovles a quantum factor times a classical 
factor 3NkT 12. 

(d) The heat capacity 

(dU) (nQ) 3 Cv = - =3.35 - -Nk 
dT v n 2 

(15) 

also has a quantum factor times the familiar classical factor 
3Nk 12. Here Cv decreases as T3/2, as a result of the tempera
ture dependence of nQ • It approaches 0 as T - 0, in accor
dance with the third'law of thermodynamics. 

IV. FERMI-DIRAC INTEGRALS 

As a final example we average CE P over the FD distribu
tion. This approach follows that of Blankenbecler3 except 
that we use a contour integral and the calculus of residues to 
put the FD integral in its final form as a series of differentia
tions: 

IFD =c l "" eP 

o exp[(E - J.l)lkT] + 1 

Define 

= CrP+ 1 {OOO x
P 

dx 
Jo eX

-
Y + 1 

F(x)=CrP+ 1 xPdx= . f (CrP+ IXp+ I) 

(p + 1) 
Integrating (16) by parts, 

IFD = F(x) 1 I"" + roo F(x)e
X

-
Y 

~ - Y + 1 0 Jo (eX - Y + 1 f 
Let x' = x - y, then 

(16) 

(17) 

(18) 

I In) = f"" F(x' + y)~' dx'. (19) 
FDV' _Y (~. + If 

F(x' + y) = F(y) + x't5F(y) + (X't5)2 F(y) + 
2! 

= eX
'
6F(y), 

foo dx' ~'~'6 
IFD(y) = _Y (~. + 1)2 F(y). 

With 'I] = exp(x'), there is considerable simplification 

1"" d'l] '1]6 

IFD(y) = e-
Y 

('I] + 1)2 F(y). 

(20) 

(21) 

(22) 

In most calculations y is sufficiently large so that 
exp( - y):::::O. A convenient approach for the evaluation of 
the integral over 'I] is by means of a contour integration and 
the calculus of residues. Consider 

~ dz ~ 2 = 21Tia_ l • 

j (z+ 1) 
(23) 

At z = - 1 = e1Ti
, there is a pole of order 2. The residue 

a_I = - t5e1Ti6
• At z = 0 there is a branch point. We use the 

contour integral shown in Fig. 1, 

(24) 

In the limit as R - 00 and E - 0, the second and fourth 
integrals vanish. Then 

(1 _ e21Ti6) {OO d'l] '1]6 = _ 21Tit5e1Ti6 (25) 
Jo ('1]+ W 

or 

(26) 

When expanded in a power series this operator acts on 
F(y)= [Cyp+l/(p+ 1)][r P + 1],so 

Brclnch Line 

Now let t5 = a lay and expand F (x' + y) about F (Y), FIG. 1. The contour integral used to evaluate Sa d7] 7]6/(7] + W 
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o,.p+ .yP+. 
x~-...::.-

p+l 
(27) 

where n=0,1,2, ... , and B.=i,B3=*"B5 =i,.,B7 

=*" .... 
Equation (27) can be used to calculate the Fermi energy, 

the internal energy, and the heat capacity for a degenerate 
Fermi gas. 

(a) The number N of fermions is the density of states 
summed over the FD distribution. Take p =! and 
C = (V !2r)(2M /fr)3/2 for a spin-! particle. Then from (27) 

J.to = W/2M)(3,,-2n)2/3, (28) 

and 

J.t =J.to[I_~(kT)2 _ 71T4 (kT)4 . .. J. (29) 
12 J.to 8 . IS! J.to 

(b) The internal energy and the heat capacity follow 
from (27) with p = 3/2. Then 

U = ~NJ.to[1 + 5,,-2 (kT)2 _.!t..... (kT)4 + ... J, 
5 12 J.to 16 J.to 

(30) 
and 

Cv=(dU) =rNkT(I_~,,-2~+ ... ), (31) 
dT v 2 TF 10 T~ 

where TF = J.tolk is the Fermi temperature at absolute zero. 

V. DISCUSSION 

The MB integrals may be evaluated exactly. Approxi
mations are used in both the BE and FO integrals. In the BE 
case e - p,/kT ::::: 1. In the FO case e - p,/kT::::: O. The BE and FO 
integrals are expressed in series representations. The nu-
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merical series in the BE expression converge rather slowly 
and can best be handled by a simple computer program.4 The 
terms in the FD series converge rapidly for J.to>kT. 

It is tempting to use the Blankenbecler procedure for the 
BE calculation. This can be done formally. However, this 
leads to a blind alley. The repeated differentiations generate 
terms with increasingly large negative powers of y = /-t/kT 
as in the FO series. But y in the BE case is very small indeed, 
whereas y in the FO case is large. The series diverges. 

Each of the averages were made for CE p. The results 
can easily be generalized for any function of energy which 
can be expanded in a McClaurin series. This probably in
cludes most cases of physical interest. 

VI. CONCLUSION 

The principal results of this paper are embodied in Eqs. 
(2), (5), and (27). These represent averages of the energy, 
raised to any power p, taken over the MB, BE, and FO distri
bution functions. In the FD case, the Blankenbecler method 
converts the integral into a series of differentiations which 
rapidly converge, if the Fermi energy is large compared to 
kT. This method is not appropriate for the BE distribution 
where the chemical potential is small compared to kT. Rath
er the solution to this type of integral is an infinite series 
l: i m - P - ., times the corresponding MB integral with /-tBE 

and J.tMB set equal to zero. To illustrate their utility, Eqs. (2), 
(5), and (27) are used to calculate the chemical potential, 
energy, and heat capacity. 

'c. Kittel and H. Kroemer, Thermal Physics (Freeman, San Francisco, 
1980), p. 121. 

2This method is a generalization of a discussion in Kittel and Kroemer,' p. 
204. 

3Except where indicated this method follows the method of R. Blaken
beeler, Am. J. Phys. 25, 279 (1957). 

'Here are a few of these sums: l:J'm- 3/2 = 2.612, l:J'm- S
/2 = 1.341, 

l:J'm-7/2 = 1.127, l:J'm- 9/2 = 1.055. 
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For a general dynamical system, it is proved that an equilibrium state belonging to a continuous 
family of conditionally stable equilibrium states is stable. The result is applied to quantum ther
modynamics to clarify in what restricted sense the entropy functional s( p) = - k Tr p In p can 
provide a Lyapunov criterion for the stability of thermodynamic equilibrium. A conjecture on a 
special positive-definiteness property of - k Tr p In p remains to be proved. 

I. INTRODUCTION 

In this note we address the question of whether entropy 
is indeed a Lyapunov function of the kind often implied in 
some thermodynamics literature on the stability of the maxi
mum entropy equilibrium states. I 

For a general dynamical system,2 we call L functions 
those Lyapunov functions3 that satisfy the hypothesis of 
Lyapunov's stability theorem.4 We also define a special class 
of nondecreasing functions, called S functions, that satisfy 
the hypothesis of a conditional stability theorem. We prove a 
theorem giving a sufficient condition for the stability of equi
librium: an equilibrium state is stable if it belongs to a contin
uous family of conditionally stable equilibrium states 
(Theorem 3). 

We apply the theorem to quantum thermodynamics to 
clarify the open question whether the entropy functional 
s( p) = - k Tr p In p, together with the principle of nonde
crease of entropy, indeed provides a Lyapunov criterion for 
the stability of thermodynamic equilibrium. We show that 
sIp) is not anL function. We conjecture (Sec. III) thats(p) is 
an S function, but provide only heuristic arguments in sup
port of the conjecture. Thus, the open question remains un
resolved, and calls for a technical study of the conjecture. 

In view of our result, statements to the effect that the 
second law of thermodynamics "can be formulated as a dyn
amical principle in terms of the existence of a Lyapunov 
variable, h' should be taken cum grano salis, for they are ei
ther unnecessarily strong, if by Lyapunov variable is meant 
an L function, I or too weak, if by Lyapunov function is 
meant an S function. 

Section II presents the general context of the problem. 
Section III presents its application to quantum thermody
namics. 

II. L FUNCTIONS AND S FUNCTIONS 

Definition 1: A dynamical system2 on a metric space 
(2', d) is a mapping u: R + X 2'-.2' such that 

(1.1) u(., x): R+ -.2" is continuous; 
(1.2) u(t, .): f? -.2' is continuous; 
(1.3) u(O, x) = x; 
(1.4) u(t + s, x) = u(t, u(s, x)); 

for all t , s in R + , and x in 2'. 
The mapping u(·,x) is called the motion passing through 

x at time t = O. The set 2' is also called the state space, and 

u(t,x) is the state at time t for a motion passing through state 
x at time O. A part of a motion u( .,x) over an interval [t l,t2] in 
R+, t2> t l, with u(tl,x) = XI and U(t2,x) = x2, is called apro
cess/rom state XI to state X2.

5 The metric d: 2'x 2"-.R is 
such that d (x,y) = 0 if and only if x = y, d (x,y) = d (y,x);;.0, 
and d (x,y) + d (y,z);;.d (x,z) for all x, y, z in 2'. 

The dynamical system is determined by a one-param
eter semigroup A(t): 2' -.f? such that A(t Ix = u(t, x) for all t 
in R+ and x in 2', and that the inverse A(t)-I does not 
necessarily exist, so that the semigroup may not be extenda
ble to a group with A( - t) = A(t )-1. 

Definition 2: A state Xe is an equilibrium state if and only 
ifu(t ,x.) =Xe for all tin R+. 

Next, we recall the definitions of stability and instability 
according to Lyapunov. We will use the term local stability 
instead of Lyapunov stability to leave room for nonlocal sta
bility concepts, such as that ofmetastability.6 

Definition 3: An eqUilibrium state Xe is locally stable if 
and only if for each E> 0 there is a 8(E) > 0 such that d (x,x.) 
<8(E) implies d (u(t ,x),x.) < E for all t> 0 and every x in 2". 

Definition 4: An equilibrium state Xe is unstable if and 
only if it is not locally stable, i.e., there is an E> 0 such that 
for every 8 > 0 there is at> 0 and an x in 2" with d (x,xe) < 8 
such that d (u(t ,x),x. );;'E. 

For any r> 0, &I ,(xe ) will denote any open neighbor
hood of Xe containing the open ball with radius r and center 
Xe, i.e., all the states x such that d (x,xe) < r. 

Definition 5: A functionL (.): 2"-.R is anL/unction on 
an open neighborhood &I ,(xe ) of an equilibrium state Xe if 
and only if the following conditions hold. 

(5.1)L (x) -L (xe);;.a(d(x,xe)) for every X in &I ,(xe) and 
some function a(.): R-.R such that a(O) = 0, E> 0 implies 
aIEl > 0, and aIr) < a(s) implies r < s. 

(5.2) L (u(t ,x))<L (x) for all t > 0 and every x in &I ,(xe)' 
(5.3) L (.): 2'-.R is continuous atxe , i.e., for each;> 0 

thereisa8'(;) > Osuch that IL (x) - L (xe)1 <; for every X in 
2' with d (x,xe) < 8'(;). 

L functions are the special class of Lyapunov functions3 

considered in the hypothesis of the classical Lyapunov sta
bility theorem.4 

Theorem 1. Lyapunov Stability Theorem: If L (.): 2' -.R 
is an L function on an open neighborhood q; ,(xe ) of an equi
librium state Xe, then Xe is a locally stable equilibrium state. 

Proof: For each E> 0 (we may suppose E < r with no loss 
of generality), let; (E) = aIEl > 0, where a(.) is the function in 
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condition (5.1). By conditions (5.3) and (5.1), there is a 
8(€) = 8'(; (€)) > 0 such that L (x) - L (xe) < alE) for every x 
with d(x,xe) <8(E). By conditions (5.1) and (5.2), 

aId (u(t ,x),xe )),;;;;L (u(x,t )) - L (x. ),;;;;L (x) - L (xe) < alE), 

(1) 

for every t> 0 and, hence, d (u(1 ,x),xe) < €, i.e., Xe satisfies 
Definition 3. Thus, Theorem 1 is proved. 

Definition 6: A single-valued function E (.): f¥' -+JRk is an 
invariant if and only if E (u(t ,x)) = E (x) for all tin JR+ and 
every x in f¥'. 

Definition 7: A subset ~ (E) of f¥' is a constant-E subset if 
andonlyifE(x) = E for all X in ~(E)andE(.)isaninvariant. 

Clearly, ~ (E) coincides with f¥' if E H is a trivial invar
iant, e.g., the constant functions E (.) = E. If E (.) is a nontri
vial invariant with a range REin JRk, then each x in f¥' 
belongs to one and only one constant-E subset ~ (E (x)) and 
every motion u(.,x) lies entirely in ~(E(x)), i.e., u(t,x) is in 
~(E(x)) for all tin JR+. 

Definition 8: An equilibrium state xe is conditionally lo
cally stable with respect to an invariant E H if and only if for 
each 7] > 0 there is a 8(7]) > 0 such that d (x,xe ) < 8(7]) implies 
d (u(t ,x),xe) < 7] for all t> 0 and every x in ~ (E (xe)). 

A conditionally locally stable equilibrium statexe [with 
respect to a nontrivial invariant E (-)J is not necessarily also 
locally stable because stability with respect to "perturba
tions" that bring the state off the constant-E subset ~ (E (xe)) 
is not guaranteed by Definition 8. 

For any r> 0, 9, (xe) will denote any constant-E neigh
borhood of Xe containing the open disk in ~(E(xe)) with 
radius r and center Xe, i.e., all the states x such that d (x,xe) 
<randE(x) = E(xe)' 

Definition 9: A function S (.): ~ (E (xe ))-+JR is an S func
tion on a constant-E neighborhood 9, (xe) of an equilibrium 
state Xe if and only if the following conditions hold. 

(9.1)S(xe) -S(x);>a(d(x,xe)) for every x in 9 ,(xe) and 
some function a(·): JR-+JR such that a(O) = 0, €> 0 implies 
alE) > 0, and aIr) < a(s) implies r < s. 

(9.2) S(u(t ,x));>S(x) for all t> 0 and every x in 9,(xe). 
(9.3)S (.): ~(E (xe ))-+JR is continuous atxe, i.e., for each 

;>Othereisa8'(;) > Osuch that IS(xe) - S(x)1 <; forevery 
x in ~ (E (xe)) with d (x,xe) < 8'(;). 

S functions acquire importance in view of the following 
conditional stability theorem. 

Theorem 2. Lyapunov Conditional Stahility Theorem: 
IfS(.): ~(E(xe))-+JRisanS function on a constant-Eneigh
borhood 9 ,(xe ) of an equilibrium statexe , thenxe is condi
tionally locally stable with respect to the invariant E (.). 

The proof of this theorem is completely analogous to 
that of Theorem 1 and will not be repeated. 

Clearly,ifL (-)isanL function thenS(.) = - L (.)isanS 
function. However, the converse is not true necessarily, i.e., 
if S (.) is an S function, L (.) = - S (.) is not necessarily an L 
function. For example, condition (9.1) holds only on a con
stant-E neighborhood of Xe, whereas condition (5.1) is re
quired to hold on an unconstrained neighborhood of Xe . 

For applications such as thermodynamics (see Sec. III), 
it may be easier to construct S functions than L functions. 
The following theorem gives a sufficient condition under 
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which stability can be proved even if no L function can be 
found. The condition requires the existence of a continuous 
family of conditionally stable equilibrium states in the neigh
borhood ofxe • 

Theorem 3: Given an equilibrium state x e' if there exist 
aninvariantE (.): f¥' -+RE and a single-valued family ofequi
Iibrium states Xe (.): RE-+f¥' such that the following condi
tions hold, then Xe is a stable equilibrium state. 

(3.1) E(.) is continuous atxe, and E(xe) = Ee. 
(3.2)xeH is continuous atEe, andxe(Ee) =Xe. 
(3.3) For somes> 0, every xe(E) with d (xe(E),xe) <Sis 

conditionally locally stable with respect to the invariant E (.). 
(3.3), For some S > 0, there is an S function on a con

stant-E neighborhood of each equilibrium state Xe (E) with 
d (xe (E ),xe) < S. 

By virtue of Theorem 2, conditions (3.3) and (3.3), are 
equivalent. 

Proof: We must show that for each €>O there is a 
8(€) > Osuch thatd (x,xe) < 8(€)impliesd (u(t ,x),xe) <€forall 
t> O. Let € > 0 be given. With no loss of generality, we may 
suppose € < S. 

For each E such that d (xe (E ),xe) < €12, we define 

7](€,E) = infl d (x,xe (E)) IE (x) = E, d (x,xe );>€} (2) 

so that E (x) = E and d (x,xe (E)) < 7](€,E), i.e., 
d (x,xe (E (x))) < 7](€,E (x)), implies d (x,xe) < €, because 
d (x,xe );>€ would imply d (x,xe (E ));>7](€,E). Moreover, 
7](€,E»O because the triangular inequality d(x,xe(E)) 
+ d (xe (E ),xe );>d (x,xe), for each x with E (x) = E and 

d (x,xe );>€, implies d (x,xe (E ));>€ - €12 = €12, but 
7](€,E) is the greatest lower bound of d (x,xe (E)) and, there
fore, 7](€,E );>€12 > O. 

Because xe(E) is conditionally stable (Condition 3.3), 
there is a 8(7](€,E)) > 0 such that E (x) = E and 
d (x,xe (E)) < 8(7](€,E)) imply d (u(t ,x),xe (E)) < 7](€,E) for all 
t>O (Definition 8). We denote by 8(€,E) the lowest upper 
bound of all the 8's that satisfy Definition 8 for a given 
7](€,E), i.e., 8(€,E) = infl 8(7](€,E))}, and we define 

y'(€) = infI8(€,E)IE such that d (xe(E),xe) <€12}, (3) 

sothat8(€,E );>y'(€);>8(7](€,E)) > o because y'(€) is the greatest 
lower bound of 8(€,E ). 

We now let y(€) = minI €,y'(€) 1 and define 

8'(€) = infl d (x,xe)ld (x,xe(E (x)));>y(E), 

d(xe(E(x)),xe) <y(€)l2j, (4) 
so that d (x,xe) < 8'(€) and d (xe (E (x)),xe) < y(€)l2 imply 
d (x,xe (E (x))) < y(€) because d (x,xe (E (x)));>y(€) would imply 
d (x,xe );>8'(E). Moreover, 8'(€) > 0 because the triangular ine
quality d (x,xe) + d (xe (E (x)),xe );>d (x,xe (E (x))), for each x 
with d (x,xe (E (x)));>y(€) and d (xe (E (x)),xe) < y(€)/2, implies 
d (x,xe );>y(€) - y(€)l2 = y(E), but 8'(€) is the greatest lower 
bound of d (x,xe) and, therefore, 8'(€);>y(€)/2 > O. 

Because of conditions (3.1) and (3.2), xe(E(·)) is contin
uous at Xe and, therefore, there is a 8" (€) > 0 such that 
d (x,xe) < 8" (€) implies d (xe (E (x)), xe) < y(€)/2. Ifwe now let 
8(€) = minI8"(E),8'(€)j, then d(x,xe) <8(€) implies 
d (xe (E (x)),xe) < y(€)l2,;;;;€/2 and d (x,xe (E (x))) < y(€),;;;;y'(€) 
,;;;;8(€,E (x)). Therefore, d (u(t, x),xe (E (x))) < 7](€,E (x)) 
and d (u(t ,x),xe) < €. Thus, Theorem 3 is proved. 
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III. APPLICATION TO QUANTUM THERMODYNAMICS 

Within quantum theory, Theorem 3 is immediately ap
plicable to study the stability of equilibria of (possibly non
linear) generalized evolution equations for irreversible dy
namics. 

Let us consider an isolated physical system with asso
ciated Hilbert space JIt' (dim JIt' < 00 ), and Hamiltonian op
erator H (possibly unbounded). For simplicity, let the num
ber operators N; for each type i of elementary constituent be 
c-number operators, i.e., N; = NJ. If H is unbounded, we 
further assume that Tr exp( - (3H) < 00 for all {3 with 
o <(3 < 00,

7 and that the energy functional 

E(p) = Tr Hp (5) 

is continuous 7 on the set of self-adjoint, non-negative-defi
nite, unit-trace operators on JIt' with respect to the metric 
d(PI,p2) = TrIPI -P21· 

We then define the state space ~ c to be the set of all self
adjoint, non-negative-definite, unit-trace operators P on JIt' 
with energy Tr Hp<c, with c a given finite constant, Le., 

~c = {p on Jlt'lpt =p, 

p>O, Tr p = 1, Tr Hp<c< oo}. (6) 

Operators p are called state operators for, within quantum 
thermodynamics, they represent the states of the physical 
system. 

The entropy functional 

s(p)= -kTrplnp (7) 

is concave8 and continuous9 on ~ c' Moreover, for a given 
value E in the range R E' Le., for 

inf!E(p)lpin ~c} <E<sup!E(p)lpin ~c} (8) 

the entropy functional s( p) has a unique maximum on the set 

1$'(E) = !p in ~c IE(p) = E} (9) 

at the state 

pole) = exp( -{3(E)H)/Trexp( - (3(E)H), (10) 

where (3 (E) is one-to-one and continuous in the specified 
range for E (see Refs. 10 and 11). Namely s( pole )) > s( p) for 
every p:-/=Po(E) in 'G'(E). Thus, the family ofstatespo(E) is 
single valued and continuous in E. 

Now, let us assume that the causal evolution of state 
operators forms a dynamical system on (~c ,d ) such that the 
energy functional is a nontrivial invariant and the entropy 
functional is nondecreasing, i.e., for every p in ~ c the mo
tion u(·,p) is such that 

E(u(t ,p)) = E(p), 

s(u(t ,p))>s( p), 

for all t>O. 

(11) 

(12) 

Consider a statepo(E) [Eq. (10)]. Because E (p) is an in
variant, u(t ,po(E)) is in 1$' (E) for every t>O. Because s( p) is 
nondecreasing, s(u(t ,pole ))»s( Po(E)) for every t>O. But 
s(p)<s(Po(E)) for every p:-/=Po(E) in 1$'(E). Therefore, 
u( t ,pole )) = pole ), i.e., eachpo(E ) is an equilibrium state (De
finition 2). We conclude that conditions (3.1), (3.2), and (3.3) 
of Theorem 3 are satisfied for each equilibrium state pole ). If 
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each such eqUilibrium state were shown to be conditionally 
locally stable then it would also be locally stable by virtue of 
Theorem 3. 

It is noteworthy that, because in any neighborhood of 
every equilibrium state pole ) [excluding the state with E = c 
and the state with{3 (E) = 0, if H is bounded] there is another 
state Po(E') such that s( pole ')) > s( Po(E)), the functions 
L I(·) = - s(·)andL2H = s(Po(E(·))) - s(·)arenotL functions 
on any neighborhood of any stable equilibrium state in ~ c 

with entropy less than the absolute maximum on ~ c' In
deed, we could have LI(Po(E')) -LI(Po(E)) <0 and 
L 2( Po(E')) - L 2( Po(E)) = 0 even though d (Po(E '),po(E)) 
> 0 and, therefore, neither LIH nor L2H could satisfy condi
tion(5.1). 

The physical importance of showing that the maximum 
entropy equilibrium states are locally stable emerges from 
the second law of thermodynamics which requires them to 
be the only (locally) stable equilibrium states.12 For the dyna
mical system to be consistent with the second law of thermo
dynamics, it must necessarily imply that the maximum en
tropy equilibrium states are locally stable, and that any other 
equilibrium state is unstable. 

For example, a unitary (Hamiltonian) dynamical system 
withu(t,p) = U(tloU(t)-t,U(t) = exp( - iH /Ii),wouldsa
tisfy conditions (11) and (12) with s(u(t ,p)) = s( pl. However, 
it would imply the existence of other stable equilibrium 
states in addition to those with maximum entropy for a given 
energy E. Indeed, every equilibrium state Pe of such a dyna
mical system, i.e., every state operator with PeH = Hpe' 
wouldbelocallystablebecaused (u(t, p),pe) = d (P,Pe ) for all 
t and every p, i.e., each motion would remain at a fixed dis
tance from every equilibrium state, 13 and, therefore, Defini
tion 3 would be satisfied for each E> 0 with I5(E) = E. Thus, a 
unitary (Hamiltonian) dynamical system would not be con
sistent with the second law of thermodynamics. 

In general, the existence of dissipative motions, Le., mo
tions with s(u(t ,p))>s(p) for some t>O, reduces both the 
number of equilibrium states and the number of equilibrium 
states that are stable. For example, the dynamical system 
generated by the nonlinear evolution equation recently pro
posed by the author in the framework of quantum thermody
namics l4

•
15 not only satisfies conditions (11) and (12), but 

seems also to contain enough dissipative motions to imply 
that only the maximum entropy equilibrium states are local
ly stable, whereas the many other equilibrium states are all 
unstable, which is consistent with the second law of thermo
dynamics. 

This paper addresses only the question of whether the 
principle of nondecrease of entropy [condition (12)], togeth
er with the properties of the entropy functional [Eq. (7)] and 
the specific structure of the maximum entropy states [Eq. 
(10)], is sufficient to imply the local stability of the maximum 
entropy thermOdynamic equilibrium states. In view of 
Theorem 3, we concluded that it would suffice to show that 
the entropy functional is an S function and, specifically, that 
it satisfies condition (9.1) for each equilibrium state pole ). 

In some thermodynamic literature, it is usually stated 
that entropy provides a Lyapunov criterion for the stability 
of the thermodynamic equilibrium states. 1.16 However, a rig-
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orous justification of these assertions is found nowhere in the 
literature. 

The question would be resolved if we could prove that 
the functional s( Po(E)) - s( pI, when restricted to the con
stant-E subset containing Po(E), is positive definite in the 
sense made precise by the conjecture below. If the conjecture 
could be proved, then condition (9.1) would be satisfied, en
tropy would be an S function in the neighborhood of each 
maximum entropy equilibrium state, and Theorem 3 would 
guarantee the local stability of such states. Only then, and in 
the strict sense specified here, would it be correct to aver that 
entropy provides a Lyapunov criterion for the stability of 
thermodynamic equilibrium. 

Conjecture: Given a state operator of the form 

exp( - I.jAjRj ) (13) 
Po= , 

Tr exp( - I./A;R;) 

such that Tr exp( - I.jAjRj ) < 00, there is a function a(.): 
R_R such that a(O) = 0, E> 0 implies aIEl > 0, aIr) < a(s) im
plies r < s, and 

Tr P lnp - Tr Po Inpo > a(Tr/p - Poll, (14) 

for every state operator P such that Tr Rjp = Tr Rjpo for 
every j, and Tr /p - Pol < 5 for some 5> O. 

We have no proof of this conjecture. But its validity 
seems to be plausible in view of the following facts: (1) state 
operator Po is the unique state maximizing - Tr P In P over 
the set of states with Tr Rjp = Tr Rjpo; (2) - Tr p In p is 
continuous in Po (see Ref. 9); (3) - Tr p Inp is strictly con
cave (see Ref. 8); and (4) state operator Po is strictly positive. 
Heuristically, there should be a way to expand the functional 
- Tr P Inp (restricted over the set with Tr Rjp = Tr Rjpo) 

in a Taylor series about Po to find 
- Tr p In p = - Tr Po In Po 

+D) Tr(p -Po) +D2 Tr(p -Pof + ... 
(15) 

Then, D) should equal zero because Po maximizes 
- Tr p In p over the restricted set, and D2 should be defined 

and strictly negative because Po is strictly positive and 
- Tr p In p is strictly concave. A proof on these lines, how

ever, would involve several technical problems of the kind 
discussed in Ref. 8, such as the essential singularity of func
tion - y In y at y = 0, the delicate question of continuity of 
- Tr p In p, the question of differentiability of - Tr p In p, 

and so on. 
We hope that the arguments just outlined in support of 

the conjecture will provide sufficient motivation for a rigor
ous technical study that would settle an important open 
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question in the field of thermodynamics. 
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The most general form of the Hamiltonian is obtained under the restriction that initially coherent 
states of a multimode para-Bose system remain coherent at all times. The equation of motion for 
the square ofthe annihilation operator for the multimode system using this Hamiltonian is solved. 

I. INTRODUCTION 

The coherent state for bosons and the one-mode para
Bose system 1 is defined as an eigenstate of annihilation oper
ator, i.e., 

a i IZ l,z2,···,zjt···) = Zi IZ l,z2'·",zW··) 
(for bosons), and 

alz,L) = zlz,L ) 
(for the one-mode para-Bose system). 

(l.1a) 

(l.1b) 

Here L is an integer and known as the order of parasta
tistics.2 For bosons L = 1, and for parabosons L > 1. For the 
multimode para-Bose system the coherent state cannot be 
defined as the eigenstate of annihilation operator because 

(1.2) 

But the squares of annihilation operators and ladder opera
tors ~k = H ak,aj ] commute among themselves for multi
mode para-Bose system (~k = 0 for bosons). Therefore a 
multimode para-Bose coherent state3 ItP)=lzl,z2' ... ,z;. ... , 
Z12, Z13, ... ,zjk' ... ' L ) is defined as the simultaneous eigenstate 
of a; (i = 1,2, ... ) and ~k V,k = 1,2, ... ), i.e., 

a;ltP) = z;ltP), 
~k ItP) = Zjk ItP)· 

(l.3a) 

(l.3b) 

The dynamics of the states ItP) will be discussed in this 
paper. It may be recalled that for coherent states, Glauber4 

has shown that if the time derivative of the annihilation oper
ator does not involve functional dependence on the creation 
operator, i.e., 

dadt) 
--=fda.(t),t), 

dt J 

(1.4) 

then the states which are initially coherent remain coherent 
for all times. Similarly for multimode para-Bose coherent 
states to remain coherent for all times the following condi
tions should be satisfied: 

and 

d~dt) --= Jjk (Jim (t ),t ). 
dt 

(1.5) 

(1.6) 

In Sec. II, time evolution of multimode para-Bose co
herent states will be discussed and a general form of the Ha-

miltonian consistent with the conditions (1.5) and (1.6) will 
be obtained. 

II. TIME EVOLUTION OF PARA-BOSE COHERENT 
STATES 

The time evolution can be worked out in either the Hei
senberg or Schrodinger representation. 

Heisenberg representation: The Heisenberg equation of 
motion for a; (i = 1,2, ... ) is defined as 

da;(t) 
11 -- = [a;(t),H(t)] (11 = ..r=T). (2.1) 

dt 

Here H is the Hamiltonian of the para-Bose system. For 
infinitesimal 81 we obtain from Eq. (2.1) 

a;(t + 81) - a;(t) = - 1181 [a;(t), H(t)]. (2.2) 

For 10/) to remain an eigenstate of a;(t + 81 ) with eigenvalue 
Z;(t + 81 ) at instant t + 8t, we have 

a;(t + 81 litP) = (Z;(t) + 81 a~;t))itP). (2.3) 

From Eqs. (2.1H2.3) we readily obtain 

a~(t) 
[a;(t), H(t)] ItP) = 11 ---it ItP), (2.4) 

and it follows that 10/) is also an eigenstate of the operator 
[a;(t), H(t)] with eigenvalue 11 aZ;(t )/at. Therefore a;(t) 
and [a;(t), H (t )] should commute, i.e., 

[a;(t),[a;(t), H(t)]] =0. (2.5) 

From the Green's2 trilinear commutation relations for para
bosons of any order of statistics L, it readily follows that 

[a;(t), H (t)] = f(ak(t), t). (2.6) 

The Eq. (2.6) is valid for all i's, therefore H can be at the most 
linear in creation operators. The general form of the Hamil
tonian consistent with its Hermitian nature and Eq. (2.6) is 

H = L L ..!..wij{ai(t),a/(t)] 
i j 2 

+ L (Fi(t )a/ (t) + Fr(t )ai(t)) + a(t). 
i 

(2.7) 

Here wij (t ) = wft, and a(t ) has real values only. The Hamil
tonian given by Eq. (2.7) is consistent with the condition 
(1.5), but it should simultaneously satisfy the condition (1.6). 
Proceeding similarly, from the Heisenberg equation of mo
tion for the ladder operator ~k we obtain a relation 

[~k,[Jlm,H]] = o. (2.8) 
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For this relation to be satisfied, the Hamiltonian can have 
only bilinear combinations of annihilation and creation op
erators. Thus for initially para-Bose coherent states to re
main coherent for all times, the Hamiltonian for the system 
should be of the form 

H = L L l... wij {aj(t ),a/ (t ) J . 
j ) 2 

(2.9) 

For the one mode para-Bose coherent state as defined by Eq. 
(l.lb), it can be verified that the Hamiltonian should identi
cally be of the formH = !w{ a(t ),a+(t)} for initially coherent 
states to remain coherent at all times. 

We can arrive at the same conclusion by working in the 
Schrodinger representation. 

SchrOdinger representation: Here the operators are fixed 
and the state changes with time. The SchrOdinger equation 
for the state ltP(t) is given by 

"I :t ltP(t) =Hlt/J(t). (2.10) 

For 1\jI(t + 8t) to remain an eigenstate of a; and ~k at the 
instant t + {)t, where 8t is infinitesimal, we obtain, using Eq. 
(2.10), 

It/J(t+8t)) = It/J(t) - TJ8tHIt/J(t). (2.11) 

We also have 

and 

a; I t/J(t + {)t) = (Z;(t) + {)t a~~t) )it/J(t + 8t I), (2.l2a) 

~k It/J(t + {)t) = (Zjk(t) + {)t az~:t) )1tP(t + 8t I). 
(2.l2b) 

From Eqs. (2.11) and (2.12) it readily follows that 

a~(t) 
[a;,H] l,p(t) = "I T l,p(t I), (2.13a) 

dz·k(t) 
[~k,H ] l,p(t) = "I _J - l,p(t). 

at 
(2.13b) 

From the similarity of these relations with those ob
tained in the Heisenberg picture, it readily follows that the 
general form of the Hamiltonian, consistent with the re
quirement that initially para-Bose coherent states remain co
herent for all times, is given by 

(2.14) 

The Hamiltonian H can also be expressed in terms of 
position (qk) and momentum (Pk) operators using the rela
tions 

(2.l5a) 

and 

ak+ = (2Wk)-1/2(Wkqk - TJh)· (2. 15b) 
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Here Wk is the frequency of the k th para-Bose oscillator and 
Ii = 1. The Hamiltonian contains terms bilinear in qk and 

h· 

III. EQUATION OF MOTION 

The operator a; satisfies the following equation of mo
tion with Hamiltonian H given by Eq. (2.9): 

da; [ 2 ""dt= -"I al,H] 

1 
= - "I ~ "2wij (a jaj + a)a;l. 

In matrix form Eq. (3.1) is written as 

da2 
_ 2 

-- -2TJwa. 
dt 

The solution ofEq. (3.2) is given by 

a2(t) = U (t )a2(0). 

Here U(t) is a unitary matrix such that 

U (t) = [exp( - 2"1 50' w(t') dt ') L ' 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

with the SUbscript + denoting the time ordering operator.s 

If wIt ) is such that 

[W(t), wIt ')] = 0, (3.5) 

for all t and t', then Eq. (3.4) simplifies to 

U(t) = exp ( - 2"1 50' wIt') dt} (3.6) 

For one-mode para-Bose coherent states we can arrive at the 
same solution by considering explicitly the time derivative of 
the annihilation operator with Hamiltonian H = !w{ a,a+ J. 

We conclude with the observation that the Hamiltonian 
for a para-Bose system, consistent with the requirement that 
initially coherent states remain coherent at all times, con
tains only bilinear combinations of al and a/ (i,j = 1,2, ... ). 
The terms linear either in aj or a/ do not occur, unlike the 
case of coherent states for bosons.6 This is because commuta
tion relations [ao a/], etc. for para-Bose operators are not 
Cnumbers. 
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It is shown that if the Schwinger functions of a Wightman theory with a mass gap can be 
represented as moments of a complex measure, there is also such a representation by a measure 
that is invariant under the Euclidean group. A necessary and sufficient condition is also given for 
the exponential of a quadratic form on the test function space to be the characteristic functional of 
a complex measure. 

I. INTRODUCTION 

In Ref. 1 a necessary and sufficient condition was given 
for the Schwinger functions of a Wightman quantum field 
theory to admit an integral representation in terms of a com
plex measure on the space of tempered distributions. It re
mained an open problem whether the measure can always be 
chosen to be invariant under the Euclidean group in the 
same way as the Schwinger functions. While this is almost 
obvious in the case of a positive measure, the question is 
more delicate for signed or complex measures: For instance, 
the time-ordered functions of the free field can be represent
ed by a signed measure, but no representing measure is invar
iant under the translation group.2 In the present paper we 
come back to this question and give at least a partial answer 
to it: For a Wightman theory with a unique vacuum and a 
lower mass gap, no additional conditions besides those of 
Ref. 1 are needed to ensure the existence of an invariant 
representing measure for the Schwinger functions. For the
ories without a mass gap one can reasonably conjecture the 
answer to be the same; a proofby the method of the present 
paper, however, would require a sharpening of some results 
of Ref. 1. 

We would now like to make a few comments on the 
reasons for considering signed or complex measures and not 
just positive measures. First, even if one were only interested 
in positive measures, it is useful to know precisely when at 
least a representation with a signed measure exists. Second
ly, although the measures appearing in the two- and three
dimensional models constructed rigorously so far are posi
tive, this seems rather to be a lucky coincidence than a 
fundamental property of Wightman fields. In fact, these 
models can be obtained as limits of cutoff models which are 
perturbations of the free field. It so happens that the free field 
can be represented by a positive measure, and this holds also 
for the cutoff interacting theories, because the Euclidean La
grangians considered are formally real. On the other hand, it 
is not even clear that the Schwinger functions of the Wick 
powers of the free field in dimensions ;>4 are moments of a 
positive measure. Also, there might well exist scalar Wight
man fields whose Schwinger functions are not real and can 
thus at best be represented by complex measures. Thirdly, in 
gauge theories there occur many formal expressions which 
have the appearance of complex measures (cf. Ref. 3, p. 
11 0). It is unlikely that these expressions can be used to 
define q-additive, finite, complex measures, but one might in 

some cases be able to find such measures having the same 
moments, which are after all the main objects of interest. 
Fourthly, there has recently been an attempt to use complex 
measures in constructive field theory.4 It was shown in 
Theorem 2.1 in Ref. 4 that the Schwinger functions of 
:exp cl>o:' where cl>o is a free field, are the moments of an 
invariant, complex measure on the space of Jaffe distribu
tions. The arguments in Ref. 4 are in fact more general and 
cover a whole class of theories having a certain continuity 
property (Theorem 5.1 in Ref. 4). Theorem 3.2 of the pres
ent paper can easily be extended to other test function spaces 
than Y and would then imply Theorem 2.1 in Ref. 4. 

In this paper "measure" always means a q-additive, fin
ite, complex Borel measure on the space Y R of real, tem
pered distributions on Rd. The reason for considering only 
finite measures is that we would like a formula like 
S dp,(CtJ) = 1 to hold in the sense of standard integration the
ory. It is, however, quite possible that in some cases when a 
finite representing measure exists, another kind of represen
tation, similar to the F eynman path integrals with a real time 
coordinate (cf., e.g., Ref. 5), might tum out to be more con
venient. A complex measure may for instance have moments 
with a Gaussian structure, although no finite measure with 
these moments has a Gaussian characteristic functional. In 
fact, as we show in Sec. IV such moments define a Gaussian 
complex measure iff the real part of the two-point function is 
positive (semi-) definite and the imaginary part is given by a 
Hilbert-Schmidt operator in the corresponding Hilbert 
space. 

Since Euclidean invariance of the measure is not an ad
ditional restriction on the Schwinger functions, one might 
ask what the Osterwalder-Schrader (OS) positivity of the 
Schwinger functions implies for the measure. This point has 
already been discussed in Ref. 6; the result was that if the 
measure is invariant under time translations and satisfies an 
extended form of the OS positivity, then the measure is nec
essarily positive. The proof is rather simple, but it uses stan
dard integration theory and might therefore be invalid in the 
case of more general integral representations. 

The proof of the main result of this paper, Theorem 3.2, 
is based on an averaging procedure for a generating func
tional for the truncated Schwinger functions. For this proce
dure to work it is essential that the truncated Schwinger 
functions decrease sufficiently rapidly; hence it must fail for 
the time-ordered Wightman functions, as mentioned above. 
The general method is discussed in Sec. II, its application to 

311 J. Math. Phys. 27 (1). January 1986 0022-2488/86/010311-10$02.50 @ 1985 American Institute of PhySiCS 311 



                                                                                                                                    

the Schwinger functions in Sec. III. Finally, Sec. IV contains 
some remarks on characteristic functionals of complex mea
sures. 

II. A CONSTRUCTION OF INVARIANT MEASURES 

As usual we denote Borchers's test function algebra by 
Y; this is the tensor algebra over Schwartz's space Y 
;;;" Y(Rd

), completed in its natural topology. We write its 
elements asf = (/O, ... ,jN' 0, ... ) withfoeC,jn eY n = Y (Rd'R). 
The dual space y' consists of sequences T = (To, T I , ... ) with 
ToeC and Tn eY ~. A functional TeY' is called totally sym-
metric, if Tn (/1 ® ... ® fn) = Tn (f1T~ ® ... ® f 1m) for all per-
mutations 1rof {I, ... , n}, allJ;, ... ,JneY, and all n. The real 
part of Y is denoted by Y R and the space of real, tempered 
distributions over Rd by Y it . If meY it we denote by X OJ the 
corresponding Hermitian character in Y': XOJ = (1, m, 
me" ... ). By means of the characters X", we-can identify the 
symmetric tensor algebra over Y with the algebra of all 
functions on Yit of the form ~XOJ(f),JeY. We refer also 
to this algebra as the polynomials ove~ Yit 7md denote it by 
9. Here 9 is a subalgebra of a larger algebra Y, consisting 

of all functions on Y it of the form ~g (X'" ([I)"'" X'" (.£. I), 
whereg is continuous and polynomially bounded on RN and 
[I, ... ,.&e~. The positive functionals on Yare in 1-1 corre
spondence with positive Borel measures dv on Yit' such 
that all functions in 9 are integrable and}-+ f X OJ (f)dv(m) is 
continuous (cf. Theorem 2.7 and Lemma 2.5 in Ref. 1). Such 
measures will be referred to as positive measures with contin
uous moments. 

A functional TeY' will be called strongly positive if it is 
positive (Le., non-negative) on all[e~ such that CUl-+X", ([) is 
a positive function; equivalently if it is totally symmetric and 
the corresponding functional on f!lJ is positive on positive 
polynomials. By using extension theorems of one sort or an
other one shows 7-9 the following. 

Theorem 2.1: The following are equivalent for TeY'. 
(i) There is a positive measure dv on Yit with contin

uous moments such that 

T([) = I X",([)dv(m). 

for allfe~'. 
(ii) T is strongly positive. 
By Minlos's theorem the characteristic functionals 

E(f) = f exp im(f)dv(llJ) of positive meaasures dv on Yit 
are precisely those continuous functionals E on Y R which 
are positive definite, i.e., such that 1: A,j E (I; - jj) A j >0 for 
all finite sequences of l;eY R and AleC. The measure is 
uniquely determined by E. The existence of the moments of 
dv implies that (AI'"'' AN)-.E(Adl + ... +ANfN) is a Coo 
function on RN for allJ;, ... ,jNeY R' Conversely, if E is the 
characteristic functional of a positive measure dv, and if 
Ar-.E (A f) is infinitely often differentiable at A = 0 for all J, 
then all the moments of dv exist (cf., e.g., Ref. 10, Theorem 
2.1.1), and E is a generating functional for them: 
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I dv(llJ) = E (0), 

I m(/I ).··llJ( In )dv(llJ) 

= ( - i)n a. an E(Adl + ... + AllfllllA. = ... =A.=O' 
!.i1···aAII 

(2.1) 

In view of Theorem 2.1 and Minlos's theorem we thus see 
that a functional TeY' is strongly positive iff it can be gener
ated by a positive definite continuous functional on YR' 

Let G be a group and l' ~T a representation of G by 
continuous linear transformations aT of YR' The dual 
transformations a~ map Y it -Y it and aT extends in a nat
ural way to a· automorphism of Y and also of 9 and Y. 
We may thus speak of G-invariant-functionals on Y R' Y, 
and Y and also of G-invariant measures on Yit. A meas~e 
is invariant iffits characteristic functional is invariant iff the 
corresponding functional on Y is invariant. 

For integral representations with positive, invariant 
measures we have the following simple result (cf. Ref. 9, 
Theorem 3.8, and Ref. 2, Proposition 6.1). 

Theorem 2.2: Suppose G is an amenable, topological 
group and 'T'>-+-a r fis continuous, G_Y R, for allfeY R • The 
following are equivalent for TeY'. 

(i) There is a G-invariant, positive measure dv such that 

T(ll = I X",([)dv(llJ), 

for all[e.r. 
(ii) Tis G invariant and strongly positive. 
Proof The implication (i~ii) is clear. As already men

tioned, the measures in question correspond uniquely to 
positive, invariant functionals on the function algebra Y. If 
T is a strongly positive functional on the algebra 9 of poly-

A 

nomials, then T has in any case a positive exte~sion T to Y 
by Theorem 2.1. Moreover, if Tis G invariant, To aT is also a 
positive extension of T for all 1'. Since any function in Y can 

A 

be dominated by a function in 9, it follows that 1'_To aT 
(f) is a bounded function on G for all feY. Applying an 
invariant mean thus leads to the desired positive and invar
iant extension of T. 

We now turn the attention to signed or complex mea
sures on Y it. We shall only consider such measures dp, with 
continuous moments; this means that all functions in 9 
should be integrable with respect to the positive measure 
d Ip, I· An equivalent definition is that dp, = ( dp, I - dp,z) 
+ i(dP,3 - dp,4)' where the dp,j are positive measures with 

continuous moments. 
The basic result on the moment problem with complex 

measures is the following. 
Theorem l 2.3: The following are equivalent for TeY'. 
(i) There is a complex measure dp, on Yit with corrtin

uous moments such that 

T(ll = I xcu([)dp,(m), 

forall[e~. 
(ii) T is totally symmetric, and there are continuous se-
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minorms 1I·lIk' k = 1,2, ... on Y such that 

I Tn(fl ® .,,® fn)I<lIfllll,,·lIfn lin' 

for allfl, ... ,jneY and all n. 
The characteristic functional of a finite complex mea

sure dll is defined in the same way as for positive measures, 
E (f) = f exp iw(f)dIl(W). Ifdll is a measure with continuous 
moments, E is a generating functional for them, i.e., a for
mula like (2.1) holds. There does not seem to exist any simple 
description of those functionals on Y R which are character
istic functionals of finite, complex measures, except the ob
vious one: E = (EI - E 2 ) + i(E3 - E 4 ), where the Ei are 
characteristic functionals of positive measures, i.e., contin
uous and positive definite. We note in any case that E is 
necessarily a bounded function on YR' The characteristic 
functional determines the measure uniquely, and the same is 
true for the functional which a measure with continuous mo
ments defines on.'7. On the other hand, the measure is never 
uniquely determined by the moments, i.e., by the functional 
it defines on f!i' (cf. Sec. IV). A moment problem with a 
positive measure need not have a unique solution either, but 
the positive extensions from f!i' to.'7 of a given functional on 
f!i' form at least a bounded set in the dual space of .'7, and 
this was the main point in the proof of Theorem 2.2. For 
complex measures this boundedness no longer holds, and the 
question of an invariant solution to the moment problem is 
therefore more difficult for complex measures than for posi
tive measures. 

We now come to the proper subject of this section, 
namely, to establish a sufficient condition for a functional on 
o.! to have a representation by an invariant, complex mea
sure. We start by recalling the definition and some properties 
of the S product of functionals in Y' (Ref. 11). 

Suppose T, Seo.!'. Their s product is defined by 

(TsS)o = To So, 

(TsS)n(f1 ® ... ®fn) 

= I Tk!,[;, ® ... ® /;k) TI (fj, ® ... ® fj,), 

where the sum ranges over all partitions of {I, ... , n J into 
ordered subsets (il, ... ,jk)' UI, ... ,jl) with i l < ... < ik,jl < ,,11' 
k + / = n. One has the following. 

(i) The s product is commutative and associative and 

Ts(S + R) = (TsS) + (TsR), 

for all T, R, Seo.!'. 

(2.2) 

(ii) If A (x) = l: an xn is a power series with radius of con
vergence a, then 

A (T)I.: = I an Ts .. ·sT 
n 

converges in o.!' for all Twith ITol <a. 
In particular, eXPI. T = l: (l/n!)T~ is defined for all T, 

and 

T': = log T 
I. 

= log To + ntl ( ~.i.n~+ I (T - To)i. 

is defined for all T with To¥=O. T' is called the truncated 
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functional of T; one has T = eXPI. T '. If T is normalized so 
that To = 1, one has the usual formula 

T~ =0, 

Tn(fl ® ... ® fn) 

= pI T~, U;", ® ... ® /;,...l ... T~k (/;k., ® ... ® /;",.), 
art 

(2.3) 

where the sum ranges over all partitions of {I, ... , n} into 
disjoint ordered subsets (ill , .. ·,il n ) .. ·{ik I , .. ·,ik n ) with ill 

, • 1 • • k , 

< ". < il•n1 , nl + ... + nk = n. 
The s product corresponds to the usual product for gen

erating functionals: If E (resp. F) are generating functionals 
for totally symmetric functionals T (resp. S)eY', then 
~E (f)·F (f) is a generating functional for TsS. Also, if A (x) 
is a power series, then A (E (f)) is a generating functional for 
A (T)I. YIn particular, if we can writeE (f) = exp rtf), then 
r is a generating functional for T'. 

A functional r on Y R is called conditionally positive 
definite (cf. Ref. 13, Chap. III, Sec. 4.3) if l: Xi r(/; - fj) 
XAj >0 for all finite sequences of /;eY R and AieC with 
l: Ai = 0, and if r satisfies moreover the reality condition 
r( - f) = r(f)*·AlinearfunctionaITeY'willbeca1ledcon
ditionally strongly positive, ifit can be generated by a condi
tionally positive functional. (Included in this definition is in 
particular that T should be totally symmetric and Hermi
tian.) An equivalent definition is as follows: Tis Hermitian, 
and positive on all positive polynomials without a constant 
term. We shall, however, not need this second form of the 
definition. 

It is well known, that if r is conditionally positive defi
nite, then exp r(f) is positive definite (Ref. 13, Theorem 4, 
Chap. III, Sec. 4.3). It follows that if T' is conditionally 
strongly positive, then T = eXPI. T'is strongly positive (see 
also Ref. 14 for a variant of this result). We now want to 
prove the following. 

Proposition 2.4: Suppose T'eo.!' is conditionally strong
ly positive and G invariant. Then there exists for any Aee 
strongly positive and G-invariant functionals T(v), v = 1, ... , 
4, such that 

eXPI. AT' = (T(I) - T(2)) + i(T(3) _ T(4)). 

Remark 2.5: A corresponding statement for character
istic functionals is wrong: If (.,.) is a positive scalar product 
on Y R' then r(f) = - (f I) is conditionally positive defi
nite and E (f) = exp r(f) is the characteristic functional of a 
positive, Gaussian measure. However,~xp( - rtf)) is not 
the characteristic functional of any bounded measure, for it 
is not bounded on YR' 

For the proof of Proposition 2.4 we shall need several 
simple facts which we list as lemmas below. Recall that a 
sequence {an} n = 0.1 .... of complex numbers is said to be of 
positive type if l: Aj a j + j Aj >0 for all finite sequences of 
AjeC; this is equivalent to the existence of a positive measure 
dp on R with an = f xn dp(x). 

Lemma 2.6: For any sequence {c n} of positive numbers 
there is another sequence {Yn}' such that for any seminorm 
11·11 on o.! one has 

Jakob Yngvason 313 



                                                                                                                                    

L Cn II/" II <sup II Lan fn II, 
n n 

for allfeY, where the supremum is taken over all sequences 
{an I of positive type with Ian I<Yn for all n. 

Proof This is essentially the same statement as Lemma 
3.1 in Ref. 1, or statement 3 in Ref. 15. In fact, 

< sup II LPn/" II· 
(Pnl 

IPnl ..;cn.2n + 1 

Now every sequence { Pn I can be written as a linear combi
nation offour sequences of positive type {a~l, i = 1, ... , 4, 
and a bound for p" implies a bound for a~. Since 1/3" I 
<2" + I C,,' there exist constants y~, independent of { p" I, 
such that la~I)I<Y~. The statement thus holds with y" 
=4y~. 

Lemma 2. 7: Let T and SeY' be strongly positive, and 
{an I a positive definite -sequence. Then T(anl: 

= (ao TOtal T ..... ) and TsS are alSQ strongly positive. 
Proof By Theorem 2.1, T (resp.S) are generated by char

acteristic functionals E (resp. F) of positive measures. If dp is 
a positive measure on R with an = f xn dp(x), then the posi
tive definitefunctionalfi-+ f E (x f) dp(x) generates T( ani' and 
fi-+E (f)·F (f) is positive definite and generates TsS. 

The last lemma is contained in the proofs of Proposi
tions 1.21 and 1.15 in Ref. 16. It is basically an application of 
the Hahn-Banach theorem. 

Lemma 2.8: Let Vbe a real vector space and C a convex 
cone (or wedge) in V. Let IHI be a monotone seminorm on V 
with respect to the ordering defined by C, i.e., 

for all x, yeC. If T is a linear functional on E with 

for all x, there are positive, linear functionals T(1), T(2), on V, 
and a A.e[O, 1], such that T = T(1) - T(2), and 

IT(I)(x)I<Allxll, IT(2)(x)I«I-A. )lIxli. 
Proof of Proposition 2.4: Suppose first that A. = aeRo We 

assert that for any n there is a cn(a);>O such that for all 
/" eY n we have 

In fact, one has 

eXPI. ETt (fn) = i ~ (L T~, ® ... ® T~k (/,,)), 
k = 1 Partk 

where the sum in the parentheses is an abbreviation of an 
expression like the right-hand side of (2.3), but with k fixed. 
For every/" this is a polynomial in E of degree at most n. The 
sup over €E[0,1] defines a norm on the finite-dimensional 
vector apace of such polynomials. The evaluation of a poly
nomial at a particular point E = a is a linear functional on 
this space, so the assertion follows. Next, we conclude from 
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Lemma 2.6 that there is a sequence (Yn (a) I, such that 

lexPI. aT'(.[)I<supl(exPI. ETt) {an )(.[)I, 

for all[e~, where the sup is now taken over €E[O,I] and 
sequences {an} of positive type with Ian I<Yn (a). The 
right-hand side defines a continuous seminorm on ~. Since 
eXPI. ETt is strongly positive for all E;>O and this holds also 
for (exPI. ETt) {an} by Lemma 2.7, the seminorm is mono
tone with respect to the order defined by the wedge 
{[Ix ... (,D;>O for all tV} in the Hermitian part of~. The 
positive functionals with respect to this order are precisely 
the strongly positive functionals. Moreover, G invariance of 
Tt implies that the seminorm vanishes on 
KG: = cllin span {a." [ - [ITEG,[e~}. By Len1ma 2.8 it 
follows that eXPI. aTt is the difference of two strongly posi
tive functionals, which also vanish on KG and are thus G 
invariant. In a similar way we treat eXPI. ATt if A = i p, 
/3ER: By the same argument as before we have 

Isin ls PTt(f,,)1 

= I L P k (L Tn, ® ... ® Tnk)(fn) I 
kodd Partk 

and analogously for cosi. /3Tt. Hence eXPI. iPTt is a linear 
combination of strongly positive, G-invariant functionals. 

Finally, by (2.2) 

eXPI. (a + iP )T' = (exPI. aP)s (exPI. i/3Tt), 

and we obtain the statements for arbitrary A. = a + i /3 using 
(2.1) and Lemma 2.7. 

We can now prove the following. 
Theorem 2.9: Suppose G is an amenable group and 

TeY', To#O. The following are equivalent. 
Ii) T has an integral representation with a G-invariant 

complex measure on Y ~ . 
(ii) T' can be written as a linear combination of G-invar

iant, conditionally strongly positive functionals. 
Proof The implication (ii~i) follows from Proposition 

2.4 and Theorem 2.2, using Eq. (2.2): If T' = (RI - R 2 ) 

+ i(R3 - R 4 ) with R/ conditionally positive and G invariant, 
then 

T =exPI. T' 

= (exPI. R tls(exPI. ( - R 2))s(exPI. (iR3))s(exPI. (iR4)) 

is a linear combination of strongly positive, G-invariant 
functionals. The other implication (i)~ii) follows from 

using Lemma 2.7 and (2.2). This formula shows in fact that 
P is a linear combination of strongly positive, G-invariant 
functionals. 

Remark 2.10: Because 
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T = (log exp T)I. 

co I 1)"+ I 
= To + L \ - e-"To( eT - eTo)i., 

,,=1 n 
we see that another equivalent condition is the following. 

(iii) T is a linear combination of conditionally strongly 
positive, G-invariant functionals. For the present purpose, 
however, condition (ii) turns out to be the most useful one. 

We now specialize to the case that G is the Euclidean 
group ISO(d ), which acts in a natural way on YR' It is in fact 
only the translation group Rd that causes a problem, for the 
rotation group SO(d) is compact, and one can obtain an in
variant measure by integrating over it. The next theorem 
gives a sufficient criterion for a functional TeY' to admit a 
representation by an Rd-invariant measure. This criterion 
combines the estimate (ii) of Theorem 2.3 with the condition 
that T ~ decreases rapidly at infinity in the difference varia
bles for all n. A remark on the notation: If a = (ao, ... , ad - I) 
is a multiindex we write lal = aO + ... + ad-I as usual. 
Also, D ~ is the corresponding differential operator with re
spect to xieRd

• A continuous function on lRd is said to be of 
rapid decrease, if supl(l + IxI N

) g(X) I < 00 for all NeN. 
Theorem 2.11: Suppose TeY' is totally symmetric and 

Rd invariant with To#O. If there exist constants k" and ra
pidly decreasing, continuous functions gIl such that 

IT~(l1 ® ••• ® /")1 

< I~~~' "~~~n 1 il2 gIl (x I - xj ) D f' I(x I)···D ~n I(x,,) 1 

for all/l,. .. ,f" eY, n = 1,2, ... , then T has a representation by 
an Rd-invariant, complex measure on Y~. 

Proof: The decrease of T ~ implies that we can divide 
with a function in Y" _ I and still retain a similar estimate. 
More precisely, by the Lemma in the Appendix there exists a 
positive function heY such that 

"~~~n 1 i~X gIl (Xi - XI) ill D;j h hsn(xl,.··, x" )-11 < 00, 

h ""(X), ... , x,,): = fh(X) + a) ... h(xn +a)da. 

It follows that T ~ : = T ~.( h "") -) is a well-defined tem
pered distribution with 

IT~(/I ® ••• ® 1,,)1 <c,,· sup IDf'/l(xd···D~nl,,(x,,)I, 
la,l<k, 

for allf), ... ,f" eY, with some constants c" < 00. By Theorem 
2.3 the T ~ are moments of a complex measure dv(w). 

LetF(/) = f exp iw(/)dv(w) be the characteristic func
tional of this measure and consider the functional 

r(l): = f (F(h:fa) -F(O))da. 

We assert that r is a linear combination of invariant, condi
tionally positive definite functionals and that it is a generat
ing functional for the T~. To show this, we remark first that 
if 11·11 is a continuous seminorm on Y and heY, then 
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withfa (X): = I(x - a) also a continuous seminorm on Y for 
all n. Now we can write F = (F(I) - F(2)) + i(F(J) - F(4)), 
where the F(') are characteristic functionals of positive mea
sures dv,l) with continuous moments S~). We have for all 
leYR 

IF(I)(I) -F(I)(Oll<f lei4>(f) - Ildvl')(w)<S~)(/"2) 

and hence 

f IF(')(h:fa) -F(')(O)lda<f S~)((hfa)"2)da< 00. 

Thus r is well defined, and it is a linear combination of the 
conditionally positive, invariant functionals 

r(')(/) = f (F(')(h:fa) - F(')(O))da. 

The continuity of r(1) follows in the same way from the con
tinuity of S ~I). Finally,.-t ...... r(1) (.-t I) is n-times differentiable at 
zero for all n and all f, because differentiation under the 
integral sign gives f S~)((h:fa)"")da which converges by the 
remark above. It follows that r is a generating functional for 
the n-point distribution 

f ((S~) - S~)) + i(S~) - S~))) 

X ((hjl,a) ® ••• ® (hj .. ,a ))da 

= f T ~ ((h:h.a) ® ... ® (hj .. ,a ))da 

= f T~((h_ajd® .. ·®(h_aj,,))da 

= T~( h ""·(11 ® ... ® I,,)) 
= T~(/I ® ... ® I,,), 

where the invariance of T ~ was used to shift the integration 
variable froml to h. We have thus shown that the T~ fulfill 
condition (ii) of Theorem 2.9 and the proof is complete. 

Remark 2.12: The theorem could equivalently be stated 
in terms of the T" themselvesinsteadofT~, cf. Remark 2. 10. 
Using this, we obtain the following corollary. 

Theorem 2.13: The linear span of those functionals in 
~' which have a representation by an Rd-invariant, positive 
measure on Y~ is strongly dense in the space of all totally 
symmetric, Rd-invariant functionals in Y'. 

Proof: Since Y is reflexive, strong density is the same as 
weak density. Every functional TeY' can obviously be ap
proximated weakly by functionals of the form ( To, TI hi"'" 
TN·hN, 0, ... ), where the h"eY (Rd(,,-I)) are functions of the 
difference variables, taking the value 1 on increasingly large 
subsets ofRd

(" - I). These functionals satisfy the condition of 
Theorem 2.11. 

Remark 2.14: The sufficient criterium of Theorem 2.11 
is by no means necessary, not even for functionals with clus
ter property, i.e., such that the T~ go to zero at infinity. For 
instance, one can define a Gaussian measure for any positive 
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definite two-point function, and such function can decrease 
at least as slowly as IXI - x21- (d - I) at infinity. The reason 
for the rather stringent condition in Theorem 2.11 is that 
Theorem 2.3 does not give any information about the mo
ments of the measures d,)i), except that they are tempered 
distributions. Thus, in order to ensure the convergence of the 
integrals f (F('1(h1a) - F('1(0))da, one must take h to be of 
rapid decrease at infinity. If Theorem 2.3 could be improved, 
so that one had a control over the behavior of the moments of 
d,)i), this would result in a corresponding strengthening of 
Theorem 2.11. 

III. APPLICATION TO SCHWINGER FUNCTIONALS 

Although Theorem 2.11 does not give a complete an
swer to the question when invariant functionals in -!' have 
invariant integral representations, it can be applied to 
Schwinger functionals because of the following property. 

Lemma 3.1: Let S~ (n = 1, 2, ... ) be the truncated 
Schwinger functions of a Wightman field theory with a 
unique vacuum and a lowest mass m > O. Then for all n, and 
all E> 0, there are constants an ... ' Nn < 00, b" > 0 such that 

( )

N - bn max lx, - xjl 

IS~(XI, ... ,x")I<a,, ... ~~ Ix; -Xjl ne 'J 

if Ix; - Xj I>Efor all i#j. 
Proof: The arguments are more or less standard. Using 

the compactness of the unit sphere in Rd one shows easily 
(cf., e.g., Ref. 17, Lemma 5.2) that there is a constant c" > 0, 
such that for any (XI"'" x")elRd

.,, one can choose a rotation 
ReSO(d) such that I(Rx;)O - (Rxj)OI>c" Ix; - Xj I for all i,j. 
Using the Euclidean invariance of S ~ we can thus for a given 
(x I"'" xn) assume that the time axis points in a direction such 
that Ix~ - x~ I>cn Ix; - x jl. Moreover, by total symmetry of 
S~ we have 

S~(XI"'" x,,) = S~(X1T1 , ... , x",,), 

where the permutation 11" is such that X~I < ... < x~n; we can 
thus without restriction assume that x~ < ... < x~, and 

Ix~ - x~ I>c" max Ix; - x j I. 
;,j 

At such time-ordered points S ~ is the Fourier-Laplace 
transform of the truncated Wightman distribution W~, i.e., 

S~(XI,· .. ,Xn) 

= f exp ( - vt2 qe (xe -xe_ d) 
xexp (i vt2 qv'(xv - Xv_ d) 
X W~'( q2"'" qn)dq2· .. dqn' 

where W~', the Fourier transform of W~ in the difference 

variables, has support in V';:;' X,..:" X V:. = {( q2'"'' 
q,,)lqv.qv >m~,qe >0 for all v). Write W~ = l:lal.;kDa Fa' 
where the Fa are continuous and polynomially bounded 
with support in V';:;' X· .. X V,;:;,. This is possible because one 
can map this set smoothly onto a product of half-spaces, 
where such a representation holds, e.g., by the BEG lemma 
(cf. Ref. 18, Lemma IX, 15). ThusS~ is a sum of terms of the 
form 
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Pa (X2 - x!> ... , x" - X,,_I) 

xJ exp ( - vt2 qO(xe - xe_ d) 
xexp(i vt2 qv'(xv -Xv_d) 
xFa( q2"'" q")dq2· .. dq,,, 

where Pais a polynomial. Because of the support properties 
of Fa, this can for Ix; - x j I >E be estimated by 

L max IXI-xjINaexp(- mOlx~ -x~l) 
a I.j 2 

xfexp(- m-1 c" E ± qe) 
2 v=2 

X IF( q2'"'' q")ldq2· .. dq,, 

<a" .... maxlx; - X j IN. exp( - bIt ~ax IXI - x j I), 
Y .j 

with bn = - (mol2) c". 
Lemma 3.1 says that the condition of rapid decrease at 

infinity is automatically satisfied for the truncated 
Schwinger functions if there is a mass gap. On the other 
hand, it is easily verified that estimate (ii) of Theorem 2.3 
holds for the truncated Schwinger functions if and only if it 
holds for the Schwinger functions themselves. Combining 
Theorem 2.11, Lemma 3.1, and Theorem 5.1 in Ref. 1, we 
thus obtain the following. 

Theorem 3.2: Let S", n = 0, 1, ... be the Schwinger func
tions of a Wightman field theory with a unique vacuum and a 
lowest mass mo > O. The following are equivalent. 

(i) There is a Euclidean invariant, complex measure dp, 
on Y it with continuous moments, such that 

SrI (II ® ... ® /,,) = f ev(/I) .. ·ev(/" )dp,(ev), 

for all/l, ... ,/" eY with nonoverlapping supports. The right
hand side defines then an extension of SrI as distribution to 
all ofRd.n. 

(ii) There are continuous seminorms 11·111> i = 1,2, ... on 
Y such that 

IS" (II ® ... ® 1")I<lI/dll· .. II/,, II", 
for all/l, ... ,lneY, all n. 

(iii) There are constants Cn and k", n = 1,2, ... such that 

with d(YI, ... ,Ym): = max I Y; - Yjl· 
i,j 

Remarks 3.3: (i) The uniqueness ofthe vacuum is not a 
very serious restriction: If the theory is a superposition of 
theories with unique vacu~s: 

S" = f S".; dp(~), 
where dp is a probability measure, and the Schwinger func
tions S".; have the cluster property with exponential decay, 
uniform in ~, then one can simply form the measure 
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dp. = f dp., dp~), where dp., is the measure representing 
S".,. It is at present not clear whether Theorem 3.2 holds true 
in more general cases, in particular if there is no mass gap at 
all, cf. Remark 2.14. 

(ii) If the Schwinger functions are real (i.e., if the theory 
is invariant under time inversion), then the measure dp. can 
of course be chosen real valued. Now it should be remem
bered that the Schwinger functions are to begin with only 
defined at points (x I"'" x" )eRd

.", with xd=x j for all i:1} 
(noncoinciding points). Thus the following question arises 
naturally: Is it always possible to extend real Schwinger 
functions to coinciding points in such a way that they have a 
representation by an invariant, positive measure? To put it 
differently, can a positive measure with continuous mo
ments always be dominated by a positive measure whose 
moments have support at coinciding points? Theorem 2.2 in 
Ref. 19 is an indication that this might be true, but this is an 
unsolved problem at the moment. 

IV. GENERAL REMARKS ON THE MOMENT PROBLEM 
WITH COMPLEX MEASURES 

In this final section we want to point out some differ
ences between complex measures and positive measures, as 
far as the moment problem is concerned. 

Remark 4.1: The moment problem with a complex mea
sure has never a unique solution. To see this, note that there 
are nonzero, signed measures d; or R such that all Ix I" are 
integrablewithrespecttod I; I andf x" d;(x) = Oforalln.20 

If E is the characteristic functional of a positive measure 
dv(m) or y~ with continuous moments, then 
P S E (x f)d; (x) is the characteristic functional of a signed, 
nonzero measure or y~, with all moments vanishing. Such 
a measure can be added to any solution of the moment prob
lem to obtain a different solution.22 

Remark 4.2: The formula 

EU) = f !... T" (f""), 
,,=0 n! 

with 

E (f) = J exp im(f)dp.(m), T" = J m"" dp.(m), 

is in general not true for complex measures, even if 
ao 

L (n!)-IIT"U"")I < 00, 

,,=0 

for allf 
In fact, in order to interchange integration and sum we 

would have to know that 

"to (n!)-I J Im(fWdlp.l(m)< 00. 

We illustrate this with two examples. 
Suppose mo;ofO is some fixed distribution in y~ and 

define T and SE~' by 

T211 =0, T 211 + 1 =m;I,,+I), 

respectively, 

S2" =0, S2,,+1 =( _1)"+1 m;(,,+I), 

317 J. Math. Phys .• Vol. 27. NO.1. January 1986 

for all n. Both functionals satisfy the condition of Theorem 
2.3 and have an integral representation by a signed measure 
on Y ~. In the case of T one such measure can easily be 
written down: 

d.u(m) = !c5(m - mo) - !c5(m + mo) 

and one has in fact 

J exp im(f)dp.(m) = i sin moU) 

= f !... Tn U"")· 
,,=0 n! 

On the other hand, 

f !...S,,(f"") = isinhmo(f) 
,,=0 n! 

is not the characteristic functional of a finite, complex mea
sure, because it is not bounded as a function or YR' These 
examples show clearly, that an estimate on IT:" I is of no use 
for deciding whether the characteristic functional can be ob
tained by summing up the moments or not. This is further 
substantiated by the next remark. 

Remark 4.3: Gaussian moments need not be the mo
ments of a Gaussian measure. By Gaussian moments we 
here mean that the Tn are determined by T2 in the usual way: 

T2,,+ 1 =0, 

T2,,(fl ® ... ® f2") = L T2U;, ® f j , ) ... T2U;n ®fj .!, 
Pairings 

(4.1) 

and by a (normalized) complex Gaussian measure we mean a 
measure dp.(m) such that 

J ew(f) d.u(m) = e - (1I2)Q(f), 

where Q is a continuous, quadratic form on YR' A Gaussian 
measure has continuous moments, which are given by the 
formula (4.1) with T2(f .. 2) = Q(f). Conversely, if the T" 
have the form (4.1), one has 

L i~ Tn U"") = e - (112) T,(f"\ 

n n. 
but this is in general not the characteristic functional of a 
measure; the time-ordered function of a free field provides a 
counterexample, for if e - (1/2) T,(f,,2) were the characteristic 
functional of a measure on Y~, this measure would be Rd 
invariant, which is not possible (cf. Ref. 2, Sec. 6). The fact 
that the time-ordered functions are not the moments of a 
finite, Gaussian measure was noted long ago by Cameron. 23 

His argument was not based on the Rd invariance, but on a 
direct calculation of the total mass of the complex Gaussian 
cylinder measures defined by Tz. The following proposition 
is an elaboration of Cameron's observation. It should prob
ably be classified as a folk theorem although the present au
thor has not found it explicitly stated in the literature. 

PropOSition 4.4: Let Q be a complex quadratic form on 
YR' In order that there is a (finite, u-additive) complex mea
sure d.u on Y ~ with 
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e-(II2)QU)= r e~f)dp(w), 
J.Yx 

it is necessary and sufficient that 

Q(/) = (f,/) + i(/,B/), 

where (.,.) is a positive semidefinite, continuous scalar pro
duct on Y R andB is a self-adjoint Hilbert-Schmidt operator 
with respect to this scalar product. The measure dp, is in this 
case absolutely continuous with respectto the positive Gaus
sian measure with covariance ('J)' 

Proot We show first the necessity of the condition. To 
begin with Q must be continuous if dp is q additive: Ifl,,-+I 
in the topology of Y R' then iru(f.l-+ eiru(f) for all wand hence 
e - (1/2)Q(f.I-+ e - (1I2)Q(f1 by the dominated convergence 

theorem for the positive measure d 1p,1. Since Q is a quadratic 
form it suffices to show its continuity in a neighborhood ofO. 
Butl" -+ o implies exp( -! Q (In)}-+l, which implies Q (I,,) 
= - 2 log exp( -! Q(I,,)}-+O. Now for every/w .. ,INeY R 

we have a complex measure dp,f,"-fN onRN, defined by 

iN F(tt> ... , tN )dpJ,..-fN (fl'"'' IN) 

= r F(w(/I), ... ,w(IN»)dp,(w), 
Jylt 

for bounded, continuous functions F. The total mass of the 
dp,f, .... ,fN is uniformly bounded: 

J dlpf, ..... fN I<J dlp,l<oo. 
Since Q is a quadratic form, we can write 

Q (I) = (f,/) + i(f,I), 
with symmetric, real-valued, bilinear forms (.,.) and (0,.) on 
YR' It is evident that (f,/) >0 for all f, for otherwise 
exp( - ! A 2Q (f)) = f exp iAt dp,f(t ) would be an unbounded 
function of A for somef, in contradiction to f d Ipfl < 00. 

Similarly, (0,.) must be bounded with respect to (.,.), 
because 

J d i,ufl = (1 + (f,1)2/(f,/)2)1/4. 

Thus i(f,/JI <c( f,/), for somec, independent off It follows 
that we can write (I,g) = (/,Bg), where B is a s.a. bounded 
operator on the Hilbert space defined by (.,.). Let {It} be 
any orthonormal basis in Y R corresponding to the scalar 
product (.,.). Let B(nl denote the symmetric matrix (It, 
B fj), with i,j = 1, ... , n. If P ~nl, ... , P ~n) are its eigenvalues we 
have 

n n 

"~IP~)2= k.~1 I(J;.,B/.W· 

Since 

J di,ui(w» J di,uf, ..... f.l(tl,· .. ,tn ) 
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we conclude that 
00 

I l(fI,BfIW<oo, 
k.l= I 

so B is a Hilbert-Schmjdt operator. 
To prove that the condition is sufficient one can use 

similar arguments as in the proof of the 'theorem on mutual 
absolute continuity of positive Gaussian measures (the Feld
man-Hajek theorem, cf., e.g., Ref. 24). Completing Y R 

modulo null space in the scalar product (.,.) we obtain a 
Hilbert space 7t'. Let { ek 1 k = 1.2 .... be an orthonormal basis of 
eigenvectorsofB:Bek =Pk ek, with:IP~ < 00. Once a basis 
has been introduced the positive Gaussian measure dv with 
covariance ( .,.) can be realized as a product measure on Roo: 

00 

dv(x) = II dvdxk), 
k=1 

with 

d () 1 -(1I2Jxi d Vk Xk = --1)-2 e Xk' 
(217') 

Since f Xk Xl dv(x) = 8kl , Fubini's theorem implies that for 
every v = (VI' v2, ... ) with :I ~ < 00 the sum :I Xk Vk con
verges in L2 sense, and hence in measure, to an L2 function 
on ROO. We denote this function of X by X·V. If we identify V 

with:I Vk ek e7t' we can write 

exp( - Hv,v») = J exp ix·v dv(x) 

by the dominated convergence theorem. Now define 

tPk(Xk) = (1 + iPk)-1/2 exp (!(1 + iPd- 1 i/3k xZ), 

where the square root is determined by Re(l + i/3)1/2>O, 
/3eR. We have 

and 

J exp (iXk vk)tPdxk)dvdxk) = exp ( - ~ (1 + i/3k)V~). 
(4.2) 

(4.3) 

JltPk(XkWdVk(Xd=(1-/3~)-1/2, for/3k<1. (4.4) 

From (4.2H4.4) we compute for m > n, /3k < 1 for k>n 

J !JJI tPdxk) - Jl tPdXk)!dv(X) 

<JJI (1 + /3~)1/4 (J 11 - kit I tPk(Xkf dv(X)Y
/2 

= Jt (1 +/3~)1/4C=~+1 (1_/3~)-1/2_Iy/2, 
where in the last equation we used f 11k' = n + I tPk(Xk jdv(x) 
= 1. Since:I /3 ~ < 00 itfollows that 11k = I tPdxk) converges 

in LI norm to an LI function on R, denoted by tP, and the 
dominated convergence theorem gives 

f exp(ix·v)tP(x)dv(x) = exp( - ~ (v,v) + i(V,BV»)) 

and 
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f I ¢(x)I dv(x) = Jl (1 +,8~)1/4<00. 
The measure on ROO is now transported into a measure on 
Y~ by using the nuc1earity of YR' Since (v,v) 
= f Ix.vl2 dv(x), we can identify 71"' with a subspace of 

L 2(R 00, dv), consisting of the functions Xl--+X'V with veK. 
Since the canonical mapping Y R -71"' is continuous, it fol
lows from the nuclear spectral theorem (Ref. 25, cf. also Ref. 
6, Lemma 2.3) that Y R 3 f ...... xfiscontinuous, i.e., adistri
bution in Y ~, for almost all x. Hence we can write 

exp( - ! Q (f)) = fy, exp iw(f)dp,(w), 
R 

where dp,(w) is the complex measure on Y~ corresponding 
to the complex measure ¢(x)dv(x) on ROO. 

Remark 4.5: If Tn' n = 0, 1, ... have the Gaussian struc
ture (4.1), they can alw:ays be written as moments of a com
plex measure, because the condition of Theorem 2.3 is obvi
ously fulfilled. On the other hand, if T2 does not satisfy the 
condition of Proposition 4.4, there is no such measure with 
characteristic functional exp( - ! T2(f82)). Nevertheless, 
one can define more general objects than u-additive mea
sures, such that a formula like f eiDJ(f) d p,(w) 
= exp( - T2 (f82)) makes sense.s One disadvantage of this 

approach is that the usual convergence theorems of integra
tion theory need not hold for these objects. It thus depends 
on the problems treated whether such generalized Gaussian 
integrals are a useful analytical tool or not. 
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APPENDIX: A TECHNICAL LEMMA 

We prove here a technical lemma that is needed in the 
proof of Theorem 2.11. 

Lemma: Letgn, n = 1,2, ... be rapidly decreasing, con
tinuous functions on Rd. There exists a function heY with 
h (x) > 0 for all xeRd

, such that for all n and all multiindices 

x~~~.1 ;~X g(x; -xdDf'···D~· 
X (h 8n(x l ,. .. , Xn))-I! < 00, 

where h 8n denotes the function f h (XI + a)···h(xn + aIda. 

Proo!' Define II gn Ilk = sup 1(1 + Ixlk)gn(x)l, 
x 

~nk)=(1+llgnllk)-1.2-n and En=min~:). 
k<;;n 

Then En > 0 for all nand l:n En II gn Ilk < 00 for all k. 
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In particular, the series l:n En Ign (x) I converges uniform
lyon R and defines a positive, rapidly decreasing, contin
uous function g such that Ign (x) I <En- I g(x) for all n. 

Definef(x) = sup g(y)g(z). 
y+z=x 

Thenfis also continuous and rapidly decreasing, for if 
y + z = x, then either lyl>~lxl or Izl>!lxl. Consider now the 
function M or R defined by 

M (r) = { sUPxt~x), if r>O, 

f(O) ifr<O. 

Here, M is rapidly decreasing for r> 0, continuous and 
monotone withM(lxi»f(x) for allx. 

Consider next the function r(s) = exp - (1 + S2)1I2. 

This is a positive function in Y(R), and for every neN there is 
a cn < 00, such that Iyn)(s) I <cn Ir(s) I for all s. 

The function h is now defined by 

h (x) = f: 00 r((l + IxI2)1/2 - r) M(r)dr. 

It is easy to see that h is C 00 and rapidly decreasing, and since 
rand M are monotone and positive with M(lxl)(>f(x) we 
have 

Also, differentiating under the integral sign gives 

IDah (X)I<f Irlal((l + IxI 2)1/2 - r)1 M(r)dr 

<Clal h (x). 

We claim that there exist a {) > 0 and constants ca " ... , a. < 00, 
such that 

I h 8n(x l ,· .. , x,.)I>{) IT g(x; - XI) (AI) 
;=2 

and 

IDf'···D~· p""(xI, ... ,xnll<Ca,oo.a. h 8n(x l , ... ,X,.). (A2) 

For the first inequality remember that h (x»constf(x) 

>const sup g(z)g( y), so 
x=z+y 

f h (XI + a) ••• h (X,. + aIda 

= f h (a)h (X2 - XI + a) ... h (X,. - XI + aIda 

>( f h (a)g(a)" - I da) JX g(x; - xd, 

and the second inequality follows from ID ah I <Cia I • 
Finally, the statement of the Lemma follows from (AI) 

and (A2) by induction over the degree ofthe differential op
erators, using the formula 

0= L (a} .• (an)D13""D13.(h8n)-IDa,-13, 
13, ..... 13.,81 ,8n 
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Unless both the Cartan-Killing metric (CaP) and the space metric (gij) are positive definite, a 
solution of the field equations always represents a stationary value of the action and never a 
minimum or maximum. In the Euclidean case, with (Ca p) positive definite, the action is a strict 
local minimum at a solution of the field equations. The validity of imposing certain gauge 
conditions is also discussed. 

I. INTRODUCTION 

Ever since the fundamental paper by Yang and Mills' on 
isotopic invariance, there has been considerable interest in 
gauge field theories from physicists and mathematicians. 
The literature is quite extensive, and Refs. 2-4 are a small 
selection of review articles. It is standard practice to use a 
calculus of variations approach, and the action functional 
S [ A ][ defined in Eq. (3.3 ) below) is well known. The purpose 
of this paper is to find general conditions determining 
whether S [A ) is minimum, or whether a solution of the field 
equations is only a stationary point of S [A ). The problem 
has been investigated for the special case of self-dual or anti
self-dual solutions4-6; also the nonminimality of some Yang
Mills-Higgs solutions has been shown.7 The technique to be 
used in this paper is a development ofthat used to study the 
action functional of general relativity. 8 

Section II is concerned with the calculus of variations. 
Notation and certain known results which will be used later 
are summarized. In Sec. III, these results are applied to a 
general gauge field theory. It will be shown that unless both 
the space metric and the Cartan-Killing metric are positive 
definite, the action functional S [A ] is never minimum. 9 The 
positive definite case requires a special method which neces
sitates the imposition of a Lorentz gauge condition. This 
matter is discussed in Sec. IV, and since gauge conditions are 
used elsewhere in gauge field theory, the conclusions of this 
section may be of wider interest. In Sec. V it is shown that 
S [A ] is strictly locally minimum in the positive definite 
case. The Conclusion (Sec. VI) summarizes the results ob
tained and suggests a possible area for further study. 

The properties of the action are important to the Feyn
man path integral approach to quantum field theory, 10,11 

and so the results obtained in this paper may be of relevance 
to the quantization of gauge field theories. 3.4 

II. THE CALCULUS OF VARIATIONS 

Consider the action functional 

So [u] = L L (xj;UA;UA,k) d"x, (2.1) 

where the independent variables are xi = (x' , ... ,x"), the de
pendent variables are uA = (u' , ... ,u R), U A,k = au A lax\ and 
the domain 0 C R". It will be assumed throughout that both 
L and u are sufficiently smooth (say C "") functions of their 

arguments. The basic problem of the calculus of variations is 
to find those functions u(x) such that So [u] is minimum or 
stationary. More precisely, consider So [ii] = So [u + Ef/!], 
where Ef/!A (x) is a small variation in the sense that 1 >E > ° 
and SUPA,I,O (\f/!A (X)\,\f/!A,I(X)\) < 1. The variation f/! must 
satisfy the boundary condition 

f/! = ° on the boundary ao. (2.2) 

Now, So [ii] may be expanded as a Taylor series 

So [u + Ef/!] =S~) + ESW + ~SW +"', (2.3) 

where 

S~)=So[u], (2.4) 

SW[u,f/!] = L(:~A f/!A+ a~:'k f/!A,k)d"X, (2.5) 

S(2)[U f/!] - r (.!. a 2L f/!A ¢f1 a
2
L f/!A ¢f1 o , - Jo 2 au A auB + au A k auB ,k 

+ I a2
L .I,A ",B) d" (26) 

2 aUA,k aUB,1 If' ,kif' ,I X. . 

The following results are standard. The action So [u] is 
stationary (and the function u is called a critical point) if and 
only if SW[u,f/!] = 0, Vf/!, and this condition is satisfied if 
and only if u satisfies the well-known Euler-Lagrange equa
tions. The action So [u] is strictly minimum at u if and only 
if So [u + Ef/!] >So [u], Vf/!=/:O. Note that So [u] strictly 
minimum implies that both SW[u,f/!) = 0, Vf/! and 
SW[u,f/!]>O, Vf/! =/: 0, and also note that both SW[u,f/!] 
= 0, Vf/! and SW[u,f/!] > 0, Vf/!=/:O, imply that So [u] is 

strictly minimum at u. 
At this stage it is useful to note a particular example, the 

simple harmonic oscillator in the time interval (O,to)' In this 
case R = n = I and 

S = ('0 ~l/ _ u2) dt, S(2) = ('0 ~tP - ~) dt. (2.7) 
Jo 2 1 2 

The minimum value of S(2) occurs when f/! ex: sin 11"t Ito, from 
which it is clear that S (2) > 0, V f/! if to < 11", and S (2) may be 
positive or negative if to> 11". In this example, t = ° and t = 11" 

are (Jacobi) conjugate points. It is therefore clear that 
whether So [u] is strictly minimum may depend upon the 
domain O. The following definition is made. The action 
So [u] is locally strictly minimum at u if and only if V Xo E 0, 
3 0 0 3 Xo such that SOo is strictly minimum. 
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Conditions for So [u] to be minimum have. been known 
for some time. Define 

&'&' A B a2
L(u) &' Rn A RR 

1'=~;~}.v v , ~;E , V E • au A .Bu B . 
,I .J 

(2.8) 

Theorem 2.1 (Legendre-Hadamard condition): So [u] 
has a minimum at u implies that 1'>0, "tis;, VA, X E n. 

The theorem is most useful in the converse sense, that is 
if it can be shown that 3s;, V A such that l' can be both posi
tive and negative, then So [u] cannot be minimum or maxi
mum but is only stationary at the critical point u. 

Theorem 2.2: Suppose that 3k> 0 such that 
1'>k Is 121v12, "tis;. VA, X E n, and suppose that u is a criti
cal point, then So [u] is locally strictly minimum at u. 

The above theorems are generalizations of Legendre's 
well-known result for the case R = n = 1, and are amply 
discussed in the literature. 12-15 Theorem 2.2 is a less general 
statement of Theorem 2in Ref. 12. 

III. GAUGE FIELD THEORY 

In this section, Theorems 2.1 and 2.2 will be applied to 
the action integral of a general classical gauge field theory. 
The notation to be used will follow closely that in the recent 
review by Rund.2 The gauge potentials are A f (x), where 
a = 1, ... ,Mandi = l, ... ,n withn > 1; thus there are Mvector 
potentials. The gauge field is defined by 

F h} = A ik.JI + C~p A j A f, (3.1) 

where C ~ P is the structure constant of the Lie group. The 
Cartan-Killing metric is defined by 

Cap = Ca ).1' C pI'). , (3.2) 

and the action functional is 

So [ A ha, A h~} J = ! Cap L F hJ F ftg"kg1/ d nx , (3.3) 

where g;j is the metric on the space, which will be taken as 
flat so that glj = diag ( ± 1, ... , ± 1). The quantities defined 
obey some symmetry properties: 

C e
ap = -Cpe' Fh'j= -F/h, CaP=Cpa , (3.4) 

It is a straightforward exercise to calculate the quantity 
l' defined by Eq. (2.8). The result is 

l' = Ca p {(ya.yp) (S·S) - (v"'S) (yP·S) J , (3.5) 

where' is the inner product defined by the metric gu' and S 
and v" are vectors E an. Since Cap is symmetric, it may be 
diagonaIized to C ;". Of course, the diagonalization process 
will also change ya_y'Y, But since ya is arbitrary, and since 
the transformation to diagonal form is an isomorphism, y'Y is 
also arbitrary. Thus the' may be dropped, and 

l' = LCrr {(yY.yY) (S·S) - (YY'S)2} . (3.6) 
Y 

Applying Theorems 2.1 and 2.2 to Eq. (3.6) the follow
ing can be deduced . 

(a) If the eigenvalues Crr of Cap are both positive and 
negative, then l' can be both positive and negative and the 
action (3.3) is neither minimum nor maximum, but only sta
tionary. 

322 J. Math, Phys .• Vol. 27, No.1. January 1986 

(b) If the signature (gu),cn, and n>3, then consider, 
without loss of generality, the case gil = - g22 = - g33' 
and let (i) vf = 1. S2 = 1. all other components 0:1' = - 1, 
(ii) V2 = 1, S3 = 1, all other components 0:1' = + 1. Thus, 
the action (3.3) is neither minimum nor maximum but is 
stationary. If n = 2 and signature (gu) = 0 then 1'<0. with 
equality possible. The theorems do not determine whether a 
critical point is or is not a.maximum. 

(c) If all the eigenvalues Crr are positive. and if the met
ricgu is Euclidean [= diag (1, .... 1)] then 1'>0 with equality if 
and only if all the yY and S are parallel (that is there exist 
constants k Y such that yY = k Y i). Theorem 2.2 cannot be 
applied. and the action (3.3) mayor may not be minimum. A 
direct method for considering this case will be given below, 

IV. GAUGE CONDITIONS 

Before proceeding further. it win be helpful to under
stand why Theorem 2.2 could not be applied in case (c) 
above. To this end. consider the simplest gauge field 
theory - electromagnetism. Writing a variation as 
A; =A; +€d;, 

S [A] = ! L A t.h J d 4X. 

S(2)[A.J~f] = ! L JIIt.k J d 4x. (4.1) 

(Because the metric is Euclidean. the indices i.j. k. etc. may 
be regarded as representing the components of a Cartesian 
tensor; all indices are written as covariant and the metric 
tensor is omitted.) Suppose the variation d is a gauge trans
formation, that is. for some scalar field t/J 

JII; = t/J.i' (4.2) 

Then clearly S(2)[A.t/J] = 0 for nonzero variation t/J. A gen
eral theorem on minimaIity must have S (2) > 0 so that the 
higher-order variations, $(31, etc. may be ignored. It is be
cause of the existence of gauge transformations that 
Theorem 2.2 could not be applied. (However. in the particu
lar case of electromagnetism the semi-positive-definiteness 
ofS(2) is sufficient to ensure (nonstrict) minimaIity ofa criti
cal point because the Lagrangian is quadratic in A. and so 
S(p) = 0 for p>3.] 

It is therefore desirable to permit only those variations 
which are not gauge transformations; a gauge condition 
must be imposed. Since the problem in case (c) arises when 
the yY are parallel to s( -a lax;). it is natural to consider the 
gauge condition 

Ai~ =0. (4.3) 

which is analogous to the Lorentz condition of electromag
netism. It is also known as the Landau gauge or the Hodge 
gauge. 

Let A t(x) be a given vector field. and suppose a gauge 
transformation described by M scalar fields pa(x) is made. 
withpa = 0 being the identity transformation. Then we have 
(Ref. 2, Eq. 8.12) 

(4.4) 

where G p(O) = A. p(O) = 8;. and matrices G; and A. p are 
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always invertible. The gauge condition (4.3) may be imposed 
provided there existp(x) such that A (.u)i~ = 0, i.e., such that 

aG a aA. a o - P /I.E A P + G a A P P /I.E I/. P _ A. a I/. P - apE r.i i P i,i - apE r ,i r ,i P r ,ii' 

(4.5) 

equivalently 

I/.a .. = A. -I a aG ~ /I.E. A f1 + A. - 1 a G P'" A f1. 
r ,II Y apE r," Y ',' 

_ A. - 1 a aA. ~ E. P . 
Y ap E p "p " . (4.6) 

Equation (4.6) has a linear approximation about p = 0 

(4.7) 

The existence of a local solution to a nonlinear elliptic 
system of partial differential equations has been considered 
by Morrey13 (pp. 266-277), and it may be asserted that given 
pa = 0 at a point Xo E 0, 3 a solution pa(x) to equation (4.6) 
in a neighborhood 0 0 3 xo' The problem of existence and 
uniqueness of a global solution to (4.6) is much more diffi
cult, and henceforth attention will be confined to the linear 
approximation (4.7). It may be asserted that, under suitable 
smoothness conditions, the Dirichlet problem for Eq. (4.7) in 
a bounded domain 0 has a solution, and further, provided 0 
is small enough, the solution is unique. 16 [The solution to 
(4.7) is not unique if 0 is sufficiently large; this is the Gribov 
effect. 17] 

V. THE EUCLIDEAN CASE: THE ACTION IS LOCALLY 
MINIMIZED 

In this section it will be shown that the unsolved case (c) 
of Sec. III is in fact a strict local minimum. The domain of 
integration will be 0 0, which will be considered as small so 
that the gauge condition (4.3) may be imposed. The norm 
II IIL,( 0

0
) will be writ!en for brevity as II II. Let A ia(X) be a 

critical point and let A ;a(x) be a variation, both satisfying the 
gauge condition (4.3). (Because the action is gauge invariant, 
S 0

0 
[ A ] and S 0

0 
[ A ] may be evaluated in any convenient 

gauge.) Let the variation d t be defined by 
A ia = A i

a + Edt, so that d also obeys the gauge condi
tion 

(5.1) 

By Eq. (2.1), 
dt = 0 on a 0 0 , (5.2) 

and the following lemma may be proved. 
Lemma 5.1: Given conditions (5.1) and (5.2), then 

II dttj] 112 = !lldf,j I12. (5.3) 

Proof: Consider 

Ild[~,j]1I2-lld(k'JII12=L r d[~,j]2_ d{fc,JI 2dnx, 
a Joo 

- L r dic,j d/Je dnx 
a In,, 

= L r - (dt dic,j),k + dt df,jk dnx 
a Joo 

(5.5) 

The first term is zero by condition (5.2) and the second term 
is zero by condition (5.1). Hence II d[~,j]1I2 = II d(ic,JI1I2

• 

Now, 

II df,j112 = II d[~,j] + d&JI 112 = II d[~,j]1I2 + II d(Ie,JI1I2, 
and the stated result follows. 

The main result may now be proved: 

SW[A, d) = ! Cap In" d[j,k ]de,k] 

+ O( d 2, d V d )dnx. (5.6) 
Diagonalizing CaP' the variation d is transformed linear
ly to d I, and therefore conditions (5.1) and (5.2) remain 
satisfied by d I: 

S(2) [A d'] = J.- ~C idly' 2 n,,' 4 £.J ry [J,k ] 
Y n" 

+ O( d,2, d'V d/)dnx. (5.7) 

Let 8k > 0 be the smallest value of Cry. Then 

S~~ [A, d']>2k II A IT.d12 + In" O( d /2 , d/V d /) dnx 

= k II A ;,r11 2 + r O( d /2 , d'V d /) dnx, Joo 

(5.8) 

by the lemma proved above. By Holder's inequality l8 the 
order term above may be written 

Lo O( d /2 , d/V d/)dnx = 0(11 d'112,1I d'IIIIV dill!. 
(5.9) 

By Poincare's inequality (Ref. 13, p. 69), II d'lI<all dill, 
where a is the radius of the smallest ball that can contain 0 0 , 

Hence 

(5.10) 

Thus fora small enough, S~~ [A, d'] >Ofor d''I= 0 (and 
d''l= O:::::} d'l= 0), so that the critical point A is a strict 

local minimum of the action. 

VI. CONCLUSION 

It has been shown that [apart from the special but unin
teresting case n = 2 and signature (gij) = 0], unless both the 
Cartan-Killing metric Cap and the space metric g ij are posi
tive definite, the action So [A ] is never minimum or maxi
mum but is only stationary at a critical point A. In the latter 
case it has been shown that a critical point is a strict local 
minimum of the action. 

(5.4) It mayor may not be possible to remove the "local" 
which after a short calculation reduces to requirement, that is, to show that the action is strictly mini-
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mum for any domain of integration n. This would be a 
much more difficult problem because, in the local case, the 
solution of the field equations A t(x) can be ignored; S2 is 
essentially a functional only of the variation .If. In the glo
bal case this would not be true and, at the very least, some 
properties of A t(x) would have to be taken into account. 
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It is shown that surface integrals, involving gauge and Higgs fields, in both odd and even 
dimensions can be obtained by dimensional reduction from Chern classes in higher dimensions. 
For odd dimensions, the physically useful dimensional reduction is characterized by 
..A'N = EN _ P XS P, and for even dimensions by..A'N = EN _ P XS 2 X" 'XS 2 (~p times). The 
existence of a family of field configurations for which these surface integrals in three dimensions 
exist, and are nonzero, is presented. This family includes a Yang-Mills-Higgs (YMH) system 
with an algebra-valued Higgs field and one with the Higgs field in the reducible representation 
adjoint Ell scalar. 

I. INTRODUCTION 

The relationship between finite action (energy) solutions 
of classical gauge field theories and the topological proper
ties of the same theories has been recognized since the dis
covery of monopole! and instanton2 solutions. These topo
logical properties derive from certain topological invariants, 
which, subject to normalization, have an integer spectrum
for example, the monopole charge and the Pontryagin index. 
In turn these topological invariants are expressed as surface 
integrals, whose values are determined by the asymptotic 
properties of the relevant classidal field configurations. For 
instantons, the second Chern class 

q2':::::f.Cpvpu f tr FpvFpu d4x (1.1) 

leads to the Pontryagin index by normalization. The corre
sponding surface integral is given by the Chern-Simons for
mula 

q(2l':::::f.Cpvpu f ap tr Av(Fpu - ~ ApAu )d4X. (1.1') 

In this case, the relevant asymptotic behavior of AI' is 

AI' (x) ~ apgg-!, (1.2) 
Ixl-oo 

where g E G, and G is the gauge group. Clearly then, only the 
last term of the integrand in (1.1') contributes on an infinitely 
large surface. Using an explicit parametrization of g E G, it 
can be shown that the integrand in (1.1') is the Jacobian for 
the transformation of xI' to the coordinates of S 3 and that 
carrying out the angular integrations gives rise to the norma
lization factor times an integer. 

Indeed, field configurations satisfying the condition 
(1.2) have been found as the (self-dual) solutions2 of the 
Yang-Mills (YM) system. It is natural, then, to expect other 
gauge field configurations to be associated with the higher-

order Chern classes q(N 12), for even N-dimensional mani
folds. 

In the cases of six- and eight-dimensional manifold 
(which we shall be discussing in detail) the corresponding 
Chern classes are 

q(3)':::::f.icM,M,,,.M
6 
f dflC tr FM,M,FM,M.FM,M

6
' (1.3a) 

q(4)':::::f.CM,".M. f dgX tr FM,M," .FM,M.' (1.3b) 

and in Chern-8imons form they can be written 

q(3)':::::f.iCM''''M6 f d 6xaM, trAM, [FM,M.FM,M6 

-AM,AM.FM,M
6 

+!AM,AM.AM,AM.l, (1.3a') 

q(4)",c f d 8x a tr A [F F F - MI" .M8 M. M2 M)M4 M,M6 M7MS 

- !FM,M.FM,M.AM,AM• - ~FM,M.AM,FM.M,AM. 

+! FM3M.AM,AM.AM,AM. 

(1.3b') 

The factors of i occur in (1.3a) and (1.3a') because we are 
using anti-Hermitian representations of ~ , the algebra of G. 

The question as to whether there exist field configura
tions over the N-dimensional manifold with the property 
(1.2), and for what dynamical systems these occur, does not 
interest us directly in this paper. A preliminary investigation 
into that question is presented in Ref. 3. In this paper we are 
interested in the physically relevant dimensions N = 2,3, 
and 4, as far as the dynamical gauge field systems are con
cerned. It is for this reason that the calculus of dimensional 
reduction is an indispensable tool for what follows. 

Indeed, the monopole! solutions of the Yang-Mills
Higgs (YMH) system are characterized by their magnetic 
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charge, which is a surface integral derived from the second 
Chern class ' by dimensional reduction. Here the four-di
mensional manifold may be regarded as Jl4 = E3 X S I, with 
X; (i = 1,2,3) the coordinates of E3• Then, requiring that,AM 
= (A;.A4) be symmetric under the SO(2) subgroup of Gis 

actually equivalent to requiring that AM be independent of 
X4, the coordinate onS I. The fieldA 4 = <Il is identified as the 
Higgs field, which takes its values in Y. Reduction of the 
second Chern class (1.1) in this manner leads to the expres
sion 

(1.1 ") 

where the integration over X4 has been performed. This is the 
well-known monopole charge of the YMH system. When 
this dimensional reduction is performed on the four-dimen
sional YM Lagrangian, one obtains the three-dimensional 
YMH Lagrangian without a Higgs potential term. The exis
tence of finite energy solutions is guaranteed by imposing the 
finite energy condition 

(1.2') 

which is the analog of (1.2). The absence of a Higgs potential 
is not harmful, as long as the Higgs fields "remember" that 
they have to satisfy (1.2'), and hence that 

tr <Il2 _ '1/2 = const. (1.2") 

Many solutions of this type, for G = SU(2), are known.4 

These are the self-dual solutions obeying the Bogomolnyis 
equations. Indeed the Bogomolnyi equations themselves can 
be obtained from the YM self-duality equations using the 
above dimensional reduction. These, however, are not the 
only field configurations for which the surface integral 
( 1.1") is nonzero. There are non-self-dual ' ·

6 field configura
tions of the YMH system with a nonvanishing Higgs poten
tial that are known to have magnetic charge ( 1.1 " ) and finite 
energy. This is in contrast with the situation for the YM 
system in four dimensions, where only self-dual solutions are 
known to exist.2.7 

Thus, in a gauge field system endowed with a Higgs 
field, the surface integral (1.1") has a central role to play. On 
the other hand the condition (1.2') implies that the asympto
tic value of the Higgs field may be one of the several diagonal 
elements of Y. Throughout the following we shall suppose 
that G = SU(n), for the sake of illustration. As such, there 
are (n - 1) different possible Higgs vaccua satisfying (1.2'). 
Again YMH configurations of this type are known to ex
ist,60S and the self-dual8 ones are known explicitly. 

It is to describe the "magnetic" charges of such solu
tions, that Taubes9 generalized the formula (1.1") to 

q(k)~E;jk f d~tr<llkFjl' (1.1'") 

k = 1, ... ,(n - 1) for SU(n). 
In a recent article,lo we have shown that the surface 

integrals ( 1.1 III) are obtained from a dimensional reduction of 
the higher Chern classes (1.3a) and (1.3b). The dimensional 
reduction in question from six(eight) to three dimensions re
duces a SU(nm) gauge field theory over six(eight) dimen-
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sions, with gauge field A M' down to a SU(n) gauge field Higgs 
system, with fields (A/,<Il), over three dimensions. More pre
cisely we have shown that the higher Chern classes (1.3a) and 
(1.3b), which are surface integrals inN dimensions by virtue 
of their Chern-Simons formulas (1.3a') and (1.3b'), reduce, 
subject to some symmetries, to surface integrals on the three
dimensional manifold and that these surface integrals in
volve the various Taubes invariants (1.1 III). 

In the present paper we wish to extend the analysis be
gun in our earlier article in a number of directions. (i) In the 
earlier work we concentrated on a reduction to three-dimen
sional manifolds. Now we will include the reduction to any 
odd-dimensional submanifold. (ii) The surface integrals of 
Taubes (1.1"') are written in terms of an adjoint representa
tion Higgs field. By extending our analysis to include dimen
sional reduction schemes in which the Higgs field belongs to 
other irreducible representations, or even reducible repre
sentations, we extend the definition of the Taubes invariants 
(1.1 '") to these cases also. (iii) We also extend the analysis to 
include the reduction of the higher Chern classes to lower 
even-dimensional manifolds, an example of which is the rela
tionship between the second Chern class in four dimensions, 
Jl4 = E2XS2, and the vortex number",12 expressed as a 
surface integral in two dimensions. (iv) The final aim of the 
paper is to present a class of non-self-dual solutions of the 
SU(n) YMH system in three dimensions, endowed with to
pological integrals of the type (1.1 m). 

Throughout the paper the calculus of dimensional re
duction used is that of Schwarz and Tyupkin (ST),13 who 
developed the method of Forgacs and Manton. 14 These di
mensional reduction schemes are designed to yield a genuine 
symmetry breaking type of Higgs potential in the residual 
gauge Higgs field theory. These potentials ensure that the 
modulus of the Higgs field has nonzero vacuum values, 
which in tum can guarantee that there exist classical field 
configurations with finite action/energy. It is not a coinci
dence, therefore, that we employ the ST reduction scheme, 
since on very general grounds we would expect that the exis
tence of the (topological) surface integrals is linked to the 
existence of regular finite action/energy solutions of the cor
responding Euler-Lagrange equations. 

In Sec. II we review the ST dimensional reduction 
scheme, and adapt it to suit our particular needs. For peda
gogical reasons, we restrict the presentation to that of the 
reduction by an odd number of dimensions. In Sec. III we 
apply this method to the reduction of Chern classes to odd
dimensional manifolds, with particular emphasis on E3 and 
Es. Section IV is given over to the study of the reduction of 
the higher Chern classes to even-dimensional manifolds. In 
this section we further adapt the formalism of dimensional 
reduction by an odd number of steps given in Sec. II, to apply 
also to reduction by an even number of steps. In Sec. V we 
present a class on non-self-dual solutions to the YMH sys
tem in three dimensions, for the cases where the Higgs field 
belongs to the adjoint representation and where the Higgs 
field belongs to the adjoint E9 scalar representation. Section 
VI contains a discussion of our results. 

We hope that our results, apart from their intrinsic in
terest, will be useful in the study of anomalies IS as well. 
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II. DIMENSIONAL REDUCTION 

By means of the procedure of dimensional reduction it is 
possible to contain within the formalism of a simple field 
theory over N dimensions the formalism of a field theory 
with more complicated structure over N - P dimensions, 
where p > O. This procedure has proved very useful in gravity 
(the Kaluza-Klein theories), supergravity and, indeed, 
gauge theories in general. Interest in recent years in the ap
plication of dimensional reduction to gauge theories has 
been sparked by the work of Lohe, Forgacs-Manton,14 and 
Schwarz-Tyupkin. 13 

The basic idea of the MF and ST methods is that we start 
with a pure gauge theory on an N-dimensional manifold 
vii N' whose topology we specify as that of the Cartesian 
product of an (N - p)-dimensional (flat) Euclidean manifold 
and a p sphere, 

vii N = EN _ P XS p
• (2.1) 

The gauge fields are denotedbyAM = (AI" Aa)forJL = 1, ... , 
N - P and a = 1, ... ,p. The dependence of the gauge fields on 
the coordinates Xa of S P is determined by the requirement of 
spherical symmetry on SP, i.e., AM' after a SO(p + 1) rota
tion on SP, is gauge equivalent to the gauge field before the 
rotation. 

In this work we prefer to use the ST scheme. This meth
od is distinguished from that of MF in that it makes use of a 
fixed point calculus previously developed by Schwarz l6 and 
others for three-dimensional spherical symmetry. In addi
tion to its intrinsic elegance and efficiency the ST method 
can be adapted straightforwardly to reduction by an arbi
trary number of dimensions. This we now present. 

One of the features of these dimensional reduction 
methods applied to gauge theories is that, though we begin 
with a gauge group K over vii N' after reduction to EN _ P the 
residual gauge group is a subgroup of K -the dimensional 
reduction procedure itself breaks the gauge group. 

To illustrate the ST method let us start with a gauge 
group SU(nm), where nand m are integers whose relevance 
will become apparent shortly. To write down the conditions 
for spherical symmetry we must specify a homomorphism 
from the SO(p + 1) defined over S P to a SO(p + 1) subgroup 
of SU(nm). If we denote the fixed point of SP by S, with 
stability group SO(P), then the conditions for spherical sym
metry can be written in terms of SO(P) , rather than 
SO(p + 1), as shown in Ref. 13: 

AI' (xI' ,Sa) = JL(h lAp (xl' ,Sa lJL -I(h ), (2.2) 

(2.3) 

whereJL maps the stability group SO(P) into the gauge group 
SU(nm), i.e., JL(h ) E SU(nm) for hE SO(P). 

The structure of the dimensionally reduced theory (its 
gauge group and field content) are determined by the follow
ing three steps: (i) make a particular choice of the mappingJL; 
(ii) solve Eq. (2.2)-this will define the residual gauge group; 
and (iii) solve Eq. (2.3)-this will define the field content. 

(i) ChoiceofJL:Forh E SO(P),JL(h )isannmXnm matrix. 
The canonical choice for JL is 

JL(h ) = In ® P(h ), (2.4) 
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where P(h ) is an m X m matrix representation of SO(P). In 
fact this is the simplest possibility. More complicated em
beddings are considered in Ref. 13 but, as we shall see short
ly, it is possible to achieve the same results starting with a 
mapping such as (2.4). 

(ii) Choice of gauge group: If we use the form of JL(h ) 
given by (2.4) in Eq. (2.2) then it is clear that the solution will 
be of the form 

(2.5) 

where .fli'1' (x) is an n X n anti-Hermitian traceless matrix and 
1m is the m X m unit matrix. One solution corresponds to 
.fli'1' (x) E su(n) giving rise to SU(n) as the residual gauge 
group. This solution, however, it not unique. 

(iii) Choice of field content: In view of the structure of 
JL(h) in (2.5) the solution of(2.3) can be written in the form 

Aa (x,s ) = xIx) ® f\, (2.6) 

where r a are m X m numerical tensors (essentially Clebsch
Gordan coefficients), which satisfy the equation 

P(h )rap-I(h) = h ~rb' (2.7) 

and xIx) is an n X n spin-O field. Equation (2.7) was solved in 
detail for the case p = 3, i.e., hE SO(3), in Ref. 13. For the 
purposes of generalizing to p > 3, however, it is more useful 
to make use of a particular solution of (2.7) that generalizes 
to arbitrary p, namely 

A 

ra =iLa,p+I' (2.8) 
where {Lab .La,p + 1 J is the m X m r matrix generated repre
sentation of SO(p + 1) (Appendix A). It is clear that this 

A 

choice of r a establishes the role of the integer m, 

m = {2(/2
)(P-I), p odd, 

2 (l12)p, P even. 
(2.9) 

The n X n spin-O field xIx) can be decomposed into irreduci
ble representations of the residual gauge group. For example, 
let us consider the case ofSU(n). Denoting the spin-O field by 
t,6(x) in this case, we note that since the fa are traceless it 
follows that t,6(x) is not necessarily traceless. In fact, we can 
write 

(2.10) 

where <l> belongs to the adjoint representation of su(n) and 0 
to the scalar representation. Other possibilities will be con
sidered shortly. 

Having solved the spherical symmetry conditions (2.1) 
and (2.4) at the fixed point, there remains to evaluate the 
components of F MN(X,S)' For this we need the derivatives 
aI'Ay,aI'Aa,aaAI" and aaAb evaluated at the fixed point. 
Following the infinitesimal analysis of Refs. 13 and 16 we see 
that 

BI'Ay(x,S) = BI'Ay ® 1m , 

BI'Aa(x,S) = al'X ® ra, 

aaAI'(X'S) = 0, 

BaAb(X,S) = - ~7]2fabaTa' 

(2.11) 

where 7]2 is a dimensional parameter (117] is the radius of S P) 
and Ta are the generators of so(P) in the representation JL. 
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Clearly, then, 

(2.12) 
A 

where Ta are the SO(P) generators in the representation fi. 
The numerical tensors I aba are structure constants which 
occur in the following way: If {ha,a = 1, ... ,!p(p - 1)1 de-
note the SO(P) generators and {va,a = 1, ... ,p1 denote the 
generators of the orthogonal complement of so(P) in 
so(p + 1), then 

[Va,Vb] = labaha + labcvc' (2.13) 

With our choice ofSO(p + 1) generators (cf. Appendix A) we 
see that aaAb can be written as 

aaAb(x,S) = - !1]21" ® Lab' (2.14) 

A. Residual gauge group SU(n): Field strengths 

The components of the field strength F MN(X,S ) can now 
be written down for the case when the residual gauge group 
is SU(n): 

FJ'''(x,s) = YJ''' ® 1m, 
A 

FJ'a (X,S ) = ~ J' t/J ® r a' 

Fab(x,s) = -(1]21,,+t/J2) ®Lab , 

where 

YJ',,(x)=aJ'dv -a"dJ' + [dJ',dv ]' 

~ J't/J(x) = aJ't/J + [dJ',t/J]. 

(2.15) 

(2.16) 

Thus we see that the reduced model over EN _ p will consist 
of a SU(n) gauge field d J' (x) interacting with spin-O fields cI» 
and 0 in the adjoint and scalar representations of SU(n), 
respectively. 

B. Residual gauge group SU(n - 1) X U(1): Field 
strengths 

As an illustration of the wide range of models over 
EN _ p that this method can give rise to, let us return to step 
(ii) above and make use of a different solution of Eq. (2.2), 
namely, 

AJ'(x,S) = [·~!'O-(~~~·:-~(-)-] ® 1m' (2.17) 
: 10" X 

Here d J' (x) is an anti-Hermitian SU(n - 1) gauge field while 
aJ'(x) is a Hermitian U(I) gauge field. This solution corre
sponds to the residual gauge group SU(n - 1) X U( 1). 

It is now appropriate to examine the solution to Eq. (2.3) 

Aa(x,s)=X(x) ® i\, 
with a view to decomposing xIx) into irreducible SU(n - 1) 
multiplets. We find 

xIx) = [- - ~!~)- _. :.~. ~~~l] (2.18) 
- i",t(x): fJ (x) , 

where ¢1x) belongs to the fundamental representation of 
SU(n - 1), t/J(x) can be decomposed as 
t/J(x) = cI»(x) + 0(x)ln _ 1 with cI» and 0 belonging to the ad
joint and scalar representations of SU(n - 1), respectively, 
fJ (x) belongs to the scalar representation of SU(n - 1) and 
the factors of i are for Hermiticity reasons. The field 
strengths then are given by 
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[
FJ'v I 0] 

F"v(x,s) = -oj ih.v ® 1m, 

[ 
~ J't/J ..1' - i9 J''''] A 

FJ'a(x,S) = = i(9 J'¢r)t :- aJ'fJ - ® r a , 
(2.19) 

Fab(x,s) = - (1]21" + X2) ® Lab' 

where YJ'v and 9 J't/J are defined as in (2.16), but now are 
(n - I)X(n - 1) matrices, 

9 J' '" = aJ' '" + (.r;f" - iaJ' In - d"', 
I p,v = ap,av - avaJ" 

and 

x2 = [_1_ ~_-.it]2 
- i",t I fJ 

[ 
t/J2 _ #t 

= - i(",tt/J + fJ",t) 
- i(t/J'" + fJ"')] 
1]2 - ",t", . 

(2.20) 

(2.21) 

In this case the reduced model is a SU(n - 1) X U( 1) gauge 
model with spin-O fields in the scalar, fundamental and ad
joint representations ofSU(n - 1). We notice that if we wish 
to end up with a SU(n)XU(I) gauge model over EN _ P ' we 
should start the procedure with an SU((n + l)m) gauge the
ory over J( N' with m = 2(1I2)(P-l). 

c. General dimensional reduction procedure 

On the basis of these two illustrative examples it is clear 
that we can summarize the dimensional reduction procedure 
as follows. 

(1) We begin with a pure gauge field theory defined over 
J( N = E N _ p XS P, withgaugegroupK. The choice of gauge 
group K depends on what we want as residual gauge group 
over EN _ P' and it also depends on the reduction procedure. 

(2) We specify that the gauge fields over J( N are spheri
cally symmetric over S P, i.e., a rotation on S P leads to a gauge 
equivalent gauge field, which gives us conditions on the 
gauge fields. 

(3) We make a particular choice of mapping f.t: 
SO(P) -+ K. Taken in conjunction with the conditions on the 
gauge fields [such as (2.2) and (2.3)] the effect of this choice is 
to cause some matrix elements of Ap, and Aa to vanish. This 
choice defines (i) the maximal residual gauge group RM (de
fined by matrix elements ofAJ' not required to vanish) and (ii) 
the maximal spin-O field content in the reduced theory (cor
responding to those matrix elements of Aa not required to 
vanish). 

(4) We make a particular choice of residual gauge group. 
We can choose, in effect, any subgroup R 01 R M' This corre
sponds to choosing nonzero matrix elements of AJ' appropri
ate toR. 

(5) We make a choice ofspin-O field content. Given the 
gauge group R we can decompose into irreducible represen
tations of R the matrix elements of Aa , which remain after (3) 
above. According to our needs, we may choose to set certain 
of the spin-O representation fields to vanish. Indeed, we can 
set scalar representations to be constant without violating 
the residual gauge symmetry. 

To illustrate this point, we consider the second example 
discussed above where K = SU(nm) and 
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R = SU(n - 1) X U( 1). In this case we could choose the ad
joint representation cP to vanish and the scalar representa
tions E> and f3 to be constant over EN _ p' Indeed E> and f3 are 
both scalar representations of SU(n - 1), while under the 
U( 1) transformations with parameter a we see that 

[~ _-: _f! ~ _ : _ ~_ ~~] ---+ [ cP + E> 1 - ieina,p] , 
- i,pt : f3 a - ie - ma,pt f3 

i.e., E> and f3 do not transform under the SU(n - 1) X U( 1) 
gauge group. In that case the components of the field 
strength tensor would be 

[
Y/-Lv: 0] 

F/-Lv(x,s) = - -0- - - ~ -:1- -- ® 1m , 
o I /-LV 

F/-La(x,S) = [-~i(;~~);-l---:!f~Y'-] ® ra , (2.22) 

Fab(x,s) = - (1,zln + X2) ® Lab' 

where 

2 [ - ,p,pt + E>21n _, : - i(E> + f3 ),p] 
X = ---:"-i(0-+i3i¢i--:---ri2-:"-;Pt~--' 

We see that the reduced model is a SU(n - I)XU(I) gauge 
field theory with fundamental spin-O field representation. 
The role of the two constants E> and f3 is to define the self
interaction term for the spin-O field, namely a symmetry 
breaking Higgs potential. 

The dimensional reduction procedure presented above 
is quite general. For our applications of this procedure in the 
succeeding sections we will usually restrict our attention to 
the unitary groups, as they are the most widely used. 

III. REDUCTION OF CHERN CLASSES TO SURFACE 
INTEGRALS IN ODD DIMENSIONS 

We have seen in Sec. II that a pure gauge field theory 
over an N-dimensional manifold can be related, by dimen
sional reduction, to a gauge-field-Higgs theory over an 
(N - pI-dimensional manifold. In this section we wish to in
vestigate this relationship in the particular context of the 
topological Chern classes qlN 12) associated with an (even) N

dimensional manifold. The Chern class, defined by 

q1N/2) 

= (- i)NI2EMoM, ... MN_,MN f dNx tr FMoM," .FMN_,MN' 

(3.1) 

where each of the N indices Mi,i = 1, ... ,N, runs over the 
values 1, ... ,N (even), is the quantity we focus on in this sec
tion. Other invariant quantities, such as 

XfdNX tr FMM ·· .FM M tr FM M .. . FM M' I 2 1'-1,. ,+1 ,.+2 N-I N 

(3.2) 

which exist for N sufficiently large, also may be considered, 
but they do not feature in our analysis. 

The result of our investigation can be stated as folows: 
In all of the cases that we have examined the reduction of a 
Chern class, of the type (3.1), by an odd number of dimen-
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sions yields a surface integral over the odd-dimensional Eu
clidean manifold, i.e., for p odd, 

qlNI2)(1 N = EN_
P 

XS P) = i d IN - p -I)Sn' J, (3.3) 
~N-p 

where the current J is given in terms of the gauge and Higgs 
fields over EN _ P • 

To illustrate this result we consider two types of models, 
which are distinguished by the structure of the reduced the
ory as follows: (I) ST reduction leading to a SU(n) gauge 
group, where the reducible Higgs field belongs to the adjoint 
Ell scalar representation ofSU(n); and (II) ST reduction lead
ing to a SU(n - 1) X U( 1) gauge group with Higgs field in the 
fundamental representation of SU(n - 1). For the purposes 
of the explicit calculations of this section we restrict our at
tention to the two cases N = 6 and N = 8, i.e., to the third 
and fourth Chern classes q(3) and q(4). Corresponding to each 
of I and II above there will then be five different cases: 

(1) K=SU(2n), 16=E3XS3, 

(2) K=SU(2n), 1 9=EsXS 3, 

(3) K=SU(4n), 19=E3XSS, 

(4) K=SU(n), 16=EsXS', 

(5) K=SU(n), 1 9=E7 XS'. 

We do not consider the cases (4) and (5), as the proof of the 
result (3.3) involves the elementary dimensional reduction 
that yields (1.1") from (1.1), and is trivial. Indeed, the results 
follow directly from the Chern-Simons formulas (1.3'). 

In the six examples considered the calculations are 
straightforward. The basic idea is to substitute into the 
Chern class the field strength components that result from 
the appropriate ST reduction Ansatz, as discussed in Sec. II, 
to carry out the integral over the compact dimensions and 
finally to regroup the terms in the integral over the remain
ing euclidean dimensions. 

Let us consider the various cases of type I. In each of 
these cases the field strength components are given by Eq. 
(2.15) and the trace identities involving the Lab and r a matri
ces used in the calculations are given in Appendix A. 

(11) Third Chern Class, 16=E3XS~' p = 3; 
i,j, ... = 1,2,3; a,b, ... = 1,2,3. In terms of the field strength 
components the third Chern class is 

and upon reduction we find the surface integral 

-..!.. tr tP(f!hpX~tP)], 
3! 

(3.4) 

(3.5) 

where [fIj i = ~ Eijk Y jk and fd30 is the integral over S 3. 

(12) Fourth Chern Class, 18=E5XS~' p = 3; 
i,j = 1...,5; a,b = 1,2,3. In terms of the field strength compo
nents the fourth Chern class is 
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q(4) = EljklmEabc f dye f d3n. 

Xtr[ FIjFklFabFmc + FIjFklFmaFbc 

+FIjFkaFlmFbc -4FIjFkaFlbFmc], (3.6) 

and upon reduction we find the surface integral 

q<4) = f d 4S njEljklm [3rl tr tP:7jk:7lm 

+ tr tP3 :7jk:7lm - 2 tr tP~jtP~ ktP:7lm ]. (3.7) 

(L3) Fourth Chern Class, ..,118=E3XS~· p = 5, 
i,j ... = 1,2,3; a,b, ... = 1, ... ,5. In terms of the field strength 
components the fourth Chern class is 

q(4) = EljkEabcde f dye f dsn. 

Xtr[FIjFkaFbcFde +FIjFabFkcFde 

+ FIjFabFcdFke - 4Fla FjbF kcFde ], (3.8) 

which upon reduction yields the surface integral 

q(4)~:J d 2Sn o [31ltrtP~ +2rltrtP3~ 

_1J2 tr tP(~tPX~tP) + ~ tr tPs &1 

-~trtP3(9tPX~tP) +~ trtP2(~tPXtP~tP)]. (3.9) 

In the cases (1.1) and (I. 3) the surface integral is over the 
two-dimensional surface at infinity in a three-dimensional 
Euclidean manifold. The &1-dependent terms in (3.5) and 
(3.9) are very similar to the Taubes invariants (1.1 "'). How
ever, in the case of the Taubes formulas, «I> is understood to 
belong to the adjoint representation of the gauge group. In 
the cases above, tP is not an irreducible representation of the 
residual gauge group SU(n). Ifwe decompose tP into irreduci
ble components, tP = «I> + 01n , where «I> belongs to the ad
joint representation ofSU(n), we can rewrite the ~-depen
dent terms in (3.5) and (3.9): 

q(3)':::t. f d 2S no [(1J2 + 0 2)tr «I>~ + 0 tr «I>2~ 

(3.5') 

q(4) ':::t. f d 2Sn ° [3(1J2 + 0 2)2 tr «1>&1 + 6(1J2 + 0 2)tr «1>2&1 

+ 2( 1J2 + 302)tr «1>3&1 + 30tr «1>4&1 + ~ tr «1>5 ~ 

_1J2 tr tP(~tPX~tP) - j tr tP3(PJtPX~tP) 

+~trtP2(PJtPXtPPJtP)]. (3.9') 

If we now set the scalar representation 0 to be a constant 
then we see that of the Taubes invariants 

(3.10) 

the first three occur in (3.5'), while the first five occur in 
(3.9'). 

It is clear that, in this way, the dimensionally reduced 
Chern class q(N 12) (..,lIN = E3 X ~ - 3), for N even, will in
volve the Taubes invariants (3.10) for k = 1, ... ,N - 3, pro
vided n > N - 3. If n <.N - 3, then, in the surface integrals at 
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infinity, «I>k (00) for n<.k<.N - 3 can be reexpressed in terms 
of «1>( 00 ),«I>2( 00 ), ... ,«1>" - 1 (00), thus modifying the coefficients 
of the Taubes invariants that occur. To ensure that all of the 
relevant Taubes invariants occur it is necessary to choose the 
order ofthe Chern class > (n + 1 )/2. 

It must be pointed out that the surface integrals (3.5') 
and (3.9') do not depend on the above Ansatz for 0 for their 
significance. Indeed, as we shall see in the sequel, it is not 
necessary to assume 0 to be a constant to establish the exis
tence offield configurations for which these surface integrals 
are nontrivial. 

Other surface integrals: The occurrence of surface inte
grals in the dimensional reduction of the third and fourth 
Chern classes does not depend on the representation em
ployed for the Higgs field in the reduction. As we shall now 
see, surface integrals occur also when we employ fundamen
tal Higgs representations. Such models are of intrinsic inter
est-classical field configurations with the Higgs field in the 
fundamental representation have featured in the recent stud
ies(17) of saddle point solutions to the YMH systems. 

For these cases the field strength components are for
mally given by (2.19) and the results of the calculations are as 
follows. 

(ILl) Third Chern Class, ..,116=E3XS3,· 

q(3)':::t.(0+t1)f d 2Sno (7{1,(&1 +lb)7{I). (3.11) 

(ILl) Fourth Chern class, ..,118=E5 XS3,· 

q<4)':::t.(0+.8)f d 4SnlEljklm 

X (7{I,(:7jk:7lm + i:7jk fim - Jjkfim)7{I). (3.12) 

(IL3) Fourth Chern class, ..,118=E3XS~· 

X <7{1,(&1 + lb)7{I) - (.8 2 
- 0 2)(7{I,lb7{l) 

+ (7{1,7{1) [(7{1,&17{1) + 2lb(7{I,7{I) 

- (PJ7{I,XPJ7{I)]j, (3.13) 

where we employ the notation (7{I,A7{I) = 7{1+ A7{I and 
bl =!E Ijk Jjk, cf. (2.20). 

It is interesting to point out that in these three cases we 
must be careful not to choose (0 + .8) to be zero, or the 
Chern class will vanish trivially. We recall that the imagi
nary constants 0 and.8 originate from the scalar spin-O field 
representations. 

We notice that the surface integrals (3.11) and (3.13) in
volve the following analog of the Taubes invariants (3.10): 

f d 2Sn ° (7{1,(~ + lb)7{I) (7{1,7{1) \ (3.14) 

for k = 0,1. Quite naturally the 7{1 fields occur in pairs as they 
are column vectors. It is clear that by going to high Chern 
classes we can generate the integrals (3.14) for other values of 
k. 
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IV. SURFACE INTEGRALS IN EVEN DIMENSIONS 

Since the Chern classes are defined on even-dimensional 
manifolds, the subject matter of this section involves the re
duction of Chern classes by an even number of dimensions. 
This is not as straightforward as the reduction of Chern 
classes by an odd number of dimensions described in the 
previous section. 

As explained in the Introduction, our aim in reducing 
Chern classes and action densities is twofold. On the one 
hand we wish to obtain from the Chern class a surface inte
gral, while at the same time from the action density we wish 
to produce a Higgs potential for spin-O fields. The latter will 
allow for field configurations that yield nontrivial· surface 
integrals. The adaptation of the ST Ansatz for the reduction 
characterized by JI N = EN _ P XSP to the case of even p(2) 
was given in Ref. lO(b). We briefly review the relevant for
mulas here. To start with, the solutions (2.5) and (2.6) of(2.2) 
and (2.3), respectively, change. This is because for evenp the 
symmetry group of S p , namely SOt P + 1), has two possible 
m X m spinor representations, cf. (2.9), each inside those of 
SO(p + 2). The elements ofthe corresponding algebras are 
given by (AI). In addition the elements h ofSO(p), the stabil
ity group of SP, commute with the last element 
Lp + I,p + 2 ~::~::r( p + I) of so(p + 2). This results immediately in 
the more general solutions of (2.2), 

Ap(x,S') = dp(x) ® 1m + @p(x)®iLp+ I,p+2' (4.1) 

Aa(x,S')=~(x)®iLa,p+1 +X(x)®iLa,p+2' (4.2) 

The resulting field strengths can then be computed 13 to give 

Fpv(x,S') = Y pv ® 1 + §/[p@vl' 

Fpa(x,S') = mp ®iLa,p+ \ + 2lp ®iLa,p+2' (4.3) 

Fab(x,S') = -('TlLn +~2+X2)®Lab - [~'X]®P+\Lab' 

where 

mp = §/ p~ - il@p'x), 2lp = §/ pX + il @ p,~}, 

§/p =Bp + [dp,']' 

It was found in Ref. lO(b) that substituting (4.3) into the 
third Chern-Pontryagin integral over Jl6 = E2 X S 4 result
ed, after integration over the S4 variables, in a surface inte
gral SJpdSp on E2 given by the current 

Jp(x) =€pv tr[i1l(x§/v~-~§/vX) 

+ i(x~X - ~3)§/ vX - i(~X~ - X3)§/ v~ 

+ ((1]21 + ~2 + X2)2 - [~,X] 2)@ v], (4.4) 

Similar formulas are obtained for higher dimensions, as pre
sented in Ref. lO(b). However, concerning the physical appli
cability offormulas like (4.4), the situation is not so clear. \O(b) 
Based on arguments ofjinite energy (action), it can be con-

I 

cluded that the covariant derivative of a Higgs field has the 
same asymptotic behavior as a curvature, or the curl of a 
vector field. Accordingly it was argued that the surface inte
gral of (4.4) gave a vanishing contribution. Similar conclu
sionslO(b) were arrived at for higher-dimensional examples. 
Accordingly, we must search for other paths of descent 
Jln =EN_pXMp' where Mp is different from SP, e.g., 
Mp = S P, X ... XS

p
·, l:~ Pi = p, with the purpose of 

achieving a current with nonvanishing surface integral. 
To this end, we consider the example 

Jig = E2XS 3XS 3, which is the simplest nontrivial case 
with each Pi > 2. (The cases with Pi = 2 are privileged and 
will be considered below separately.) 

To this end, we consider the case when p is even but p/2 
is odd. In this case we might examine 
JI N = EN _ p X S pl2 X S pl2 with spherical symmetry over 
each Spl2 factor. Application of this reduction to a Chern 
class will lead to a surface integral. Furthermore, it will also 
lead to a symmetry breaking type of Higg's potential. The 
simplest nontrivial example that we can consider is 
Jig = E2XS 3XS 3. 

To describe the reduction A nsatz in this case we proceed 
in two stages. 

(i) Jig = Jls XS 3
, initial gauge group SU(4n), field 

strengthsFLN • IfL,N = 1, ... ,8; i,j = 1, ... ,5 and a, /3 = 6,7,8, 
the reduction Ansatz can be written 

Fijisl =Gij®12' Fiais
l 
=Di~®ra, 

Fa.8lsl = -(1]212n +~2)®LaP' 

where Gij is a SU(2n) field strength. 

(4.5) 

(ii) Jls = E 2 XS 3
• Ifp,v = 1,2; a,b = 3,4,5, the second 

reduction Ansatz is, for the SU(2n) field strengths, 
A 

Gpvls• =Ypv ®12, Gpals• =§/px®ra, 

Gab Is. = -(p2In +X2)®Lab' (4.5') 

from (2.15), where Y pv is a SU(n) field strength, and for the 
Higgs field ~ = ffJ ® 1 2, 

(4.5") 

The resulting SU(n) YHM system with two Higgs fields ffJ 
and X (neither of which is necessarily traceless) has the po
tential term in the Lagrangian, of the form 

tr[(1]21n + ffJ 2f + (p21n +X2)2+HffJ'X]2]. 

Substitution ofEqs. (4.5), (4.5'), and (4.5") into the third 
Chern integral and integrating over S3 X S3 yields the cur-
rent 

+ 3( p2ffJXffJ§/ vffJ - 1]2XffJX §/ vX) - 3( P2X §/ vffJ 3 - ffJ§/ vX3) 

- (ffJX2ffJX §/ vffJ - XffJ 2XffJ§/ vX) + (ffJXffJX2 
§/ vffJ - XffJXffJ 2 §/ vX) 

- (xffJ 2X2 §/ vffJ - ffJX2ffJ 2 §/ vX) + (ffJX3ffJ§/ vffJ - XffJ 3X §/ vX)] . (4.6) 
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As S E
2
XS'XS' is manifestly a surface integral, in which the 

current (4.6) is integrated over a large surface in E2, and as 
the Higg's potential (4.4) in the action density is of a suitable 
form, we appear to have achieved our objective. 

The structure of the current (4.6), however, is such that 
it may be useless for any practical (i.e., physical) application. 
We notice that the lowest-order term in (4.6), 
r/p2E, . ." tr xg vtp, does not involve the curvature field Y,.v· 
Indeed this is a persistent feature in all such reductions. For 
example, for the reductionvR 10 = E4 XS 3 XS 3

, thesubstitu
tion of (4.5), (4.5'), and (4.5") into the fifth Chern class yields 
a current very similar to (4.6) in which the lowest-order term 
is 

r/p2E,.vpu tr X~ vtpYpu' 
and not 

E,.vpu tr J2I v [Y pu - ~ J21pJ21 u], 

(4.7a) 

(4.Th) 

the Chern-Simons form of the Pontryagin density. On a 
large surface the asymptotic properties of the Pontryagin 
density (4. Th) are those of the product J2I v J2I p J2I u' while the 
asymptotic properties of (4.7a) are those of ~ vtpJ21 p J2I u' 
Now, the finite energy conditions (1.2') imply that ~ vtp 
must tend to zero at infinity at a faster rate than the field J2I v • 

Therefore, the density (4.7a) tends to zero faster than (4.Th), 
and consequently the lower-order term (4.7a) makes no con
tribution to the surface integral. Furthermore, the asympto
tic properties of the higher-order terms are also such that 
they make no contribution to the surface integral. We con
clude that in such reduction schemes the surface integral 
vanishes. 

This is a general feature of all reduction schemes 

vRN =vRN_pXSm,X ···XSmq, m/ odd, i= 1, ... ,q, 

with theexceptionofthecaseMN = M N _ P XSIX .. 'XS I 

(p times). 
For example, ifvR 6 = E3 xs 1 xS 1 xS 1 the third Chern 

class reduces to the surface integral 

q(3) =..!.... E .. k I d 2S n· 2 'J , 

X tr [ Fjk ( { <I> I, [ <1>2' <l>3]} + cyclic perm.) 

- - (<I>I{Dj <l>2,Dk <l>3} + cyclic perm.)], (4.8) 

which does not vanish when the finite energy condition (1.2') 
is imposed. In this case, however, the YMH Lagrangian den
sity is endowed with the potential term 

tr([ <I> I' <1>2] 2 + [<1>2,<1>3] 2 + [<1>3,<1> tl2), 

which on its own is not a symmetry-breaking potential. Thus 
it cannot be guaranteed that field configurations exist for 
which the surface integral (4.8) is nonvanishing. 

The results (4.4) and (4.6) suggest that if the residual 
gauge theory has more than one Higgs field, the resulting 
Higgs potential is of the symmetry breaking type, and the 
surface integrals obtained from the corresponding Chern 
classes vanish. Fortunately, this does not always follow. In 
the above analysis we have used S m, factors where mi is odd. 
In such cases the result does bold. However, we shall see 
shortly that if we allow the m; to be even (= 2) then the 
result does not automatically follow. 
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Qualitatively we note that in multiple stage ST Anstitze 
there normally occurs more than one Higgs field, e.g., tp and 
X in the case treated above, as was the case with the single 
stage ST reduction for even p > 2. Furthermore if we were to 
choose our Ansatze (4.5), (4.5'), and (4.5"), such that either tp 
or X were to vanish then the current (4.6) and the associated 
surface integrals would identically vanish. We shall see 
shortly that the attainment of a nonvanishing surface inte
gral after a mUltiple stage ST reduction 
vR N = EN _ p XSm,X " ·XS mq will depend on our ability 
to perform the reduction in such a way that in the residual 
model there is only one Higgsfield. 

So far we have not considered one important even p 
case-p = 2, i.e., reduction by two dimensions induced by 
vR N = EN _ 2 xs 2. The results of the application of this reo 
duction to Chern classes are nontrivial, and are well known 
from some investigationsll,I2,I8 on vortices. The qualitative 
difference between the p = 2 and even p > 2 ST reductions is 
due to the imposition of SO (p + 1) spherical symmetry on 
S p • Since this is implemented by solving (2.3), where h be· 
longs to the stability group of the fixed point of S p , we find 
in the case of S 2 the stability group SO (2), which is Abelian, 
in contrast with all other p( > 2) cases where h belongs to a 
non-Abelian group. 

Let us review briefly the details of the reduction by two 
dimensions. To start with we must specify the mapping It 
from SO(2) into the initial gauge group, and then we must 
solve (2.2) and (2.3). In the case of initial gauge group SU(n) 
we have It = exp iMtp, M = diag(ml, ... ,m,,), l:~= I ml = O. 
The m;, i = 1, ... ,n, characterize the SO(3) spherical symme
try on S2. The solutions of (2.2) and (2.3) are then readily 
obtained 13,16: 

A,. (x)ij Is = 0, md:mj, 

A I (x)ij Is = A2(x)ij Is =0, if 1m; -mjl#1 (4.9) 

A2(x)ijls =isgn(m; -mj)AI(x)ijls' 

if 1m; - mj I = 1 , 

where It = 1,2, ... ,N - 2. Again, one can show that the 
(N 12)th Chern class in N dimensions reduces to a surface 
integral in N - 2 dimensions. To illustrate, we give the ex· 
plicit formulas for the surface integral sa,. J <: -2) d (N - 2)X 

for N = 4,6,8: 

J~) = - 2E,.v tr [i1lMAv + !EabAaDvAb] , 

J~) = - 4E,.vpu tr[i1lMAv{Fpu - ~pAu) 

+ EabAaDvAbF pu] , 

J~) = - 4E,.vpur..t tr[i1]2MAv{F puFr..t 

- ApAuFr..t + !ApAuArA..t) 

(4. lOa) 

(4. lOb) 

+ EabAaDvAbF puFr..t - !EabAa F puDvAbFr..t] . 

(4.1Oc) 

To derive these results we need the following consequences 
of (4.9): 

Fab Is = - i1]2EabM + [Aa, Ab] , 

Fp.als =D,.Aa =o,.Aa + [A,., Aa], a= 1,2, (4.11) 

[A,.,M] =0, [D,.,M] =0. 
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We infer from (4.10) thgat the ST reduction induced by 
M N = EN _ 2 X S 2 always reduces the (N /2)th Chern class to 
a surface integral in (N - 2) dimensions. Furthermore, the 
corresponding Lagrangian density is endowed with a Higgs 
potential of the desired form. Of course, it is only in the cases 
N = 4 and N = 6 that the surface integrals which result from 
this Ansatz [i.e., (4. lOa) and (4. lOb)) would be of any physical 
interest-in all other cases the surface integral would be in a 
nonphysical space of dimension >6. 

Despite our earlier discussion when we considered the 
extra dimensions to be an even product of spheres of odd 
dimension it is possible to construct an ST type reduction so 
that the (N /2 )th Chern class will reduce to nonvanishing sur
face integrals in two- and four-dimensional spaces. We end 
this section by giving such a reduction scheme, namely p/2 
successive reductions by two dimensions. As seen earlier, 
such a scheme would be expected to give rise to more than 
one Higgs field, like <p and X in (4.2) and (4.3), with the unde
sirable feature that the resulting surface integrals vanish. 
One solution to this problem is to find a multiple stage ST 
reduction scheme in which each (except the last) of the Higgs 
fields vanishes by the requirement of spherical symmetry on 
the extra dimensions at the given stage of reduction. This 
objective can be achieved easily if the reduction is induced by 
1N =EN _ P XS 2 X···XS 2

• 

To see this let us consider a SU(n) gauge field theory 
interacting with a Higgs field r/I in thefundamental represen
tation of SU(n), which is subjected to a reduction by two 
dimensions. The equation, expressing the spherical symme
try of the Higgs field r/I, analogous to (2.2), reads 

r/I(xp ,Sa) = p,(h )r/J(xp ,Sa) , (4.12) 

where p,(h) = exp iMO. In infinitesimal form this reads 

Mr/I = 0 . (4.12') 

Therefore, if we arrange this stage of the reduction scheme to 
be characterized by M = diag(ml, ... ,mn ) with m;;fO for all 
i = 1, ... ,n, (4.12') implies that every component of r/I must 
vanish by virtue of the spherical symmetry. 

Thus,ifeverystageof1 N = EN _ P XS 2 X"'XS 2 (p/2 
times) is arranged to be of this type, then the only nonvanish
ing Higgs field in the (N - pI-dimensional theory is the one 
arising from the last stage of the reduction scheme. In that 
case the potential term in the corresponding Lagrangian 
density will be ofthe type tr Fi2 [cf. (4.11)), i.e., of the sym
metry breaking type. 

To illustrate this scheme we present the simplest possi
ble example, induced by 16 = E2 XS 2 XS 2

• Let the initial 
gauge group be SU(4), and let the first stage ofthe reduction 
be characterized by 

MI = diag(!,!,!, - i)a::A 1s E su(4). (4.13) 

This yields a SU(3)XU(1) theory with curvature 
[1 ij + (i/2)A.Is gij [where [1 ij E su(3) and gij = a;bj - ajb; is 
the U(l) field] and with a SU(3) fundamental Higgs field r/I. 
We let the second stage of the reduction be characterized by 

M2 = diag(M, - ~) a::Ag E su(3) (4.14) 

for the SU(3) factor. With this choice, [1 ij yields a 
SU(2)XU(1) system with curvature ffpv + (il2)A.gfpv, 
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where ffpv E su(2) and fpv = apav - avap is the second 
U(l) field, and a SU(2) fundamental Higgs field <po The effect 
of (4.14) on the Higgs field r/I and Dp r/I is, because of (4.12'), 

r/I = 0, Drr/l = O. (4.15) 

Finally there remains the imposition of spherical sym
metry on the U(l) gauge field b; = (bp,ba). As U(l) does not 
possess the structure of SU(n), it is clear that, at the fixed 
point, the solution of Eqs. (4.9) applied to b; yields 

bp(x);fO, ba(x) = O. (4.16) 

Thus, with the exception of gpv' all the components of gij 
vanish on the fixed point of S 2. 

Thus, from an initial SU(4) gauge theory we end up with 
a SU(2)XU(1)XU(1) gauge model on E2 with one Higgs 
field, the SU(2) fundamental representation <po Substitution 
into the third Chern class of the first stage reduction together 
with (4.15) yields 

q3
c::::::. - iTJ2 f d 2x d20 Eijkl tr [1 ij[1 kl . (4.17) 

Application of the second stage of the reduction to (4.17) 
leads to the simple surface integral given by (4. lOa). 

V. A CLASS OF SOLUTIONS 

In establishing the existence of the vortex solution in 
two dimensions, the procedure adopted was to establish the 
form of the relevant surface integral in two dimensions, then 
the form of the action and finally to look for finite action field 
configurations, which give rise to nontrivial surface inte
grals. 

In essence, we wish to pursue an analogous procedure 
for the non-self-dual 't Hooft-Polyakov monopole and its 
generalizations. Indeed, having presented surface integrals 
involving all powers of the Higgs field in Sec. III, the natural 
question arises: are there topological solutions with Higgs 
vacua contributing to (1.1'") for k> I? 

The answer is that many classes of such solutions are 
known in three dimensions-for example, the spherically 
symmetric SU(n) (n > 3) YMH monopole of Bais et al., g and 
the axisymmetric SU(3) monopole of Ward, 19 both of which 
are self-dual field configurations. However, there is only one 
non-self-dual (spherically symmetric) SU(3) monopole with 
a Ag-like vacuum, namely that found by Burzlaff.6 

In this section we will establish the existence of finite 
action field configurations, which give rise to nontrivial sur
face integrals of the type discussed in Sec. III, in three di
mensions. In fact we will present a class of solutions for the 
spherically symmetric non-self-dual YMH systems that 
have Higgs vacua that contribute in (1.1 II') for k> 1. The 
YMH systems in question are those obtained from a higher
dimensional YM system by using the ST reduction Ansatz of 
type (I), as outlined in Secs. II and III. In this case, since we 
are dealing solely with the action density in three dimen
sions, the dimension of the manifold from which we are re
ducing is immaterial. The SU(n) YMH system in three di
mensions with action density 

is obtained from the six-dimensional YM system. The YMH 
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action in three dimensions similarly derived from an N-di
mensional YM system woulddift'er from (5.1) only in the 
(unimportant) magnitude of the constant coefficients of the 
te~ in (5.1). What is important is the sign of each term
each term in (5.1) is negative definite, since;, f» ;;, and Y ij 

are anti-Hermitian, for all such reductions. 
We shall seek spherically symmetric field configura

tions for the system (5.1) in three dimensions. Spherical sym
metry in three dimensions has been studied very fully. 8.16 We 
adopt the notation of Ref. 8 to make the spherically symmet
ric Ansatz for the YMH system. This approach also makes 
use ofa fixed point framework-the fixed point is the point 
where the z axis intersects S2 in E3• Then the Ansatz for the 
spherically symmetric configuration of the system (25) is 

~ = (1/r)M;i + (1/r)M~j + (1/r)([MI.M2] - T3)k, 

f»; = (1/r)[M2,;]i - (1/r)[M!O;]j + ;'k, 
(MJlaP = - (i/2)(c5a.p_ 1aa + c5a_ l • pap) (no sum), 

(5.2) 
(M2 )aP = - (i/2)(c5a,p_Iaa - c5a_ l ,pap) (no sum), 

<I> = - (i/2)diag(;Jo;2 - ;1"'" - ;" _ 1 ) , 

E> = - iO, 

. . (n - 1 n - 1 n - 1) 
T3 = -, dlag -2- '-2- - 1, ... , - -2- , 

where the functions 0, ;a, aa' a = 1, ... ,n - 1 and their de
rivatives 0 " ;~, a~ depend on the radial variable only and ; 
and <I> are related as in (2.10). 

To prove the existence of spherically symmetric field 
configurations that have finite energy and give rise to nontri
vial surface integrals such as (3.5) and (3.9), we need the ener
gy integral in terms of the functions 0';1""';" _ I' 
aJo ... ,a" _ I; it is 

f&'= L"" dr{4[(a;)2+(a2)2+ ... +(a~_tl2] 

+ ! r [(;; )2 + (;2 _;;)2 

+ ... + (;~ _ 1 -;~ _ 2)2 + (;~ _ tl2] + 2r(O ')2 

+ ! [ a~ (;2 - 2;1)2 + ai (;3 - 2;2 + ;1)2 

+ ... +a;_I(-2;,,_1 +;,,-2f] 

+ (1/rl[(a~ - n + 1)2 + (ai - ai - n + 3)2 

+ ... + (n - 1 - a; _ 1 )2] 

n = 3 , ~I = ± I, ~2 = =F I , 

+ j r[ ((~I + 0 r -712r + ((;2; ;1 + 0 r -712r 
+ ... + (( - ;,,; 1 + 0 Y -712 y]) . (5.3) 

The method we use to establish the existence of solu
tions is that due to Fate'ev, Tyupkin, and Schwarz20 (FTS). 
To start with, we know that the Euler-Lagrange equations 
of the system (5.1) arising with respect to the variations c5E>, 
c5 <1>, c5d;, are solved8,16 by those w.r.t. c50, c5;a, c5aa 
(a = 1, ... ,n - 1), of the energy integral (5.3). Thus it is suffi
cient to prove existence for the problem determined by the 
functional (5.3). Indeed the FTS method consists of verifying 
that the functional1f(O,aa';a) attains its minimal value for 
some set of functions 0, aa' ; a . 

At this point we must decide whether we will use (5.1) as 
our YMH system, to which correspond surface integrals of 
the type (3.5), (3.9), etc., or if we will specialize the ST Ansatz 
by assuming E> = const (and 0' = 0), to which correspond 
the surface integrals of the type (3.5'), (3.9'), etc., or simply 
( 1.1 "'). As the latter system is the more conventional in that 
the Higgs field <I> resides in su(n), we will first deal with that 
case. From now on, 0 is a constant parameter. 

To begin with let us examine the consequences of the 
finite energy condition, f&'(aa';a) < 00. The convergence of 
the integral as a whole and the positivity of each term in the 
integrand ensures that each term must converge separately. 
In particular the final term, the Higgs potential term, must 
converge. This result allows us to infer the asymptotic limits 
of ;a (r), a = 1, ... ,n - 1, namely ;a (00), a = 1, ... ,n - 1. In
deed, for any given n, there are many di1ferent sets of asymp
totic values. However, to establish our result below it is nec
essary to restrict our attention to those asymptotic values 
that give rise to nonzero values for 

(;2 - 2;1)M3 - 2;2 + ;1), .. ·,( - ~" - 1 +;,. - 2) , (5.4) 

whose squares are the coefficients of af ,aL ... ,a; _ 1 in the 
gauge-field-Higgs-fie1d interaction term. A simple analysis 
shows that for each n, there are just two sets of solutions 
(related by a minus sign). However, these solutions exist only 
if the hitherto arbitrary constant parameter 0 takes on speci
fied values. The solutions fall into two classes according as n 
is odd or even. 

n odd: In this case 0 = ± (1/ n )71. We list below the 
asymptotic values ;a (00) in units of (4/n)71, i.e., 
~a =;a(00)/(4/n)71: 

n = 5 , ~I = ± 2 , ~2 = =F I, ~3 = ± 1, ~4 = =F 2, (5.5) 

n = 7, ~I = ± 3 , ~2 = =F 1, ~3 = ± 2 , ~4 = =F 2 , ~s = ± 1, ~6 = =F 3 ; 
• A { ± (n - ,)/2 , i odd, 

arbltrary odd n, ;; = "12 . 
,', , even. 

n even: in this case 0 = O. We list below the asymptotic values ;a(oo) in units of 271, i.e., ~a = ;a(00)/271: 

n =2, ~I = ± 1, 

n = 4 , ~I = ± I, ~2 = 0 , ~3 = ± 1 , (5.5') 

n = 6 , ~I = ± 1, ~2 = 0 , ~3 = ± I, ~4 = 0 , ~s = ± I ; 
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A { ± 1 , 
arbitrary even n, t/J; = 0, 

; even, 

i odd. 

The asymptotic values of the functions t/Ja(r) lead to the following vacuum orbits for the adjoint Higgs fields: 

n odd , <1>( 00 ) = ± diag 217( 1 - ! ' -( 1 + !), 1 - ! ' - (1 + !) , ... , - (1 + !), 1 - !) 
invariance } n = 3 SU(2)XU(I), 
groupof<l>(oo) . n>3, SU((n+l)/2)XSU((n-l)12); 

(5.6) 

neven, <1>(00)= ±diag217(I,-I,I,-I, ... ,I,-I), 

U(I), 

SU(n/2) X SU(n/2) . 
inVarlanCe} n = 2 , 
group of <I> n > 2 , 

To recast the energy functional (5.3) into a form to which the 
FrS proof is applicable, it is convenient to reparametrize the 
Higgs field in terms of the diagonal matrix l' = diag(1't, ... ,1'n) 
defined by 

l' = <I> - <1>( 00 ), i.e., 1'( 00 ) = 0 . 

The functions 1';(r) are then defined by 

1';(r) = t/J;(r) - t/J;-t (r) + 217E; , 

E. = {( - 1m + ( - 1);/n) , n odd, 
I ( _ 1)' , n even, 

(5.7) 

(5.7') 

where t/Jo(r) = t/Jn (r) = 0 and we have chosen the positive 
asymptotic limits. If we introduce the functions 

Pa = aa(1'a+ t -1'a + (- It417), a = 1, ... ,n - 1 , 

V; = (lIr) [ a; - a; _ t - n + 2; - 1] , 
(5.8) 

; = 1, ... ,n, ao = an = 0 , 

p; = (1I.J6) ";(1'; - ( - 1);417), ; = 1, .. ,n , 

then the energy functional can be written in the form 

~ = f'"' dr{4 nit(a~)2 + ~ r i (1';)2 
Jo a= t 2;= t 

1 n-t n n} 
+"2 a~t (Paf + ;~t (V;)2 + ;~t (p;)2 . (5.9) 

With the energy functional in this form, we can proceed with 
the FrS proof. Given that functions aa and 1'; exist, which 
gives rise to finite energy, we choose from such solutions a 
minimizing set of sequences off unctions {a:;', -r7'} with the 
property that 

(5.10) 

To establish the existence of solutions that minimize ~ it is 
sufficient to show the inf ~(aa'1';) is attained for the set of 
functions {a~, 1'~} -the limit of the above minimizing set of 
sequences. 

The proof of this result is very technical and for this 
reason we leave the details to Appendix B. Most of the work 
goes into establishing convergence properties of the induced 
sequences off unctions { p:;',V;", p;"}, in terms ofthe conver
gence properties of {a:;', -r7'}. Having established the strong 
convergence a:;'--+Q~, -r7'--¥Tf in C(a,b), it follows that the 
sequences {p:;',V;", p;"} converge weakly in L 2(0,00) to 
{p~,v?,p~}. The other induced sequences {a~m,r1';mJ also 
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(5.6') 

converge weakly in L 2(0,00) as a result of the finiteness of 'If. 
Once these convergence properties are established, we 

make use of a property of the scalar product in L 2(0,00), 
namely that 

(weak limit, weak limit)";;:lim{O,O) 

to give us 

m~,", 

(5.11) 

Together with (5.10) above we see that the infinium is at
tained for the functions (a~, 1'~). 

This establishes the result that the YMH system in three 
dimensions, with a fixed value for the coupling constant of 
the Higgs potential, obtained from the ST dimensional re
duction of the YM system in some higher even-dimensional 
manifold, possesses finite energy monopole solutions. These 
solutions have asymptotic Higgs fields (on the z axis) given 
by (5.6) and (5.6') for the gauge group SU(n), n odd and n 
even, respectively. Of these, (5.6') for n = 2 is the Higgs vacu
um for the 't Hooft-Polyakov monopole, t with a fixed value 
for the coupling constant, while (5.6) for n = 3 is the non
self-dual monopole orbit found by Burzlaff.6 Of course, the 
whole family of solutions presented here are non-self-dual. 

In the spherical symmetry Ansatz (5.2), the SU(n) system 
is characterized by (2n - 1) radial functions, namely 
O,t/JI> ... ,t/Jn _ t,a t,. .. ,an _ t· However, for the moment we are 
dealing with the case 0 = const. On the surface this reduces 
the number of radial functions to 2(n - 1). However, impos
ing this constraint on the Euler-Lagrange equations of the 
system gives rise to a constraint on the t/Ja,aa functions, 
further reducing their number. 

Consider the Euler-Lagrange equation of the field mul
tiplet t/J of (5.1), 

!P;!P;t/J + 2(172 + t/J2)t/J = O. (5.12) 

If we take the trace of this equation we find the equation of 
motion for 0, namely, 

m~0 = - 2 tr[<I>3 + 30<1>2] - 2n0(172 + 0 2). (5.13) 

Clearly 0 = const is a consistent solution of this equation 
only if the right-hand side vanishes, i.e., 

(5.14) 

This one scalar condition reduces the number of indepen
dent radial t/Ja (r) functions by at least 1. We will return to this 
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point in the next section where we discuss the solutions ob
tained above. 

From the viewpoint of Sec. III these solutions are very 
interesting because they provide field configurations for 
which each term in the surface integrals (3.5') and (3.9') con
tributes distinctly, provided that we take the gauge group 
G = SU(n) to be sufficiently large. For example, in the case of 
(3.5') each term will contribute distinctly if G = SU(5). 

To evaluate these surface integrals it is sufficient to spe
cify the Higgs orbit (5.6) or (5.6') and the corresponding val
ues of the constant parameter ® = - i1]/n for odd n, and 
® = 0 for even n. The asymptotic properties of 9IJ i and 9 i ¢ 
can be deduced simply from the Euler-Lagrange equations 
of the action (5.3), namely that both 9IJ i and 9 i¢ asymptoti
cally behave as 0 (1/r). This result ensures that the terms 
involving 9 i¢ in the surface integrals (3.5), (3.9), (3.5'), and 
(3.9') do not contribute. 

The existence proof outlined above, and given in Appen
dix B, does not depend critically on the assumption of con
stant e. Indeed, with minor modifications, the proof can be 
extended to cover this case. For instance, the asymptotic 
limits on the singlet function e (r) tum out to be 

e(oo)= ±(lIn)1], for n odd, 

= 0 , for n even. 

The other modification is to the spin-O field parametrization, 
where it is more convenient, for the purposes of the proof, to 
parametrize the Higgs field by 

¢ = (i/2)diag(x'I'X2,.··,Xn)' 

rather than in terms of <I> and ® separately. These, however, 
are very minor modifications that in no way affect the details 
of the proof. The solutions obtained will of course be a dis
tinct family of monopole solutions with reducible Higgs 
fields in the adjoint E9 scalar representations. It is clear that 
the constraint (5.14), which reduced the number of radial 
functions in the ® = const case, does not now arise. 

VI. DISCUSSION 

A. Surface Integrals 

The main results of this paper are those obtained in Sees. 
III and IV. Our task in those sections was to derive surface 
integrals in odd- and even-dimensional spaces from Chern 
classes defined on manifolds of arbitrary (even) dimension. 
This was achieved by imposing symmetries on the original 
manifold using the ST calculus for dimensional reduction. It 
is very important to stress that the surface integrals in the 
lower-dimensional manifolds converge for certain field con
figurations, in the sense that the corresponding Lagrangian 
systems (in the lower dimensions) have finite energy (action) 
solutions. The existence of such solutions is guaranteed by 
the fact that the particular dimensional reduction schemes 
employed give rise to the symmetry breaking type of Higgs 
potential. In fact, it is this qualitative requirement that 
makes our prescription nontrivial. 

In Sec. III we treated the case where the reduced space is 
of odd dimensions, with particular emphasis on the physical
ly relevant three-dimensional case. Our objective in this sec
tion was twofold. We wished to demonstrate that Taubes' 
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topologically invariant surface integrals9 occur in some par
ticular reduction of Chern classes of arbitrarily high order. 
The reduction in question is one where, in three dimensions, 
the gauge convariant scalar (Higgs) field belongs to the ad
joint representation of the residual gauge group. The second 
objective was to generate (via dimensional reduction) gauge
field-Higgs systems endowed with topological integrals 
where the Higgs field belongs to either some other irreduci
ble representation or to some reducible representation of the 
residual gauge group. For simplicity we only performed the 
reductions leading to the adjoint E9 scalar Higgs representa
tion, 10 and to a fundamental Higgs representation,17 as illus
trative examples. Although the latter systems 17 are in princi
ple equally as interesting as the conventional one with just 
the adjoint representation Higgs field. no minimum energy 
(action) solutions with finite topological integral are known 
for them. One reason for the absence of such solutions may 
be the fact that for the YMH systems in question there are no 
self-duality equations, whereas all known exact solutions are 
self-dual. However, unstable solutions (which maximize the 
energy) for a fundamental SU(2) Higgs field have recently 
been found. 17 

Our objective in Sec. IV -obtaining surface integrals in 
even-dimensional submanifolds-was not so easily attained. 
First, we found that the reduction by an even number of 
dimensions, induced by vK N = EN _ p xS P, peven, resulted 
in the vanishing of all Chern integrals except in the case of 
reduction by two dimensions. That the p = 2 case is not 
trivial was known to us from previous work, 12,18 but the tri
vial nature ofthe even p> 2 cases meant that to obtain non
zero surface integrals we would have to use more complicat
ed reduction schemes. As a first attempt we found that 
generating such a reduction by means of two separate reduc
tions by odd numbers of dimensions led to a gauge-field
Higgs system with two Higgs fields where, however, the sur
face integral vanished identically due to the finite energy 
condition and the special dependence of the integral on the 
two Higgs fields. Fortunately we could find a prescription 
yielding a nonvanishing surface integral in the (even) lower 
dimensions-namely a succession of ST reductions by two 
dimensions. This was achieved by arranging for the Higgs 
field arising from each stage of the reduction to vanish ex
cept for the Higgs field arising from the last stage of the 
reduction. The vanishing of these Higgs fields was not ar
ranged arbitrarily but by the imposition of symmetries. 

B. Solutions and constraints 

A subsidiary result of this paper is the proof of existence 
of the two families of solutions for both the YMH system 
with an adjoint representation Higgs field and the YMH 
system with adjoint E9 scalar representation Higgs field, 
which we presented in Sec. V. The relevance of these solu
tions to the above is that, using the YMH system as a vehicle, 
we have presented field configurations that lead to finite val
ues for the topological integrals of type I derived in Sec. III. 
Unfortunately we are not in a position to present a proof of 
the existence of field configurations that lead to nonvanish
ing values for the surface integrals of type (II) of Sec. III. 
Indeed the only known finite energy solutions of such mod-
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els 17 give rise to vanishing surface integrals. Thus we com
plete the analogy with the reduction from four dimensions to 
two dimensions. considered in Sec. IV. where the vortex sur
face integral given by (4.lOa) has finite value for the field 
configurations of Ginzburg and Landau. II 

In particular. the solutions of the YMH system with 
adjoint representation SU(n) Higgs field separate naturally 
into two families. one for even n and the other for odd n. The 
first member of the even n family is the archetypal SU(2) 
't Hooft-Polyakov' solution. while the first member of the 
odd n family is equivalent to the SU(3) solution found by 
Burzlaff.6 

As mentioned in Sec. V. these families of solutions to the 
adjoint representation model are subject to certain con
straints. Indeed. this constraint reduces our SU(3) solution lO 

to a two function field configuration. This result can be seen 
to follow directly from the constraint (5.14). Let us consider 
first the odd n cases. The constraint in this case reads 

(6.1) 

The n = 3. i.e .• SU(3). constraint is particulary simple. name
ly 

(¢I - 417/3)(¢2 + 417/3)(¢2 - ¢I - 417/3) = 0 . (6.2) 

Of the three solutions of this constraint equation. 
¢2 - ¢I = 417/3 is not consistent with the asymptotic condi
tions (5.5). but the remaining two solutions 

¢I = 417/3 • ¢2 = - 417/3 (6.3) 

are both acceptable. When these constraints are substituted 
into the equations of motion for the functions ¢I(r) and ¢2(r). 
they lead. respectively. to further constraints 

(6.4) 

Thus. for SU(3) our field configuration is parametrized in 
terms of only two radial functions. either (¢,.ad or (¢2.a2). 
and not four. 

Now let us consider the even n case. The constraint then 
reads 

tr ct>3 = O. (6.5) 

as for even n. ® = O. The n = 4. i.e .• SU(4). constraint is 
again particularly simple. namely 

(6.6) 

The solution ¢I + ¢3 = ¢2 is not consistent with the asymp
totic conditions (5.5'). but the remaining two solutions 

¢2=0. ¢1=¢3 (6.7) 

are both acceptable. These solutions lead in tum to the 
further constraints 

(6.8) 

respectively. Consequently we see that there are two classes 
of solutions. Class (I) is characterized by ¢2 = a2 = O. so that 
there are four radial functions (¢I.¢3.al.a3)' However. in this 
case the equations decouple into two identical sets of SU(2) 
equations for (¢I.al ) and (¢3.a3)' Class (II). on the other hand. 
is characterized by the four functions (¢I'¢2.al.a2) and in this 
case the equations of motion do not decouple. The class (II) 
solutions then are true four function solutions. 

For n > 4 the constraint equations can be solved by in-
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spection in the manner we now outline. Again the cases n 
odd and n even are treated separately. Let us first consider 
the case of n odd. It is straightforward to see that the con
straint (6.1) is solved by each of the following sets of con
straints: 

¢3 = (n - 3) 417 ..... ¢n-2 = 417 • 
2 n n 

(6.9a) 

n 
(6.9b) 

Substitution of (6.9a) and (6.9b) in tum into the Euler-La
grange equations leads to the further constraints 

al =a3= .. ·=an_ 2 =0. 

a2 = a4 = ... = an _ 1 = 0 . 

(6. lOa) 

(6. lOb) 

The resulting equations of motion for the remaining (n - 1) 
functions (¢a.aa)' a = 2.4 ..... n - 1. or a = 1.3 ..... n - 2 de
couple for each a separately. The pairs of uncoupled differ
ential equations are all different. however. so that the corre
sponding field configuration is parametrized by (n - 1) 
different radial functions. 

On the other hand. for even n. it can easily be shown that 
the constraint (6.5) can be solved by each ofthe following sets 
of constraints: 

¢2=¢4="'=¢n-2 =0. 

¢I = ¢3 = ... = ¢n - 3. ¢n _ 2 = 0 . 

(6. 11 a) 

(6.11b) 

When substituted into the equations of motion these con
straints lead. respectively to 

a2 = a4 = ... = an _ 2 = 0 • 

ai = a~ = ... = a! _ I . 

(6. 12a) 

(6. 12b) 

When the constraints (6. 11 a) and (6. 12a) are used the equa
tions of motion decouple; the remaining n functions (¢ a .aa)' 
a = 1.3 ..... n - 1, satisfy identical differential equations for 
each value of a. Thus the solutions of the differential equa
tions are identical, and we have a two function field configu
ration, as seen above for n = 4. However, the constraints 
(6.11b) and (6. 12b) lead to n differential equations for the n 
radial functions (¢a,aa)' a = 1,2,4,6 = n - 4, and 
(an _ 2 ,¢n _ 1 ), which do not decouple. The resulting field con
figuration is parameterized by n different radial functions. 

We have not found any field configurations parame
trized by more than n - 1 (n) different radial functions for n 
odd (n even). Field configurations do exist, however with 
fewer than n - 1 (n) different radial functions. An exhaus
tive survey of all the solutions was not our aim in this analy
sis-such a survey wil be reported upon elsewhere. Rather, 
our aim was to establish the existence of nontrivial multi
function finite energy (action) field configurations. 

Of course, in the adjoint e scalar representation model 
there are also two families of solutions, again separating into 
the even n and odd n cases. The constraints, discussed above, 
which reduce the number of radial functions in the adjoint 
representation model, simply do not occur in this model. 
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Thus for SU(n) there are 2n - I different radial functions in 
the spherically symmetric Ansatz, namely 
() (r),,,61(r), ... ,,,6n _ 1 (r),a l(r), ... ,an _ I (r). Solutions of this type 
have not been presented before. 
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APPENDIX A: r-MATRIX TRACES 

In our adaptation of the ST scheme to the rx<luction of p 
dimensions (p >,...2), we have used the matrices r a = iLa,p + I 
for odd p, and r a = iLa,p + I and iLa,p + 2 for even p, where 
Lab are the mXm (spinor) representations ofso(p) (the sta
bility subalgebra), with m given by (2.9), namely 

m = 2( p - 1)12, P odd, 

= 2 pl2 , P even. 

the so(p + 2) algebra, which these f\ belong to, can be de
fined in terms of the m X m r matrices (of p dimensions): 

Lab = - Hra,rb ], La,p+ I = ± (i/2)ra , 
(AI) 

La,p+1 =!rp+lra , Lp+ I ,p+2 = =F(i/2)rp+l, 

where P + 1 = ,1112)( p - 2)r 1'" r p is the chirality operator, and 
it plays a role in our considerations only for even p. 

The traces involved in our computation in Secs. III and 
IV are of the following forms for p odd/even: 

T(odd) = E tr r p + IL ... L 
QI .. ·ap 0la2 Q p _ 1- P , 

T(even) = E tr L ... L r 
Q •••• op 0,a2 Qp_2.ap_1 Q p ' 

(A2) 

(A3) 

To evaluate (A2) and (A3) we make use of the following 
r -matrix identity, for r I' matrices in p dimensions: 

[rl'l,rl',] = [2/(p - 2)!]EI'I"'l'
p
rp+ Irl'3 ... rl'p . (A4) 

This follows directly from the definition of the r in p dimen
sions and the spinor identity 

[rl',rv] = -El'vpursrpru, 

for the 4 X 4 r matrices. 

APPENDIX B: THE EXISTENCE PROOF 

(A4') 

In this Appendix we are concerned with the existence 
proof of Sec. V, and in particular with the technical details 
omitted there. 

The energy functional is given by 

1f = (00 dr [4 ":f (a~)2 + ~ r ± (1';)2 + ~ "i l 

It! Jo a=1 2 i=1 2 a=1 

+ itl V; + itIP;]' (BI) 

where 
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Ita =aa(ra+ 1 -ra +(-I)a41]), 

Vi = (1/r)(a; - a;_1 - n + 2i - I), 

i= I, ... ,n, aO=On =0, 

a = I, ... ,n - I, 

(B2) 
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We denote the minimizing set of sequences of functions by 
{a;:',T;"J. 

The first technical step is to establish that the sequences 
{ T;" J are bounded in the Sobelev space 71"1 with norm 

Ilrlb = (loo rlr'12dr+ 1-r(IW)1I2. (B3) 

Using the Cauchy-Schwarz inequality we see that 

1

00 
( (00 d )1/2(1

00 
)112 

B 1T;"'ldr<UB; B r(T;",)2 dr < ;. (B4) 

as the convergence of 1f implies the convergence of 
fB'r(r7,,)2 dr. However, 

LOO 1T;"'ldr;;;. I 1T;"(ooll-IT;"(Bli I 

and we know that T;"( 00 ) = 0, so that 

Loo 1T;"'ldr;;;.IT;"(B)1 , 

which gives us the result 

IT;"(B)I <c;I$ , 
i.e., the sequences {T;"(B) J are bounded. 

(B5) 

(B6) 

(B7) 

In particular we choose B = I, and use (B7) to see that 

(i OO 

r (T;",)2 dr + 1T;"(IWYI2 

is bounded for all m, and for all i. Thus the sequences of 
functions {T;":i = I, ... ,n J are indeed bounded in 71"1' 

The second technical step is to show that the sequences 
off unctions {();:': a = I, ... ,n = 1 J are bounded in the Sobe
lev space 71"2 with norm 

(
(00 )1/2 

IIa2 11 = Jo (a')2 dr + la(IW . (BS) 

The convergence of 1f(a;:',,,6;:') for each m ensures that 
fo(a;:,')2 dr and fo( 1t;:')2 dr are bounded sequences. The lat
ter can be rewritten as 

i OO 

(0;:,)2(1';:' 'f I - 1';:' + ( - W41])2 dr<const . (B9) 

It is at this stage that the assertion made in (5.4) is relevant. 
The asymptotic limits have been chosen to ensure that the 
next argument holds: 

11';:' + I (r) - 1';:'(r) + ( - W41]1 

;;;'41] - 11';:'+ I (r) - 1';:'(r) I 
;;;'41] - (11';:'+ dr)1 + 11';:'(r)l) 

;;;.41] - (ca + 1 + ca )/..[r 

;;;.41] - (ca + 1 + ca )/$, if r>B . (BIO) 

In the second last step we have used (B6) above. Using (B9) 
we see that 

const;;;. LOO (0;:')2(1';:' + I - 1';:' + ( - W41])2 dr 

;;;. Loo (a;:')2(41] - (Ca + I + Ca )1$) dr, 
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whence we see that 

i"'( m)2 d const aa r< . 
B (47] - (ca + I + Ca )lJJj)2 

It now follows that 

(a:'(B»)2<2 1"" la:'(r) Ila:'(r)'ldr by (B6) 

<2 (l'" (a:,(r))2 dr) 112 (l'" (a:"(r))2 dr) 112 

by Cauchy-Schwarz inequality 

<const/ [ 47] - (ca + I + Ca )/$] , 

(BIl) 

(BI2) 

i.e., {a:'(B): a = 1, ... ,n - 1} is a set of bounded sequences. 
In particular we choose B = 1, and see that 

II a:' II 2 = ([00 (a:,(r)')2 dr + la:'( 1 W y12 
is bounded for all m, and for all a. Hence the sequences of 
functions {a:': a = 1, ... ,n - I} are bounded in JY2• 

With the above two results established, the remaining 
steps in the proof follow systematically. 

(i) The bounded sequences {r(': i = 1, ... ,n} and 
{a:': a = 1, ... ,n - I} contain weakly convergent subse
quences; without loss of generality, 

r('-YT? weakly in Jf"'1 , 
(BI3) 

a:,-a~ weakly in Jf"'2' 

(ii) It follows that r('~, a:,-a~ weakly in Wi (a,b), 
the space of functions with norm [S: 1<1' '1 2dr + 1<1' (aW] 1/2. 

(iii) It now follows that r('~, a:,-a~ strongly in 
C (a,b ) the space of continuous functions defined on the inter
val [a,b ], as Wi (a,b ) is densely embedded in C (a,b ). 

(iv) This result implies, for the induced sequences, the 
strong convergence in C (a,b ), J-l:' ~ J-l~, V('~vt, P7'----.p?, 
where 

J-l~ = a~(1'~+ I - ~ + ( - tt47]), 

v? = (l/r)[(a?)2 - (a?_1)2 - n + 2i - 1] , (BI4) 

p? = (l/~) nf(-I/ - ( - 1);47]) . 

(v) The convergence of IF (a:"r(') for each m ensures that 
{ J-l:', V(', P7'} are bounded sequences off unctions inL 2(0, 00 ). 
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Without loss of generality, we deduce that J-l:'-J-t~, V('~, 
p7'--+P? weakly inL 2(0,00 ). Up to step (iv) above we are estab
lishing the limits of the induced sequences. Step (v) estab
lishes the weak convergence result quoted in the text. 

(vi) The convergence of IF (a:', r(') for each m ensures that 
{ a:",r r("} are bounded sequences of functions in L 2(0,00 ), 
and without loss of generality we can deduce that a:" -a~', 
r r(" -+r -1/' weakly in L 2(0,00 ). 

We have now established all the convergence properties 
needed. The proof is completed by using the property of the 
scalar product in L 2(0,00 ), namely that the scalar product of 
weak limits is less than or equal to the limit of the scalar 
product, as shown in Sec. V. 
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Construction of hyperbolic monopoles 
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Methods are presented for explicit construction of hyperbolic monopoles as defined by Atiyah 
[M. F. Atiyah, Commun. Math. Phys. 93, 437 (1984); and "Magnetic monopoles in hyperbolic 
space, "unpublished lecture notes, 1984]. The techniques permit the extraction of fiat-space self
dual monopoles trivially through a simple rescaling. Relationships to previous works of the 
present author are indicated. 

I. INTRODUCTION 

Atiyah has proposed the following definition of hyper
bolic monopoles. I 

Let 

ds'l = dx~ + dxi + dx~ + dx~ (1.1) 

= u2[dcr + u-2(du2 + dxi + dx~)] (1.2) 

= u2[dcr + u-2(du2 + dv2 + v2dq; 2)], (1.3) 

where 

Xo ± iX3 = ue± iq, 

XI ± iX2 = ve±i'P. 
The conformal equivalence 

R4_R2_SIXH3 

(1.4) 

(1.5) 

(1.6) 

permits one to interpret the S I-invariant (S I: oe[0,21T]) in
stantons on R 4 (or S 4) as static monopoles onH 3. Atiyah has 
analyzed the notion of S I invariance that leads to suitable 
classes of solutions and has studied the parameter space of 
such solutions. I The explicit construction of the solutions 
and the explicit extraction of fiat-space finite-energy BPS 
monopoles as limits remain difficult through his approach. 
Exactly these two problems are tackled here using methods 
showing complementary virtues. 

I have studied in a series of papers2 explicit construction 
of S I-invariant instantons. The S I in question was selected in 
the following way. 

Let 

ds'l = dx~ + dxi + dx~ + dx~ 
= dt 2 + dr + r d() 2 + r sin2 

() dq; 2 (1.7) 

= (coshp + cos r)-2[dr + dp2 

+ sinh2 p(d() 2 + sin2 ()dq; 2)]. (1.8) 

Here t, r, (), and q; are spherical coordinates and 

(t + ir) = tan !(r + ip) 

maps 

tE [ - 00, 00 ], rE [ 0, 00 ] 

on 

TEe -17',17'], pE[O, 00 J. 

(1.9) 

(1.10) 

In this context, SI-invariance refers to r. Again, setting 

r = t'la, p = r'la, a ---+ 00, (1.11) 

(4a2)ds2==ds'2 = dt,2 + dr,2 + r,2(d() 2 + sin2 () dq; 2). 
(1.12) 

This leads very simply, in the limit, to fiat-space BPS mono
poles of arbitrary charge from r-independent instantons.2 I 
have described repeatedly and in detail my motivations for 
constructing such "r-static chains" of instantons with their 
remarkable properties.2 Here I will adapt my techniques 
(Backlund-type transformations and Lax-type pairs) to (1.3). 
This will permit (i) explicit construction of u-static instan
tons, and (ii) trivial extraction of fiat-space BPS monopoles 
through a rescaling like (1.11). 

By u-static I mean that in some suitable gauge the com
ponentsA q , Au, Av, A'P' or Aq,Au,Axl ,AX2 must be inde
pendent of u explicitly. I will often use the following coordi
nates. 

Let 

u = e-', UE[O,oo], ~E[ - 00,00], (1.13) 
when 

ds2 = e- 2, [dcr + d~2 + ~'(dV2 + v2 dq;2)). (1.14) 

(The change u ---+ ~ is evidently slight but helpful in certain 
respects.) Setting 

u=t'la, ~=z'la, v=v'la, a---+oo, (1.15) 

a2 ds'l=ds'2 = dt ,2 + dz'2 + dV'2 + V'2 dq; 2 (1.16) 

is the line element in cylindrical coordinates. 
Correspondingly rescaled solutions will turn out to the 

fiat-space BPS monopoles in the formalism ofForgacs, Hor
vath, and Palla. 3 

Setting 

u = (cosh X + sinh X cos tP)-I, (1.17) 

v = sinh X sin tP(cosh X + sinh X cos tP)-I, (1.18) 

XE[O,oo], t/'E[O,1T] , 

ds'l = (cosh X + sinh X cos tP)-2[dcr 

+ dX2 + sinh2 X dO] 
(1.19) 

since 

u-2(du 2 + dv2
) = dX2 + sinh2 X d.p2. 

(The symbols X and tP are used in Ref. 2 with different mean
ings.) 

Comparing (1.8) with (1.19), it is evident (remembering 
conformal properties of gauge fields) that I could have taken 
over previous solutions2 through the substitution 
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(r,p,e ) ~ (u,x,¢'), (1.20) 

respectively. 
The relations of the two sets to the original xI' 's are quite 

different. Thus 

tanhp = 21'(1 + r + t 2)-1, 

t=xo, r=(xi+x~+x;)I/2, 

tanh X = [{(u + If + v2 1{(u - W 
+ v2 J] 1/2(1 + u2 + V2)-I, 

(1.21) 

u=(X~+X;)1/2, v=(Xi+X~)1/2. (1.22) 

It is, however, interesting to develop an equivalent formal
ism from the beginning in terms of (1.14). This will maintain 
throughout, step by step, a closer contact with other ap
proaches based on the standard quaternionic combinations 
{ (xo ± ix3), (x I ± iX2) J. This can be, for example, helpful in 
trying to understand the relation to the Atiyah-Drinfeld
Hitchin-Manin (ADHM) formalism.4 Anyhow, though the 
equations in the following sections will be in terms of ("v) or 
(u,v), the combinations of (u,v) corresponding to (1.22) (and 
its generalizations to be discussed) will enter into the solu
tions in crucial fashion. 

In Sees. II and III, I will present the essential steps of the 
formalism. The structure of the equations will be almost 
identical to those of Ref. 2. The meaning or content of the 
symbols will change. This will permit a concise presentation, 
to be compared throughout with Ref. 2. As sets of prescrip
tions, however, the presentation will be self-contained. 

II. SU(2): AXIAL SYMMETRY 

For 

dr -::::;dul + d,2 + e2' (dv2 + v2 df/J 2), (2.1) 

F/J" +a/JA" -a"A/J +i[A/J,A,,], E",vtp = 1, (2.2) 

the self-duality equations are 

Fu", = vF,u' F"" = vFuv ' FIXp = e2
'vFu,' (2.3) 

To solve them, I construct Harrison-Neugebauer-type 
transformations. [Compare with Refs. 2(a) and 2(d) and the 
sources quoted there.] 

Let 

Mj("v), Nj("v), j = 1,2 

be functions independent of u and f/J. The ansatz is 

Au = (MI + M2 + NI + N2)(r3/2) 

- i(MI - M2 - NI + N2)(rl/2), 

(2.4) 

and 

X ± = ~a ± In(e - 'v) = i( - 1 ± i/e'v). (2.8) 

The self-duality equations reduce to 

a_M; = -M;(N; -Nj)+(M; -Nj)X+, 

a+N; = -N;(M; -Mj)+(N; -Mj)X_, (2.9) 

(i,j) = (1,2), (2,1). 

The relations (upper or lower signs) 

a=t=x ± = (X ± - X=t= )X± (2.10) 

ensure the validity of the Neugebauer-Kramer, I transfor
mations 

IMI = -M2 +X+, 1M2 = -MI +X+, 
(2.11) 

IN) = -NI +X_, IN2 = -N2 +X_. 

Thus (1M;, IN;), i = 1,2, satisfy (2.9) if (M;.N;) do so. 
One now has to find ap such that (upper or lower signs) 

(P2-1)-la±P=p±IX±. (2.12) 

Let 

p = e;8, Y = cot 8. (2.13) 

Then 

a,Y= Y+(e'v)-I, e-'auY= 1-(e'v)-ly. (2.14) 

The solution is, A. being a constant, 

cot 8(A.) = Y(A.) = (2Uv)-I(A. 2 + v2 - u2), (2.1S) 

or 

1 __ (Y + i)1I2 __ [A. 2 + (v + iu)2] 112 
p(J'\,) Y' A. 2 + ( . f (u = e-'). 

-I v -IU 

(2.16) 
For real A., 8 is real, but complex A. will be needed. The fol
lowing relation will turn out to be important. 

Let 

a±x(A.) = ~e±ic5(A) 

giving 

cosh X(A.) = (Uu)-I(A. 2 + u2 + v2), 

(2.17) 

(2.18) 
sinh X(A. ) = (UU)-I [{ (u + A. )2 + v2 J {(u - A. )2 + v2 J ] 1/2. 

For A. = 1, one has from (1.17), (1.18), and (1.22) 

x(1) =X· 

Define q through the relations 

a +q = (M2 - Mtlq + P(M2 - Mlq2), 
(2.19) 

A, = - i(M} - M2 - NI + N2)(r2/2), (2.5) a _q = (NI - N2)q + p-I(NI - N2q2), 

e-'Au = - (MI -M2 +NI -N2)(r2/2), 

e-'v-IA", = - i(MI + M2 - NI - N2)h/2) 

- (MI - M2 + NI - N2)(rl/2). 

For Hermiticity 

MI = N}, M2 = N2, 

where" -" denotes complex conjugation. 
Define 

a± = ~(a, ± ie-' au)' 
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(2.6) 

(2.7) 

and set 

ij = - (P + q)/(1 + pq). 

The Harrison transformations are defined as 

HMI =qij-IMI +(1 +pij-I)X+, 

HM2 = ijq- IM 2 + (1 + pq)X+, 

HNI = q-Iq-INI + (1 + p-Iq-I)X_, 

HN2 = qqN2 + (1 + p-Iq)X_. 

(2.20) 

(2.21) 

Using (2.10), (2,12), and (2.19) one can show that the set 
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so. 
A useful combination is 

B=IH. 

Since evidently 12 = 1, 

H=IB. 

Start with the "seed solution" 

(2.22) 

(2.23) 

M\O) = M~) = N\O) = N~) = a/4, (2.24) 

a being, to start with, an arbitrary real parameter. Injecting 
(2.24) in (2.19), and using (2.17) 

(2.25) 

or 

q = tanh !(aX(A ) - /3 ), (2.26) 

where /3 is an integration constant. 
Using (2.12) it can be shown2

•
3 that in the composition 

H (q', P2)H (ql' pd, 

q' = qlPz - q7Pl 
ql(qlPl - Q7P2) 

(2.27) 

Here Pi = p(Ai) and qi is the corresponding solution (2.26). 
In this way one can iterate any number of H transformations 
using the q's of (2.26) with suitable (Ai' /3i)' i = 1,2, .... 

For the general n-step solution a remarkable structure 
thus emerges, which will be indicated later. 

The first step is as follows. Let 

(M1,Mz,NI,N2) =IH(M\O),M~),N\O),N~)) 

= IH(a/4,aI4,a/4,aI4). (2.28) 

In (2.26), setA = 1,/3= O. From (2.18),X(1) = x.Hencenow 

and 

q = tanh!ax, 

Q= _(p+q)(l+pq)-l 

= _ (e ic5 + q)(l + eic5q)-1 

(2.29) 

(2.30) 

say. From (1.17), (1.18), and (2.15) [see also (A29) and (A30)], 

s: sinh X + cosh X cos r/J coSu = , 
cosh X + sinh xcos r/J 

sin c5 = ____ sin--"-r/J __ _ 
cosh X + sinh X cos r/J 

(A = 1). 

One substitutes 

cos/3 = _ sinh (a + l)X + cosh(a + l)X cos r/J , 
cosh(a + l)X + sinh(a + l)X cos r/J 

. /3 sinr/J Sin = - . 
cosh(a + l)X + sinh(a + l)X cos r/J 

From (2.5), (2.11), (2.21), and (2.29) one obtains 

(2.31) 

(2.32) 

Au = (cothX - a coth axHcos/3(1"3/2) + sin/3(1'1/2)], 
A~ = sin/3(cothX - a cothaX)(1'2/21, 
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e-'A = (acos/3 _ Sin/3cotr/J)1"Z (2.33) 
v sinh ax sin X 2 ' 

e-~v-IA = a (cOS/3 1'1 _ sin/3 1'3) 
f' sinhax 2 2 

cot r/J ( /3 1'3 . /3 1'1) --.-- cos -+SIn -. 
sinh X 2 2 

One sees immediately that a gauge transformation 

A 1 = UA U- 1 + (ia U)U- 1 
JI. JI. JI. ' 

with 

U = ei (J(T,!2) (2.34) 

simplifies (2.33). But one can go further. Note that 

a~ = cos c5 ax - sin ~(_._1_ a",), 
sinh X 

Correspondingly 

A, =cos~Ax -sin~(sinhx)-lA"" 

e-'A v =sin~Ax +cos~(sinhx)-lA",. 

Also 

ax /3 = (a + l)sin/3, 

a", /3 = - (sin r/J)-l sin/3. 

Using all these results, after (2.34) 

A ~ = (coth X - a coth aX)(1"3/2), 

A; = a sin ~(sinh ax)-l(1"2/2), 

e-'A ~ = - a cos c5(sinh ax)-I(1'z/2), 

e-'v-1A ~ = a(sinh ax)-I(1"l/2) 

- cot r/J(sinhx)-1(1'312). 

Alternatively, 

A ~ = (coth X - a coth aX)(1'3/2), 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

A ~ = 0, (2.39) 

A ~ = - a sinhx(sinh ax)-1(1'2/2), 

(sin r/J)-lAq> = a sinhx(sinh ax)-1(1'l/2) 

- cot r/JT 312. 

Apart from a global gauge transformation by e - hTT,12, this is 
formally identical with the one-chain of Ref. 2. But the (x,r/J) 
here are functions of (u ,v), and the (1' ,p) in Ref. 2 are functions 
of(t,r). 

The structure of the n-step solution 2(d), 3(a), 3(b) is as 
follows. Let Dt;l, a = 1,2,3,4 be nXn determinants whose 
ith rows [==(D t;))j ] are, with 

Pi = p(Ai)' qi = q(A;. /3i)' 

(D\n))i = (Qi,P;.P;qi,P:,p1qi, ... ,p7 -lq7), 

i = 1,2, ... ,n; E = ~(1 - (- In 

(D!{'))i = (1,piq;.p;,p1qi'p1, ... , ... ,p7- lqf -"), (2.40) 
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(D~n))i = (I,Piqi>p;,p~qi>p1, ... ,p7-2q~,p7q~), 
(D~))i = (Pi- I ,P;,P;qi,P;,p1,qiO"··,p7 -Iq~). 

The determinants jj ~) are defined through the substitutions 

qi-qi' 
For n = 2K, as many successive H transformations are 

composed, and for n = 2K + 1 an additional I transforma
tion is added. One thus obtains for Hermitian solutions 

Min) Nln) _ ( l)n I 2 MIO) + 3 X jjln) [Din) Din)] 
I = I - - jj ~) D \n) (1 + E) D \n) + , 

(2.41) 

Nln)=Mln)=(-lt~ _1_N IO)+_4_X_ . 
jjln) [Din) Din)] 

2 2 Din) Din) 2 Din) 
2 2 2 

These results are valid for arbitrary seed solutions. Here only 
(2.24) will be used. 

More general seed solutions have been used in Ref. 5. 
Similar generalizations can be introduced here also. 

The total action 

S = Jl7 da Joo d; (00 dv (217 dqJ (J... ..JiTrFpvP "") 
-17 -00 Jo Jo 2 

Ip,v = a,;,v,qJ) 
(2.42) 

(2.43) 

where 

and 

a = a~ + la; + e-2'(a~ + +av ) + e- 2'v- Ia; 

(a'l':::::O) 

h 2 = 2 Tr A ~ = 4(MI + N 2)(M2 + N I) 

= {2IMI +N2W, (2.44) 

For regular solutions (2.43) can be converted to a more con
venient surface integral. 

One can also go over to the variables (r,t,b) when 

S = 2"r [ sin t,b dt,b[ sinh2 X axh 2]X_ 00 . (2.45) 

For (2.39) one gets immediately 

h 2 = (a cothax - cothxf (2.46) 

and 

S = 8"r(a - 1), for a > 1. (2.47) 

For lal < I,S diverges, fora = 1, one has a pure gauge solu
tion, and for lal > 1, S( - a) = SIal. 

For multistep solutions, comparison with previously 
known results2

•
3 indicates the following choice of param

eters. 

and 
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For n = 2k, 
1 _ 1" _ e-iI2j-I)17/a 

1'\,2j_1 -1'\,2j - , 

j = 1, ... ,k, (2.48) 

f32j _ I = i(j - 1 )1T, f32j = f32j _ I + i1T. (2.49) 
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Forn = 2k+ 1, 

Al = 1, f31 =0, 
1" 1 - ;jl7/a 1'\,2j = 1'\,2,;+ I = e , 

j= 1, ... ,k, 

(2.50) 

f3 2j = i(j1T) = f32j+ I • (2.51) 

The total action after n steps turns out to be2 

S = 8"rn(a - n), for a > n. (2.52) 

I will not enter into a detailed study of this hierarchy in this 
paper. One final point is the following. The parameter a can 
be continuous for finite S. But for noninteger a, the Ap's 
cannot be both finite and single valued everywhere. When 
they are finite there are branch points. This aspect has been 
repeatedly discussed.2 Hence for finite action solutions with 
Ap's everywhere finite and single valued, 

a = n + l,n + 2, ... , n = 1,2, .... (2.53) 

Our technique gives a canonical generalization of the integer 
spectrum to a continuous one through the inclusion of 
branch points inAp . This should be compared with results of 
Ref. 6. 

III. LINEAR PAIRS FOR THE GENERAL CASE 

The formalism of this section is not restricted to axial 
symmetry nor to SU(2). For comparison see Refs. 2(b)-2(d). I 
present briefly the essential steps adapted to 

d~:::::da2 + d;2 + e2'(dx~ + dx~) (3.1) 

Let 

a = 1(; + ia), a = 1(; - ia), 

b = !(x i + ix2 ), b = !(x i - ix2 ), 

when 

d~:::::da aa + e2' db db. 

The self-duality constraints are 

(3.2) 

(3.3) 

(3.4) 

Fab = 0 = Fab , e2'Faa + Fbb = 0 It = a + a). (3.5) 

It is known that setting 

Ap = (iapD)D-I, Il=a,b. 

A (. a D + - lID + - - -b (3.6) ji = I ji , Il = a, , 

whereDisa unimodular matrix [N xN forSU(N)] andD + is 
the Hermitian adjoint, and defining 

G=D+D, (3.7) 

the self-duality equations reduce to 

e2'(GaG -I)a + (GbG -I)b = 0 (Ga==aaG, ... ). (3.8) 

For the a-static case, 

aa :::::aa :::::a" e2'(G,G -I), + (GbG -I)b = O. (3.9) 

Introducing a spectral parameter A, let 

DI\{I = (a, - Ae-; ab - A aA)\{I = (G,G -I)\{I, (3.10) 

D2\{1 = (Ae' a, + ab + e'A2 aA)'II = (GbG -I)\{I, (3.11) 

[D I .D2 ] = 0, (3.12) 
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and 

[D1,D21\II = Dd (GbG -l)\II) - D2{ (G,G -I)\II) = 0 
(3.13) 

gives back (3.9) 
One imposes 

\II(A = 0) = G. 

For SU(N) let the zeroth step (seed solution) be 

G. di ( k,a, k,.,a,) 
0= ag E'le ,···,E'Ne 

E'j = ± 1, j = 1, ... ,N, 

kl>k2> .. . >kN , 

Then 

\110 = diag(E'leklh, ... ,E'Nl~), 

where 

D,h = a, D2h = O. 

A solution is 

h (A) = !a(t - In A) = -!a In(uA), 

but setting 

B+(A) = 2b + A-'e-', 
---=-

B_(A) = ib - Ae-' = B+( - A -I), 

D,B ± (A) = 0 = D2B ± (A). 

Hence, a general solution is 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

h = -!a In(e-'A) + Y(B+(A),B_(A)). (3.22) 

The function Y, arbitrary to start with, can eventually be 
restricted to assure suitable properties. 

Soli tonic solutions can be looked for in the form 

\lin = (I + ktlRk(A - Jlk)-I)\IIO==-X(A)\IIo, (3.23) 

I and Rk being N XN matrices (I is the unit one) and 
Rk andJlk being independent of A. 

Substituting in (3.10), (3.11), the residues of the double 
poles on the left must vanish. 

Hence the pole equations 

One can also construct \II n stepwise as 

\lin = (I+Rn(A-Jl,,)-')\IIn_' 

(n = 1,2, ... ). (3.27) 

Exploiting the explicit pole structure in \II of the ansatz, the 
pole equations, and the Hermiticity condition 

G = X (A)GoX + (-A -I), (3.28) 

one can solve for \II n algebraically. The details and the origi
nal sources can be found in Refs. 2(b)-2(d). General prescrip
tions exist for writing Rk explicitly. I will not repeat them 
here. 

The above formalism can be restricted to axial symme
try as follows. To make the formalism independent of rp the 
phase factors e ± i9' in ab and ab , respectively, can be ab
sorbed by a redefinition 

A --+ e- iq>A. (3.29) 

Tlris leads to the prescription 

ab --+ av - v-'A aA , (3.30) 

ab --+av +v-IAaA • 

Thus 

D,\II==[ a, - Ae-'(av - v-1A aA ) - AaA]\II 

= (G,G -1)\11, (3.31) 

D2\11=[Ae' a, + (av + v-'A aA ) + e'A2aA ]\II 
= (GvG -1)\11. (3.32) 

Everything is now independent of rp as well as (7'. The result 

[DI,vD21 = 0 (3.33) 

leads, as in (3.13), through 

[DI,vD21\II = 0 (3.34) 

to 

(3.35) 

For Go and \110 of(3.15) and (3.17), respectively, now 

h =!a In {e2'(1 + Ae'v)-I} + Y(B(A)), (3.36) 

where 

(3.37) 

HereB (A) isB +(A)B _(A) with thefactorse ± iq> absorbed and 

D I •2B (A) = O. (3.38) 

The pole equations are now 
a,Jl - Jle -, abJl + Jl = 0, 

Jle' a,Jl + abJl - e'Jl2 = 0, (3.24) e'a,Jl - Jl avJl + (e' - V-1JlJ/.t = 0, 

e'Jl a,Jl + avJl- (e'Jl + v-I)Jl = 0, (3.39) 
B+(Jl) = 2b + Jl-Ie-' = c+, 

B_(Jl) = 2b -Jle-' = L 

(c ± : constants) 

give solutions. 
The general solution is 

H(B+(Jl),B_(Jl)) = O. 

(3.25) 

(3.26) 

HereH, an arbitrary function of B ± ' has to be suitably cho
sen to assure regularity and correct asymptotic properties. 
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admitting only a one-parameter family of solutions (e being a 
constant) 

B(Jl) = (v - e-'Jl)(v + e-'Jl- 1) = e. (3.40) 

An agreeable possibility arises now. Using (2.7) and (2.8) de
fine the "superpotential" V satisfying 

a± V= - (8X ± )-'Tr(a± G· G -If (3.41) 

Self-duality is equivalent to 

(a,av -av a,)V=o. (3.42) 

It can be shown that (.Ji = a:'v) 
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aV = (21v'i) [a+(v'i a_ V) + a_(v'i a+ V)], 

=! Tr(G,G -1)2. (3.43) 

Thus a V is proportional to the "Higgs length" or the action 
density. In deriving (3.43) it is convenient to use 

(3.44) 

For SU(2) a suitable parametrization of G leads to, using 
(2.5), 

a+v= -X:;:IMIM2' 
(3.45) 

a_v= -x =ININ2• 

But the main interest of Vis for SU(N), N> 2, where it great
ly facilitates the study of regularity constraints [see the dis
cussion in Ref. 2(c), and 2(d) and the sources quoted there]. 

For the axially symmetric case in (3.26), one must set 

H = II (B(Jl) - e;) = O. (3.46) 
; 

What should be the correct choice for the general case? This 
is a crucially important aspect not explored in this paper (see 
the relevant remarks in Sec. V). 

IV. FLAT SPACE MONOPOLE LIMIT 

The extremely simple limiting process has been indicat
ed in (1.15) and (1.16) and indeed it gives directly the results 
of Ref. 3. Not only the final results but all the steps of the 
formalism of Ref. 3 can be extracted easily. I indicate briefly 
some typical results. Set 

(u,;,v)--.a-I(t',z',v'), a--. 00, (4.1) 

(Au, A" Av) --. a(A t ·, Az" A v')' (4.2) 

[Henceforth I drop the primes in this section. Even for v this 
should cause no confusion; p is retained as the symbol intro
duced in (1.9).] 

Corresponding to Sec. II one now has 

At = (MI + M2 + NI + N2)(T3/2) 

- i(MI - M2-NI + N 2)(TI/2), 

A z = - i(MI - M2 - NI + N 2)(T2/2), 

Av = - (MI - M2 + NI - N2)(T2/2), 

v-IAq:> = - i(MI + M2 - NI - N 2)h/2) 

- (MI - M2 + NI - N2)(TI/2). 

(4.3) 

(Here M; and N; are rescaled implicitly; At can be replaced 
by <1>, the Higgs scalar.) 

Corresponding to 

d$2 = dt 2 + dz'l + dv2 + v2 drp 2, 

now 

a± =!(az ±iav )' 

X ± = ± i(4v)-I. 

(4.4) 

(4.5) 

(My convention concerning the imaginary factor i is not the 
same as in Ref. 3. This is a trivial difference.) 

The equations defining I, H, q, and so on remain formal
ly the same. But now, setting 

(4.6) 
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in (2.15) and (2.16), 

cotc5= Y=--, p=e = . z-e it; (z-e+iv)1I2 
v z-e- iv 

(4.7) 

Now (2.26) reduces to 

q(e,p) = tanh H [(z - e)2 + V2
]1/2 - P J. (4.8) 

This follows from 

{(u +A)2 + v2 J 1/2 --. 2[ 1 - (z + e)/2a] , 
(4.9) 

{(u - A)2 + v2 J 1/2 --. a-I[(z _ e)2 + v2] 1/2. 

Similarly 

X(A ) --. a-I [(z _ e)2 + v2] 1/2 (4.10) 

implies 

X = x(l) --.a-I(r + V2)1/2 = a-Ir (4.11) 

and 

'" --. () = tan -I(V/Z). (4.12) 

The total action now naturally diverges as a --. 00, 

S= 8rn(a - n) --. 00. 

But now one obtains finite energy monopoles with 

Magnetic charge = lim (S /8ra) = n, (4.13) 
a~ 00 

for the n-step solution. 
The formalism of Sec. III can also be subjected to the 

same process. Now 

(GzG-1)z + (GyG-I)y =0 (y=b/a), (4.14) 

and 

(az - A ay)'I1 = (GzG -1)'11, 

(A az + ay )'I1 = (GyG -1)'11. 

From (3.19), (3.20), and (3.22), 

(4.15) 

(4.16) 

lim[h-!alnB+] = (z-Ay), (4.17) 

lim !a(1 + B+B_) = (yA - yA -I - z). (4.18) 

These are the combinations used in Ref. 3 to construct '110, I 
have deliberately exhibited the forms (3.19H3.22) to point 
out that different, simple, and interesting possibilities can 
arise for the finite action case. Thus in (3.19) axial symmetry 
is not already broken at the zeroth level through '110, 

The pole equations are now 

az Jl - Jl ay Jl = 0, 

Jl az Jl + ay Jl = O. 

Apart from the combination (4.18), 

YJl- YJl- I -z = const, Jl = const, 

is now also a solution. Indeed 

limB+(Jl) =Jl-t, 

limB_(Jl) = -Jl. 

The general solution is thus given by 

H((y Jl - YJl- I 
- z),Jl) = o. 

(4.19) 

(4.20) 

(4.21) 

The linearized pair for axial symmetry, (3.31), (3.32), and the 
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superpotential Vof(3.41) can be similarly used to extract the 
necessary results for flat-space monopoles. 

V.REMARKS 

From (1.4), (1.5), (1.13), and (2.5), 

Ao ± iA3 = ± ie ± ;CTU -I {(MI + M2 + NI + N2)(1"3/2) 

- i(MI - M2 - NI + N 2) 1"1 ~ i1"2 } 

= ± ie±;CT(Ufl)-l{a,fl ~ + a,h 1"1 ~ i1"2 } 

= +ifl-I(ao ± i a3){fl ~ + f2 1"1 ~ i1"2 } 

using (B5). Similarly 

-AI ± iA2 = ± ie+;'Pu-l{ - i(MI +M2 - NI - N2) 

(5.1) 

X (1"3/2) - (MI - M2 + NI - N2) 1"1 ~ i1"2 } 

= + e+;'Pf -I{a I" 1"3 + a f 1"1 ± i1"2 } 
- I vJI 2 v 2 2 

= +ifl-
I
( -al ±ia2){fl ~ +h 1"1 ~i1"2 }. 

(5.2) 
Thus the triangularizations of the standard R-gauge are au
tomatically implemented. As stated in the Introduction, this 
should be helpful in relating the results to other standard 
formalisms. I have treated the one-step case in detail [(2.28)
(2.39)] to show how in that relatively simple case (5.1) and 
(5.2) are related to (2.39), the form typical ofthe "spherical 
R-gauge" of Ref. 2. Starting directly from (2.39), it would 
have been difficult to find out (even for this "one-chain" of 
Ref. 2) the necessary transformations [through (2.32) and 
(2.34)] to the forms having the structure of(5. 1) and (5.2). For 
an n-step, one can easily imagine the situation. But apart 
from the problem of comparison with other formalisms the 
one of Ref. 2 has certain attractive features. Though the in
termediate expressions here are often simpler the final solu
tions are not necessarily so! For spherical symmetry (1.8) is 
definitely preferable.2

(e) 

Moreover, the coordinate X, of the line element formally 
the same as that used in Ref. 2 [compare (1.8) and (1.19)] 
enters crucially in the solutions. The reason lies in the rela
tion between the dilatations and the pseudotranslations dis
cussed in Appendix A. Different choices of the parameter A. 
[from (2.15) onwards] correspond in the results to rescalings 
of (u,v). On the other hand for axially symmetric flat-space 
monopoles the crucial parameters are imaginary transla
tions along the z axis 

e = 0, ± iTr, ± i21T, .... 

So in the finite action solutions, if they are to have monopole 
limits, a combination X(A. ) such that 

lim x(e,a) = (l/a)[(z - e)2 + v2] 1/2 
a_co 
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must playa crucial role. 
The results of Sec. II, restricted to SU(2) and axial sym

metry, are essentially complete. Flat-space monopoles have 
been studied for higher-dimensional gauge groups by similar 
method.7 But it is really effective for SU(2). Though, thus 
limited, it has an important quality. It gives (M/>N;) and 
hence A,. directly in a convenient real gauge. To emphasize 
this point I have given the ansatz (2.5) directly in terms of 
(M; ,N;) shunting the Ernst-type equations to Appendix B. In 
applications involving gauge and matter fields, invariants 
involving directly the A,. 's (through covariant derivatives, 
for example) are important. Explicit forms of A,. are exactly 
what are needed in treating fluctuations around classical 
background fields. A method that delivers them directly is 
best suited from this point of view. 

The method of Sec. III is much more general. There all 
the necessary steps have been taken except the choice of the 
explicit form of H in (3.26). Choosing a suitably parame
trized form of H is not difficult. Thus the choice 

H = !a2(1 +B+B_)2 + cl(B2+ +B2_) + C2 (5.3) 

in (3.26) gives, in the monopole limit 

H = (YIl-Y 1l- 1 
- Z)2 + C I(1l2 + 1l-2

) + c2, (5.4) 

the choice of Ref. 3(c). But even in the flat-space monopole 
limit3 one is led to numerical calculations. This is beyond the 
scope of this paper. A study of SU(N) solutions (N) 2) 
through the superpotential, of course, can be undertaken, 
starting from (3.41), in a fashion analogous to Ref. 2(c). 

Finally note that the class of u-static instantons is much 
broader than the previous constructions indicate. Consider, 
for example, the 't Hooft solutions with all centers in the 
(XI' x2 ) plane. In our conventions [see (2.2)] 

A,. = U,.v av In [;t/ ~{ro + ~ 

+ (XI - a;)2 + (X2 _P;)2j-l]. (5.5) 

The gauge transformation by 

(5.6) 

gives ACT' A" AI' and A2 in explicitly u-independent form. 
But this does not have a monopole limit. The methods of 
Secs. II and III pick out those with such limits. They are 
supple and the interpretation of the solutions depends on the 
SI selected. So "tp-static" solutions (not necessarily u-static) 
thus constructed can give explicit axially symmetric instan
tons in higher Atiyah-Ward classes. 
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APPENDIX A: FROM DILATATIONS TO 
PSEUDOTRANSLATIONS 

Some useful results concerning the coordinate systems 
used [(1.2), (1.3), (1.S), and (1.29)], are collected here. It has 
been noted that setting 

u = (x~ + x~ )1/2 = (cosh X + sinh X cos 1/1)-1, (AI) 

v = (xi + X~)1/2 
= sinh X sin f/!{coshX + sinh X cos 1/1)-1, (A2) 

d~ = dx~ + dxr + dx~ + dx~ (A3) 

= u2[ ddl + u-2(du2 + dv2 + v2 dq; 2)} (A4) 

= u2 [ ddl + dX2 + sinh2 X(d1/l2 + sin 2 1/1 dq; 2) }. 

(AS) 

Defining 

or 

D± = [(u ± 1)2 + V2}1/2, 

e±x = (4U)-I(D+ ±D_)2, 

(A6) 

(A7) 

coshX = (4U)-I(D2+ + D2_), sinhx = (2U)-ID+D_. 
(AS) 

Also 

sin 1/1 = 2v(D+D_)-I, 

(A9) 
cos 1/1 = (1 - u2 - v2)(D+D_)-I. 

Corresponding to the rescaling 

coshX2 = cosh C2 cosh XI - sinh C2 sinh XI cos 1/11 

= cosh(c i + c2)coshX - sinh(c i + c2)sinhx cos 1/1, 
(A20) 

sinh X2 sin 1/12 = sinh X I sin 1/11 = sinh X sin 1/1. (A2l) 

This is the group property. 
The relation between pseudotranslations and dilata

tions was pointed out to me by Comtet8
•
9 in the context of 

stereographic projection of the de Sitter line element: 
S 5 

d~= Ld~, L~= 1. (A22) 
i= I i=1 

Setting 

(ZI ± iz2)(1 + zs)-I 

= e±iT(coshp + sinhp cos (n-I, (A23) 

(Z3 ± iZ4)(1 + zs)-I 
= e ± irp sinh p sin 0 (cosh p + sinh p cos 0) - I, (A24) 

d~ = (coshp)-2[dr + dp2 

+ sinh2 p(dO 2 + sin2 0 dq; 2)]. (A25) 

In (A23) and (A24) one recognizes the combinations corre
sponding to (AI) and (A2) in terms of(p, 0). 

Corresponding to (All) and (A12) one can define 

D ± (A )==[(u ± A )2 + v2p12, (A26) 

with 

D± (1) =D±. 

Then 

(u, v) -+ (ul A, viA), 

define X(A ) and 1/I(A ) such that 

(AW) e±x(A.) = (4AU)-I(D+(A) ± D_(A ))2, 

sin f/!{A) = (Uv)(D+(A lD_(A ))-1, 

(A27) 

UtA )=uIA = (coshX(A) + sinhX(A )cos f/!{A ))-1, 

VIA )=vl A = sinh X(A )sin 1/I(A ) 
(All) cos tfr(A) = (A 2 _ u2 _ v2)(D+(A )D_(A ))-1. 

(A2S) 

X (cosh X(A ) + sinh X(A )cos f/!{A )) -I , 

with 

X(l) = X' f/!{l) = 1/1. 

It can be shown that 

X, 1/1 -+ X(A ), f/!{A ) 

is a "pseudotranslation" in the following sense. 
Set 

(AI2) 

(A13) 

(A14) 

cosh X(c) = cosh c cosh X - sinh c sinh X cos 1/1, (A 15) 

tan 1/I(c) = sinh X sin 1/1 
X (cosh c sinh X cos 1/1 - sinh c coshX)-I. 

(A16) 
Consistent with (All) and (AI2), 

cosh X(c) + sinh X(c)cos f/!{c) = e - C(cosh X + sinh X cos 1/1), 
(A17) 

sinh x(c)sin f/!{c) = sinh X sin 1/1. (AlS) 

For two successive pseudotranslations 

C J C2 

U', 1/1) -+ U'1> 1/11) -+ U'2' 1/12)' (A19) 
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Thus for I5(A ) of (2.15) and (2.16), 

A 2 + v2 _ u2 

cos I5(A ) = -~--::
D+(A)D_(A) 

_ sinh X(A ) + cosh X(A )cos f/!{A ) 
- cosh X(A ) + sinh X(A )cos 1/I(A) , 

. I5(A) 2uv 
SlO = D+(A lD_(A) 

sin 1/I(A) 
cosh X(A ) + sinh X(A )cos f/!{A ) 

For A = lone gets back (2.31) with 15(1) = 15. 

APPENDIX B: ERNST-LIKE EQUATIONS 

In (2.5), set 

(A29) 

(A30) 

MI = (2/1)-1 a,(fl + iI2), M2 = (2/1)-1 a,(fl - i12) , 

(Bl) 
NI = (2/1)-1 a_(fl - iI2), N2 = (2/tl- 1 a_(/1 + iI2). 
Here a ± are given by (2.7) andll and/2 are functions of (;, v). 
The self-duality equations (2.9) become the "Ernst-like" 
equations 

I}~.fl = (V Il- (V 12)2 , 

Il4; = 2(V II • V 12) , 
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where 

v=(a" e-'av )' 

~=a~ + e-2'(a~ + v-Iav)' 

(B3) 

(B4) 

For Hermitian A,.'s (M; = N; ),t. and/2 are real functions. 
From (2.5) and (B1), 

Au =/1-1 aJ'I(1'3/2) +/1- 1 a0 (1'1/2), 

A, =/1- 1 a0 (1'2/2), 
(B5) 

Av =/1-1 aJ; (1'2/2), 

v-IAtp =/1-1 aJI(1'3/2) + /1-1 aJ; (1'1/2). 

From (2.44) and (B5), 

(The overall factor is irrelevant.) The gauge transformation 
connecting (2.39) and (e3) can be found in Ref. 10 (with a 
minor change of convention). Thus (2.39) must be equivalent 
to 

A,.. = O',..v av In l:(x) , (e7) 

where l:(x) is given by (e6) and can be shown to be 

l:(x) = ia(4,u SinhX)-I{cotfa (; + 0'+ iX) 

- cot ~ a(; + 0' - iX)} . (e8) 

Let 

(C9) 

h 2 = 2 Tr A! =/1- 2 [(a&:!t)2 + (a0)2] . (B6) Then 

APPENDIX C: MORE ABOUT THE ONE-5TEP SOLUTION 
(SEC. II) 

This solution [(2.33), (2.38), and (2.39)] is of course, equi
valent to the one-chain of Refs. 2 and to. The following 
points are useful in understanding the relation. They are pre
sented suppressing details. 

Starting with (1.19) and setting 

t' + ir' = tan ! (17'12 + 0' + iX) , (el) 

ds2';:::,dt,2 + dr,2 + r'2 dyr + r,2 sin2 '" drp 2. (e2) 

Consider the solution 

A ',u = O',..v a ~ In l:'(X') (x~ = t I, xi = r' cos'" , ... ), 

l:'(x') = ail sec2 krr{(t' _ tan krr)2 + r'2} -I. (e3) 
k=O a a 

This is the above mentioned one-chain. The relation 
between x,.. of (1.1) and x~ introduced here can be shown to 
be 

(x + e),.. = 2(x~ + e,..x'2)(1 + 2c. x' + X,2)-1 , (e4) 

with 

e = (0, 0, 0, 1) , (e5) 

so that (x + e) = (xo, XI' x2, X3 + 1) undergoes a special con
formal transformation followed by a dilatation. By applying 
the rules II for the transformation of the generating function 
(e3) under (C4) one obtains 

a-l{ k l:1(X') ---+ l:(x) = 4 L (xo - sin - 2rr)2 
R=O a 

+ (X3 + cos ~ 2rr)2 + xf + x~ } - I. (e6) 

348 J. Math. Phys., Vol. 27, No.1, January 1986 

1:" (x") = lim (a-2l:(x) 

00 

= L {(x~ - k "2rr)2 + X"2} -I. 
k M = -00 

(elO) 
This gives the Prasad-80mmerfield monopole in its periodic 
form [see Ref. 10(a) and sources quoted there]. This can be 
gauge transformed to the standard static form, which fol
lows directly on rescaling (2.39) as in Refs. 2 and 10. 
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It is shown, by giving an explicit example, how the conditions imposed on physically admissible 
states can affect the pattern of supersymmetry breaking and, as a consequence, the values of 
physically interesting quantities such as the Witten index. As a by-product an unusual kind of 
explicit supersymmetry breaking is observed, where the supersymmetry algebra still holds 
formally, as well as a spontaneous breakdown of super symmetry, which is not induced by 
instantons. 

I. THE MODEL 

Supersymmetric quantum mechanics 1-4 has recently 
become a matter of both physicalz,3,5 and mathematical6 in
terest. A major reason for the physical interest is the hope to 
get a better insight into the mechanism of supersymmetry 
breaking. Z,3 

In the present paper we consider a particular model of 
supersymmetric quantum mechanics where an unexpected 
kind of explicit supersymmetry breaking occurs, and discuss 
how this breaking is influenced by the conditions imposed on 
physical states. 

The model is given by the supersymmetry charges 

Q ± = ! (W ± ;p)(u l ± ;uz), (1) 

with 

W(q) = bq - c/q, 

and the Hamiltonian 

H=(~I ~). 
with 

Hv= !(pZ+WZ-(-lt~;) 

(2) 

(3) 

= ! (pz + b ZqZ + c(c + 2v - l)q-Z - b (2c - 2v + 1)). 
(4) 

Here the coordinate q takes values in R, p = - i d /dq, U i 

denote the Pauli matrices, and the indices v = 0,1 in (3) and 
(4) refer to the eigenvalue of the "fermion number operator" 
f = ! (u3 + 1)3,4; band c are real constants, and without 
loss of generality4 we can choose b>O. From (1 )-(4) we have 
the supersymmetry algebra 

{Q± ,Q± 1 =0, 

(Q+, Q-l =H, (5) 

[Q± ,H] =0. 

For the moment we ignore all questions about self-adjoint
ness and domains of the operators Q ± and H and regard (5) 
just as an algebra of "formal differential operators.,,7 

It may be noted that (3) is a supersymmetric extension of 
the ordinary Hamiltonian! (pz + b ZqZ + gq-Z), which has 
been studied by several authors. 8-10 

The solutions of the differential equation HrP = ErP are 
easily found8,lO; they are 

.I. = ( nl$ )1I2(bq2)IYI21 + 11I41exp( _ 1 bq2) 
'("nvA r(n + r + 1) 2 

XL ~(bqZ)(sgn qtXv' (6) 

where X v are the spinors 

r is the constant defined by 

r=(_1)IIA-W21Ic+v_ !I, 

(7) 

(8) 

where [x] is the biggest integer <x, and L ~ are the general
ized Laguerre polynomials. II Also, the quantum numbers n, 
v, and A in (6) take the following values: n = 0,1,2, ... , 
v = 0,1, and A = 1,2,3,4 ifc~Oandc~l - 2V; while in the 
exceptional cases c = ° or c = 1 - 2v only the values 
A = 1,4 are allowed. (This restriction of the values of A oc
curs because in the exceptional cases Hv is not singular at 
q = 0; also, using the connection between the Laguerre and 
the Hermite polynomials, II the solutions with A = 1,4 then 
just reproduce the eigenfunctions of the harmonic oscilla
tor.) The eigenvalues corresponding to the solutions (6) are 

{
Env' 

Env3 =Env4 = E' 
n' 

where 
Env = 2b (n + v), 

E ~ = 2b (n - c + !). 

for c<! - v, 

for c>! - v, 
for c<! - v, 

for c>! - v, 

(9) 

(10) 

We now list some properties of the solutions (6). From 
their behavior at q = ° and at infinity we can immediately 
decide whether they are square integrable, continuous, or 
continuously differentiable; we list these properties in Table 
I. If their energy eigenvalue is zero, they form singlet repre
sentations of the superalgebra (5), while for nonzero energy 
they form doublets whose components transform into each 
other by supersymmetry transformations; e.g., for n ~O the 
states rPnOI and 

{
~E ~ rPnl2' for c< - !, 

Q+rPnOl = ~E ~rPnI4' for -! <c<!, 
.JEnO rPn -1,1,2' for c>!, 

(11) 
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TABLE I. The range of the parameter ]'(8) for which the solutions (6) have 
the following properties: (a) ;.VA is square'integrable; (b) ;.vA is continuous 
at q = 0; and (c) (d /dq) ; •• A is continuous at q = o. 

(a) square (c) continuously 
integrable (b) continuous differentiable 

A even r> -1 r> - ! r= - ! or r>! 
A odd r> -1 r> -! r>! 

form a supersymmetry doublet. Note that the application of 
Q ± changes the parity of the wave functions. 

Finally, with the usual definition of the scalar product, 
the solutions (6) obey, for r> - 1, 

(tPnvA.' tP",pJJ) = {)nm{)v/J{)A.B, (12) 

forA -B i= ± 2 (forA =B thisfollowsfromtheorthogona
lity relation of the Laguerre polynomials, II for A i= B it holds 
for parity reasons), while for A - B = 2 we find 12 

(tPnvA.> tPmpJJ) = {)v/J ( - 1)'" +n(n!m!)-1/2 

x(r(n -Irl + 1)r(m + Irl + 1))1/2 

x(r(m - n + Irl + 1)r(n - m -Irl + 1))-1 
(13) 

(and analogously for A - B = - 2). In particular the solu
tions with ditferent energy eigenvalues are in general not 
orthogonal; as we will see below, this is due to the non-Her
miticity of the Hamiltonians (4). 

II. PHYSICAL STATE CONDITIONS 

If we want to discuss the eigenvalue problem HtP = EtP 
withH given by (3) and (4) along the lines of the probabilistic 
interpretation of quantum mechanics, we cannot accept all 
the solutions (6) as "physically admissible states." First we 
have to decide whether for the Hamiltonian at hand a proba
bilistic interpretation is possible at all. Now it is well 
known 13.14 that for the nonsupersymmetric case such an in
terpretation is possible if the coupling constant g of the in
verse square term gq-2 fulfills g> - 1, while for g< - 1 
any solution of the SchrOdinger equation has an infinite 
number of zeroes, 14 which means that the energy spectrum is 
not bounded from below ("the particle falls to the center") 
and the physical interpretation is lost. In our case, due to 
supersymmetry, we automatically have g> - 1, since 

g=c(c+2v-l)=r- 1, (14) 

so that we have only to exclude the case r = 0, i.e., 
c = ! - V; since the Hamiltonian (3) contains both Ho and 
HI, both c = ! and c = - ! have to be excluded. Thus in the 
following we always assume ci= ± !. 

Another restriction of the allowed range of c is obtained 
from the requirement that the physically acceptable states 
are square integrable, i.e., belong to the Hilbert space 
K = .2"2(R) ® C2. In addition we may be forced to impose 
further constraints. In the following we will first consider 
different choices of conditions; afterwards we will argue 
which of the choices has to be considered as the physical one. 
The choices are as follows. 

(i) The only requirement is that the solutions (6) belong 
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to K. Ths means that we must have r> - 1; for A = 1,2 
this imposes no constraint on the parameter c, while for 
A = 3,4, c must fulfill 

(15) 

Thus the following solutions are allowed (we list their re
spective energy in brackets): 

cE(-cod]: tPnvl' tPnv2 (E ~), 

c E ( -~, - !) \ { - l}: 

cE (- M)\{OJ: 

C E (!d)\ {1 J : 

CE B,co): 

tPnvl' tPnv2 (E ~ );tPn13' tPnl4 (En I ), 

tPnOI' tPn02' tPnl3' tPnl4 (E ~); 

tPn03' tPn04 (EnO );tPnll , tPnl2 (En I ), 

tPnvl' tPnv2 (Env );tPn03, tPn04 (E ~), 

tPnvl' tPnv2(Env )' 
(16a) 

c = - 1: tPnvl' tPnOl (E ~ );tPnI4 (En I ), 

C = 0: tPnOl> tPnl4(E ~);tPnll' ~n04(Env)' (16b) 

c = 1: tPnvl> tPnll (Env );tPn04 (E ~), 

with n = 0,1,2, ... and v = 0,1. Note that in the range of 
! < c < ~ there are allowed solutions (tPOO3' tPOO4) with negative 
energy eigenvalues. Also the limits c-o, ± 1 do not repro
duce the results obtained for these exceptional values; this is 
an example of the Klauderls phenomenon. 

(ii) In addition to (i) we require that the solutions are 
continuous at q = O. This means r> - ! (r> - !) for A 
even (odd) which for A = 1,2 again imposes no condition on 
c, while for A = 3,4 it gives 

- v < c < 1 - v, for A = 3, 
(17) 

- v<c< 1 - v, for A = 4. 

Thus the allowed solutions are as follows: 

C E ( - co, - 1): tPnvl' tPnv2 (E ~), 

CE (- 1, - !): tPnvl' tPnv2 (E ~ );tPn13' tPnl4 (En I ), 

CE( - !,O): tPnOl' tPn02' tPnl3' tP,,14(E ~); 

tPnll' tP,,12 (E"d, 
(18a) 

c E (0, !): tPnOl' tPn02 (E ~ );tPna3' tPn04 (Ena); 

tPnll' tPnl2 (E"I)' 

CE(!.!): tP"vl> tP"v2(E"v);tPna3' tPn04(E~), 
CE(I,co): tPnvl> tP"v2(Env )' 

C E { - 1,0,11: same as in (16b). (I8b) 

Again there is a range of the parameter c, namely !<c<l, 
where negative energy values occur, and again in the limits 
c-o, ± 1 we find the Klauder phenomenon. 

(i') and (ii") In addition to (i) and (ii), we require that the 
solutions are linearly independent. According to (12) and 
( 13), this amounts to excluding the solutions with two of the 
four possible values of A such that the case IA - B 1 = 2 can
not occur. This was done in Refs. 10 and 16, where the values 
A = 2,3 were excluded; in this case in (16) and (18) all solu
tions with A = 2,3 are removed while those with A = 1,4 are 
still allOWed. In particular there are no longer energywise 
degenerate solutions with the same value of v. 16 Also in the 
case (i') the limits c-o, ± 1 are smooth and the Klauder 
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phenomenon is avoided. 
Before going on to (iii), we remark that the requirement 

of linear independence is ambiguous; instead of following 
Refs. 10 and 16 we could as well exclude the solutions with 
A = 1,2 or those with A = 3,4 to fulfill this requirement; 
these choices would lead to entirely different energy spectra. 

(iii) In addition to (ii) we require that the first derivative 
of the solutions is continuous at q = O. This means r = - ! 
or r>! (r>!) for A even (odd) which for A = 1,2 gives 

C> 1 - v or C< - v, for A = 1, 
(19) 

C> 1 - v or C < - v, for A = 2, 
while the solutions with A = 3 are no longer accepted at all 
and of those with A = 4 only the exceptional cases C = 0, 
C = 1 - 2v remain. The allowed solutions are then as fol-
lows. 

C E ( - 00, - 1): tP"vl' tP"v2(E ~), 

C E ( - 1,0): tP"OI> tP,,02 (E ~), 

cE(O,I): tP"11,tP"12(E,,d, 
(20a) 

C E (1,00): 

CE { - 1,0,l}: same as in (16b). (20b) 

Again in the limits c-o, ± 1 the Klauder phenomenon 
shows up; in particular in the limit c-l- (c-l +) all ener
gies remain positive definite (positive semidefinite) while for 
C = 1 there is still an allowed solution (tPOO4) with negative 
energy. 

To decide which of the above choices has to be consid
ered as physically meaningful, we have to look at the princi
ples of quantum mechanics. These include the requirement17 

that the physical states belong to a Hilbert space, which, in 
the model under consideration, is K = ,2"2(R) ® C2 where
as, as stressed in Ref. 10, there is no a priori reason to require 
that the SchrOdinger picture wave functions are continuous 
or continuously differentiable. 17 

Nevertheless it is easy to see that in the present case the 
latter conditions indeed have to be imposed. Namely, they 
follow from another axiom of quantum mechanics which 
states that only self-adjoint operators can be interpreted as 
observables. 18 This axiom is indispensable for a physical in
terpretation of quantum mechanics, since it guarantees the 
reality of the eigenvalUes and the orthogonality and com
pleteness ofthe eigenstates, and thus, in particular, the con
servation of probability. 

Now if the domain fP of the formal differential opera
tors (4) is understood to be fP = K, then they are not self
adjoint. (For the supersymmetry charges this means that Q_ 
is not the adjoint ofQ+.) However, as shown in Ref. 13, for 
c#! - v, it is possible to construct from Hv self-adjoint 
operators H ~ by restricting their domain; the mapping pre
scription for the operators H ~ is still given by (4), but their 
domain is13 fP = ,2"2(R) n C I(R), where C I(JR) denotes the 
set of continuously differentiable functions on R (see Ref. 
19). Thus we can conclude that of the above choices, only (iii) 
leads to a physically meaningful interpretation. We remark 
that the necessity of restricting the domain of H can be un
derstood intuitively. In computing the scalar product 
(tP, H",) the integration from - 00 to 00 has to be split into 
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integrations from - 00 to 0 and from 0 to 00 because of the 
singular nature of H; thus the physically acceptable solu
tions have to be well behaved not only at infinity, but also at 
zero. 

As observed above [see Eq. (13)], the solutions (6) corre
sponding to different eigenvalues are not orthogonal in gen
eral; this is simply a consequence of the fact that the opera
tors given by (4) with domain fP = K are not self-adjoint 
and even not Hermitian. Note that all eigenvalues are auto
matically real in our model; one could therefore be led to 
suppose that a restriction of the domain of H, through the 
requirement of orthogonality of the eigenfunctions,20 could 
be sufficient to obtain a self-adjoint Hamiltonian. However, 
from the above considerations it is clear that this supposition 
is not true. Also, we have seen that this requirement is am
biguous and thus a specific choice of orthogonal solutions, 
e.g., the prescription chosen in Ref. 10, cannot be motivated 
on physical grounds. 

III. SUPERSYMMETRY BREAKING 

Supersymmetric systems are commonly classified into 
the cases where supersymmetry is unbroken, spontaneously 
broken, or explicitly broken. If supersymmetry is unbroken, 
then the ground state energy is zero; if it is spontaneously 
broken, the ground state energy is positive.2-4 The converse 
of this is true if and only if supersymmetry is not explicitly 
broken, which, in the case of supersymmetric quantum me
chanics, means that the supersymmetry algebra (5) holds as 
an operator algebra in K. If (5) does not hold as an operator 
algebra in K, then supersymmetry is explicitly broken. In 
particular this is the case if the image Q ± (fP) of the domain 
.@ of H under the map Q ± is not contained in fP; in con
trast (5) may still be true as an algebra offormal differential 
operators so that consequences of the explicit breaking of 
supersymmetry (such as the possible appearance of negative 
energy valuesl6

) may occur rather unexpectedly. 
As follows directly from the supersymmetry transfor

mation rules (11), the latter situation indeed occurs in the 
present model for some range of the parameter c. We list the 
pattern of supersymmetry breaking for the cases discussed 
above in Table II. We see that the breakdown ofsupersym
metry is heavily influenced by the conditions that we impose 
on the physical states. Imposing conditions that are too 
weak, we can be led to conclude that supersymmetry is un-

TABLE II. The range of the parameter c for which supersymmetry is (a) 
unbroken, (b) spontaneously broken, and (c) explicitly broken. 

Case (i) 

Case (i') 
Case (ii) 

Case (ii') 
Case (iii) 

(a) unbroken 

- !<c<! 
orc>~ 

- !<c<! 
c=Oorc>1 

c=o 
c=Oorc>1 

(b) spontaneously (c) explicitly 
broken broken 

c< -~ -~<c< - ! 
oq<c<! 

c< - !orc>! 
c< -I -l<c<O 

or O<c<l 
c¥O 

c< -I -1<c<O 
or O<c<1 
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broken in a range of parameters where the full physical con
ditions show that it is explicitly broken, and also the other 
way around. We also note that for all c# 0 W (q) has an even 
number of zeroes; despite this fact there are ranges of c#O 
where supersymmetry is unbroken. 

Let us exploit the di1rerences between the various cases 
somewhat further. First we evaluate the value of the Witten 
index4,6,21 

(21) 

where Ny (E = 0) is the dimension ofthe zero energy eigen
space of By. Denoting the different cases by a subscript, we 
find 

r-
for c< - !, 

A(i) = 1, for c = 0,1, 
2, for c> - !, c#O,I, 

(22a) 

r for c< - ~, 
A(i') = 1, for c> - !, (22b) 

r-
for c<O, 

A(ii) = 1, for c = 0,1, 
2, for c>O, c#l, 

(22c) 

{O, for c<O, 
~ii') = 1, for c;;'O, 

(22d) 

r-
for c< 1, c#O, 

A(iii) = 1, for e = 0,1, 
2, for e> 1. 

(22e) 

Thus A changes discontinuously as a function of the param
eter c (see Ref. 22). It is commonly stated4,21 that supersym
metry is unbroken if A #0; this is of course only true if the 
symmetry is not broken explicitly. Indeed according to Ta
ble II and (22), there is some range of en < c < ~ for the cases 
(i) and (i'), 0 < c< 1 for (ii), e> 0 for (ii'), and c = 1 for (iii)], 
where A#O, but supersymmetry is explicitly broken. 

Next consider the "superpartition function,,21,23,24 

(23) 

which is supposed to provide a regularization of the Witten 
index [which can be formally written as A = tr( - 1)/] and, 
in addition, is connected to supersymmetry breaking at finite 
temperature.24,4 Defining 

co ePb(l-lvj 

Z" = 2,,~o exp( -pE",,) = sinh(pb) , 

and 
co e2Pbc 

Z' = 2 L exp( -pE~) = . h( QL.) ,,-0 sin pV 

and making use of Zo - ZI = 2 we find 

for c< - ~, 

for c =0, 

v=O,1 (24) 

(25) 

0, 

1, 
2, for - ! <c<!, c#O, or c;;.~, 

1(i) = -ZI, 

2+Z', 

for - ~<c< -!, c# - 1, 

for! <c<~, c# 1, 

!(Z' - ZI)' for c = - 1 
1 + !(Z' -ZI)' for c= 1, 

(26a) 
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1, 
1(r) = 17 

- ~1> 

for e#O, ± 1, 

for e=O, 

{

!1(i)' 

1 +!Z', 
for e = - 1, 
for e = 1, 

0, 

-ZI' 
1(ii) = 2+Z', 

2, 

1(i)' 

1(ii') = {
!1(iil' 

1(i'), 

0, 

Z' 

1(iiil = -ZI' 
2, 

1(i), 

for c< - 1, 
for - 1 <e<O, 
for O<e< 1, 
for c>l, 
for c = 0, ± 1, 

for c#O, ± 1, 

for c = 0, ± 1, 

for c< - 1, 
for - 1 <c<O, 
for O<c< 1, 

for c>l, 
for c = 0, ± 1. 

(26b) 

(26c) 

(26d) 

(26e) 

Comparing (22) and (26), we see that YIP) provides a 
sensible regularization of A, i.e., 

A = lim YIP), (27) 
fJ-co 

if supersymmetry is unbroken or spontaneously broken [in 
fact this is true for any choice of W(q) in (1) as long as the 
energy spectrum does not contain a continuous part begin
ning at zer04] and also for some cases where supersymmetry 
is explicitly broken. However, in the case of explicit super
symmetry breaking there are also regions in parameter space 
where (27) ceases to be true n < e < ~ for the cases (i) and (i'), 
! < c< 1 for (ii) and (ii'), and e = 1 for (iii)] despite the fact that 
the energy spectrum is purely disCrete; this anomalous be
havior is due to the fact that in the relevant parameter range 
there is an allowed solution with negative energy. Also we 
see again that a change in the conditions defining physical 
states has drastic consequences on the properties of the mod
el. 

Finally we note another peculiarity of the model (IH4). 
According to (26) the relation4,6.25 

(where erf denotes the error function ll
) between the super

partition function Y and the asymptotic values 
W ± = W(q = ± 00) of the superpotential W(q) is violated 
in this model for c # O. It is clear thatthis violation can occur 
if supersymmetry is explicitly broken, since its derivation4,6 
makes use of the pairing of states which transform into each 
other under supersymmetry transformations. However, 
even in the parameter range where supersymmetry is unbro
ken, in the cases (i), (ii), and (iii), (28) holds only up to a factor 
of2; the extra factor of2 stems· from the fact that, due to the 
singular nature of the supersymmetry charges Q ± (1) at 
q = 0, there is a degeneracy in energy between states which 
only differ by their parity. [In the cases (i') and (ii') one of any 
two of those energywise degenerate states is excluded by 
hand so that the extra factor is no longer needed.] 
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IV. CONCLUSIONS 

We discussed a supersymmetric quantum mechanical 
model where an unusual kind of explicit supersymmetry 
breaking occurs, namely where the supersymmetry algebra 
holds as an algebra offormal differential operators but not as 
an operator algebra in Hilbert space. We find it important to 
note that such a kind of breaking is possible since many prop
erties of supersymmetric quantum mechanical models are 
commonly supposed to be due to the supersymmetry algebra 
as an algebra of formal differential operators (ignoring any 
domain questions) but are actually valid only if the super
symmetry algebra holds as an operator algebra in Hilbert 
space. Such properties are in particular the positivity of the 
energy and the pairing of states2

-4 and thus any properties 
which make use of these, e.g., the connections among the 
Witten index, the superpartition function, and the asympto
tic values of the superpotential. 

The pattern of supersymmetry breaking in the model 
under consideration was strongly influenced by the condi
tions imposed on physically admissible states. Consequent
ly, the value of the Witten index and the superpartition func
tion depended on these conditions. We can expect that such 
a dependence will occur whenever the supersymmetry 
charges are singular. The first step in a discussion of such 
models, therefore, always should be a careful definition of 
the physically admissible states. 

We finally note that under the substitution e~ - e, 
v~l - v the Hamiltonian (3) is invariant up to the constant 
b (2v - 2c - 1) = E ~ - En•1 _ v' This is just the difference in 
the ground state energy between the two cases e = ± Ie I. In . 
particular in the range where supersymmetry is broken 
spontaneously, the ground state energy is analytic in the cou
pling constant e. This indicates that the spontaneous super
symmetry breakdown in this model is not due to instantons. 
The latter situation does not only occur in our specific mod
e1.26 Indeed, whenever for a given W(q) corresponding to 
unbroken supersymmetry one can find a solution W(q) of the 
Ricatti equation W2 ± W' = W 2 ± W' + Eo with some 
positive constant Eo, then W will describe a model with 
spontaneously broken supersymmetry and ground state en
ergy Eo. What is specific to our model is that a solution to 
this Ricatti equation with appropriate choice of Eo is ob
tained by just changing the sign of e. 
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The one-parameter subgroups of supergroups are defined and their primary properties are 
delineated. Parametrization schemes analogous to those used in Lie group theory are 
investigated. In particular, exponentiation is introduced and related to the one-parameter 
subgroups. Canonical coordinates of three kinds are investigated, the third of which has no analog 
in conventional Lie theory. We illustrate our results with the examples of the supersymmetric 
quantum-mechanical superalgebra sqm(2) and the simple superalgebra osp(l/2). 

I. INTRODUCTION 

Lie algebras and Lie groups play an important role in 
the description of physical symmetries. In the last decade or 
so, certain generalizations of Lie algebras have become in
creasingly significant in theoretical physics, 1 especially 
within the context of unified theories. These generalized al
gebras are called "superalgebras"; their generators close un
der anticommutation as well as commutation. 

The theory of superalgebras has been developed along 
lines similar to those of Lie algebras. The simple superalge
bras have been classified2

•
3 and many features are now well

established.4 Until recently, however, the situation for the 
generalization of Lie groups was not as clear. We call these 
generalizations "supergroups." 

The first attempts to construct supergroups5,6 were not 
entirely satisfactory from a physical viewpoint because the 
structures involved were not abstract groups. Subsequent 
attempts included constructions by exponentiation of the al
gebra via Baker-Campbell-Hausdorff relations 7 or matrix 
representations.8 However, these results did not explicitly 
treat the important problem of the manifold structure of the 
supergroups. 

In 1980, Rogers introduced9 a global theory of super
manifolds that is mathematically rigorous and is based on an 
extension of real analysis to Grassmann algebras. It is suffi
ciently general to include as a subset various earlier super
manifold theories.6.lo•

1l This work provided the foundation 
for a subsequent discussion 12 of supergroups. In Rogers' for
malism, supergroups are abstract groups and also superana
lytic supermanifolds with composition mappings. This ap
proach provides a direct generalization of the usual theory of 
Lie algebras and Lie groups to superalgebras and super
groups. It has been further refined mathematically by sever
al authors,13 and has been used as the basis for supergravity 
theories l4 and for superlattice theory using discrete super
groups. IS 

-IOn leave of absence from the Department of Chemistry, University of Cal
gary, Calgary, Alberta, Canada T2N IN4. 

bl Address after 1 September, 1985: Department of Physics, Indiana Univer
sity, Bloomington, Indiana 47405. Address during calendar year 1986: 
Theory Division, CERN, 1211 Geneve 23, Switzerland. 

01 Address during academic year 1985-86: Niels Bohr Institutet, Blegdams
vej 17,2100 Kebenhavn 0, Denmark. 

In spite of the large amount ofliterature on the subject of 
supergroups, only their general structure has been estab
lished. II

•
12 Many areas remain to be clarified, ifsupergroups 

are ever to attain a physical relevance comparable to that of 
Lie groups. This is especially true for practical calculations, 
for which few results exist. 

In this paper, we tackle one area for which detailed anal
ysis is not available in the literature: the theory of one-pa
rameter subgroups of connected supergroups, based on Rog
ers' work.9

,12 Our aim is to provide a mathematical 
description of the theory and also to give examples of practi
cal calculations, including new calculational techniques, 
that will be useful to the practicing theorist. 

We remark that one-parameter subgroups of super
groups have been considered previously by De Witt. 1 J His 
analysis, however, is based upon a definition 1 J of supermani
folds that is less general than that of Rogers9 and therefore 
may not be applicable to all supergroups of the Rogers type. 
Throughout our work, we strive to maintain the close rela
tionship between a supergroup and its associated Lie group. 
This leads to extensions of the work of De Witt. In this way, 
we obtain the relationships between one-parameter sub
groups of supergroups and of the associated Lie groups. We 
are able to classify supergroup canonical coordinates. Also, 
we present applications of our methods to the construction 
of their matrix representations. 

In Sec. II, we present a summary of those results ofRog
ers that we shall use in this paper. We do not repeat the 
proofs of her results, but instead refer the reader to her pub
lished work.9•

12 

Section III provides a comprehensive account of one
parameter subgroups of supergroups, within the framework 
of Rogers' supermanifolds. Differentiable curves through a 
point in the supergroup manifold are defined and used to 
construct the composition rules of one-parameter subgroups 
in a natural way. We prove that the construction is unique. 

The concept of exponentiation is introduced in Sec. IV 
and related to the one-parameter subgroups. We develop ca
nonical coordinates of three kinds, two of which are analo
gous to the canonical coordinates used in the standard the
ory of Lie groups. The third type is new. 

These results are illustrated in Sec. V with two exam-
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pIes. We consider both the supersymmetrical quantum-me
chanical superalgebra sqm(2) with two anticommuting gen
erators and the superalgebra osp(l/2). The supergroups and 
their one-parameter subgroup are explicitly constructed, as 
are the expressions involving the three types of canonical 
coordinates. 

Appendix A contains a glossary of symbols. To avoid 
confusion, we have adhered as closely as possible to the nota
tion of Rogers. In Appendix B, we provide a description of a 
few special superfunctions, i.e., functions of Grassmann-val
ued variables. The judicious use of such superfunctions can 
significantly simplify calculations as will be apparent to the 
reader who works our examples. Finally, we have included 
in Appendix C some technical details of the calculations that 
for clarity were omitted from the main text. 

II. SUMMARY OF ROGERS' RESULTS 

In this section, we state results on supermanifolds and 
supergroups that will be needed for the subsequent discus
sion. These facts are taken from the two papers of Rogers, 
Refs. 9 and 12, which we shall denote by Rl and R2, respec
tively. For ease of reference in the subsequent discussion, we 
number the paragraphs in this section. Notation conventions 
are given in Appendix A. 

(1) Denote the real Grassmann algebra over JR by B L • 

The "flat superspace" B't,n is defined as the Cartesian pro
duct of m copies of the even part of B L with n copies of the 
odd part, It has d = 2L - I(m + n) dimensions when viewed 
as a vector space over JR. There exists a homeomorphism t: 

B 'tn'---+Rd (R2, Appendix F). We remark here that the exten
sion to complex-valued vectors in Grassmann algebras is 
possiblel5

; however, in this paper we restrict ourselves to the 
real case. 

(2) An (m,n)-dimensional superanalytic supermanifold 
S't,n over BL is then (Rl, Definition 3.1) a Hausdorff space 
with an atlas such that S 't,n is locally homeomorphic to B 't,n 
and the transition functions are superanalytic in the sense of 
Rl, Definition 2.5. 

(3) An (m,n)-dimensional supergroupH is defined to be a 
set that is an abstract group and an (m,n)-dimensional super
analytic supermanifold with a superanalytic map 
H XH---+H: (hl,h2)---+hlh 2-

1 (R2, Definition 2.1). Paralleling 
the result for Lie groups, the set W of infinitesimal left trans
lations on the supergroup form a "supermodule," called a 
"graded Lie module" by Rogers (R2, Definitions 3.1-3.3 
and Theorem 3.4). 

(4) Due to the homeomorphism t, H can also be regarded 
as a 2L - 1 (m + n)-dimensional Lie group with Lie algebra h. 
Then, the even part Wo of W, regarded as a 2L - I (m + n)
dimensional Lie algebra, is isomorphic to h (R2, Proposition 
3.5). 

(5) Conversely, let Wbe a left BL supermodule. Ifh is a 
real Lie algebra such that h:=!!! Wo and if H is a real Lie group 
whose Lie algebra is h, then H can be given the structure of a 
supergroup over B L with supermodule W (R2, Theorem 5.5). 

(6) Suppose {X1, ... ,xm+n} is a basis for W. Letpl' be a 
basis element in BL (see Appendix A). Then, {Xil'IXil' 
= PI'XjO i = l, ... ,m + n,f.l E ML,Iil } is a basis for Wo that has 
the structure of a Lie algebra with commutation relations 
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l<j,k<m+n, f.lEML,ljl' vEML,lkl' (2.1) 

(7) Suppose e denotes the identity in H, and let V' and V 
be open neighborhoods of e. Let rPe: V'---+B't,n be a chart. 
Then, the composition function for supergroups is a map
pingK: rP.(V')XrP.(V')---+rP.(V), defined by 

K(rP.(v 1),rPe(V2)) = rPe(V 1V2)' 't/V I ,V2 E V'. (2.2) 

In terms of coordinates, 
K j(-!,,E) =zi, l<j<m + n, (2.3) 

where -!, y, ~ E B 't,n. 
(8) Since H can also be viewed as a d-dimensional Lie 

group, we can define the composition rule for H as a Lie 
group. Let ifJe: V'---+JR d be the chart at e given by 

ifJe = to rPe. (2.4) 
The composition function is the mapping K: ifJe(V') X ifJ.(V') 
~e(V)' where 

K(ifJe(Vt!,ifJe(v2)) = ifJe(V1V2), 't/V I ,V2 E V'. (2.5) 

In terms of coordinates, 
Kjl'(X,y)=zjl', l<j<m+n, f.lEML,ljl' (2.6) 

where X, y, Z E JR d. 

(9) The supergroup composition rule K j is related to the 
Lie group composition function Kjl' by 

K j(-!,,E) = L Kjl'(t(-!),t~))PI" l<j<m + n (2.7) 
I' E ML.lJI 

(R2, Lemma 5.3). 

III. ONE-PARAMETER SUBGROUPS OF SUPERGROUPS 

In this section, we shall establish the existence and 
uniqueness of one-parameter subgroups of H, when H is 
viewed both as a connected Lie group and as a connected 
supergroup. After developing the concept of a differentiable 
curve in H, we obtain the differential equations describing 
those curves associated with the composition functions of H. 
The main result is then stated and proved. 

We begin by characterizing a differentiabie curve 
through the identity e of the supergroup H. Let r: R---+Hbe a 
mapping such that r(O) = e E H. Given a chart (V,rP a ), where 
Vis a neighborhood of the identity, we can express the differ
entiable curve in coordinate form as 

xj(t)=IIj0rPeOr(t), l<j<m+n, (3.1) 

such that xj(O) = ej = 0 for j = l, ... ,m + n. Here, II j is the 
projection 

IIj:B't,n---+°BL, l<j<m, 

IIj:B't,n---+IBL, m + l<j<m + n. 

(3.2) 

(3.3) 

The homeomorphism l [Sec. II, paragraph (1)] enables 
us to establish a differentiable curve in H viewed as a Lie 
group, because 

x(t) = t(.!(t )). (3.4) 
We now obtain expressions for bases of infinitesimal 

generators of H and differential equations for differentiable 
curves in terms of the composition functions. Let us start by 
viewing H as a Lie group. Following the standard method, 16 

we rewrite the composition function (2.6) as 
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(3.5) 

A curve satisfying Eq. (3.5) forms a connected one-dimen
sional analytic subgroup of H called a one-parameter sub
group of the Lie group H. 

Differentiating (3.5) with respect to s and setting s = 0, 
we obtain a system of first-order ordinary differential equa
tions in the coordinates xJI'(t). They are expressed as 

dXill(t) m + n aKJI'(X(t )..v) I dXku(S) I -=L L 
dt k= 1 ueML,Jkl ayku )\=0 ds s=O 

m+n 

= L L xtu(x(t ))aku, 
k= 1 ueML,lkl 

1 <;.j<;.m + n, J-t EML,IJI' 

Here, 

!l il'("" ... ) I il' (x) = uK x,y 
Xku a ku 

~ )\=0 

(3.6) 

(3.7) 

are the group transformation functions, with 1 <;.j, k<;.m + n 
andJ-t E ML,lil' The real variables aku in (3.6) are 

dXku(S) I 
aku - --- 1 <;.k<;.m + n, 0' E ML,lk I . 

- ds s=o' 
(3.8) 

Continuing with the usual approach, 16 the xtu(x) can be 
used to construct a basis of infinitesimal generators for H, by 
defining the vector fields 

m+n 

X ku = L L xtu(x)axjl" 
i= 1 l'eML,UI 

l<;.k<;.m + n, O'EML,lkl' (3.9) 

These vector fields satisfy commutation relations 
m+n 

[Xku,xlv] = L L Bf:lvXpp, 
p= 1 peML,lpl 

l<;.k,l<;.m+n, O'EML,lkl' vEML,l/I' (3.10) 

where the Lie group structure constants are defined as 

B f:lv = axkU xl;t'(x)lh 0 - axiv Xf:(X)lh 0' 

l<;.k,l,p<;.m+n, O'EML,lkl' vEML,I/I' pEML,lpl' 

(3.11) 

Let us now repeat the above analysis, viewing H as a 
supergroup. From (2.3), we have 

xi(t + s) = K i(.!(t ),.!(s)), 1 <;.j<;.m + n. (3.12) 

A curve satisfying Eq. (3.12) forms a connected one-dimen
sional superanalytic subgroup of H, called a one-parameter 
subgroup of the supergroup H (cf. Ref. 11, Chap. 3). Now, 
differentiate (3.12) with respect to s and set s = 0, as before. 
Using the chain rule (Rl, Proposition 2.12h), we find 

dxi(t) m + n dXk(S) I . 
-d-= L -d- Gk(y) KJ(.!(t),~lI.~=o, 

t k= 1 S s=O 
m+n 

= L ak xl (.!(t )), 1 <;.j<;.m + n. 
k=1 

The transformation function, 

xl(.!) = Gkly) K i(.!,y)ly=o, 1 <;'j,k<;.m + n, 

is defined as in Ref. 12, and the variables 
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(3.13) 

(3.14) 

ak = dXk(S) I ' 1 <;.k<;.m + n, 
ds s=O 

(3.15) 

take values in B L' 

A basis for the left B L supermodule W of His 
m+n 

Xk = L xl (.!)ax)' 1 <;.k<;.m + n. (3.16) 
1=1 

These satisfy the gr~ed commutation relations 

m+" 
[Xk,xd = L C kl Xp, 1 <;.k,l<;.m + n, (3.17) 

p=1 

where the graded structure constants take values in BLand 
are defined by 

C kl = Gk xf(-!)I~=o - (- )lkII/IGIXk(-!)I~=o· (3.18) 

At this stage, we have established the formalism neces
sary for the proof of the principal result of this section. In Lie 
theory, there is a theorem (e.g., Theorem 3.5.1. of Ref. 16) 
that asserts the uniqueness of Ii one-parameter subgroup as
sociated with a vector field in the Lie algebra of the Lie 
group. We will now extend this idea to a supergroup. Once 
the existence and uniqueness of the one-parameter subgroup 
of H associated with a vector field in Wo has been estab
lished, we can then define such important concepts as the 
exponentiation of an element in WOo 

Thus, in the remainder of this section, we shall be con
cerned with the proof of the following theorem. 

Theorem 1: Let H be an (m,n)-dimensional supergroup 
and let Wbe its left BL supermodule. Furthermore, let h be 
the Lie algebra isomorphic to Wo, the even part of W. Given 
any X i=0 in Wo, there exists a unique one-parameter sub
group of H whose infinitesimal generator is X. 

Proof: For a suitable chart (V.f/!e) containing the identity 
e, using (3.16) we have 

m+n m+n m+n 

X = L akXk = L ak L xl (-!)ax)' (3.19) 
k=1 k=1 J=I 

where the ak are Grassmann variables, of which at least some 
are nonzero. We shall be investigating the system of equa
tions (3.13), subject to the conditions xi(O) = ei = 0, 
1 <;.j<;.m + n. 

By the conditions of the theorem, X E h ~ Wo, which im
plies that 

akEoBL, 1 <;.k<;.m, 

ak E 1BV m + 1 <;.k<;.m + n. 

Therefore, 

ak = L akapa' 1 <;.k<;.m + n, 
aeML,Jkl 

instead of the unrestricted summation 

ak = L akapa' 1 <;.k<;.m + n, 
aeML 

and so 
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IXkalXka =/3a Xk' 1,k,m+n,aEML,lk l l forms a basis 
ofh6!!!;Wo· 

To establish the existence and uniqueness of the one
parameter subgroups of H viewed as a supergroup, we shall 
show that the system (3.13) with the specified initial condi
tions has a unique solution x j = gj(t) and that gj(t + 8) 
= K j( g(t ),g(s)) for sufficiently small s and t. This will be 

accomplished by virtue of the homeomorphism L between 
B ';"n and lR d and the uniqueness of the corresponding one
parameter subgroup of H viewed as a Lie group. The compo
sition rule follows from its Lie group analog. 

Thus, we wish to obtain the relationship between (3.13) 
and (3.6). We differentiate (2.7) with respect to yku, 
uEML,lkl' and sety = O. We get 

aK j(.!, ,E) I 
ayku y=o 

(3.24) 

using (3.14). By Lemma 5.1 and Corollary 5.2 of Ref. 12, 

aK j(.!, ,E) I - .i I 
a ku -/3uGk(y)K (.!,,E) , 
~ y=o ~=o 

=/3uxl(.!), l,j,k,m +n, uE ML,lkl' 
(3.25) 

Therefore, we find 

/3eT xl(.!) = L xt(L(.!)) /31t' 
It e M L•1J1 

l,j,k,m + n, uEML,lkl' 

Combining 

(3.26) 

x
j = L x jlt/3It' 1 "i,m + n, (3.27) 

It e M L•1J1 

with Eqs. (3.21) and (3.26), we can rewrite Eq. (3.13) as 

dxj(t) dxjlt(t) 
-- = L --/3It' 

dt ItEML•1J1 dt 

m+n 

= L L aka/3a xl (.!(t )), 
k= 1 aeML.1kl 

l,j,m + n. (3.28) 

Since 1/3# I J.l E M L } is a basis of BL , we can identify coeffi
cients. Thus, 

d jlt(t) m + n 
_x __ = L L aka X~(x(t)), 

dt k= 1 aeML.1kl 

1,j,m + n, J.l E ML,ljl' (3.29) 

which is equivalent to (3.6). We have therefore shown that 
(3.13) follows from (3.6). 

The next step is to assert the existence and uniqueness of 
one-parameter subgroups from (3.6). Observe that (3.29) is a 
system of first-order ordinary differential equations, with 
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initial conditions xjlt(O) = ejlt = 0, 1, j<.m + n, J.l EM L,ljl . 
The equations are associated with the Lie group H whose Lie 
algebra of vector fields (3.9) is h. For X E h, we have 

m+n m+n 

X = L L aka L L X~(x)ax1l<' (3.30) 
k= 1 aeML•1kl j= 1 ItEML•1J1 

By a standard theorem of Lie theory (e.g., Theorem 3.5.1 of 
Ref. 16), we know that the system of equations (3.29) has a 
unique solution 

x jlt = gjlt(t ), 1, j,m + n, J.l EM L,JjI> (3.31) 

which is analytic at t = O. Furthermore, we know that 

gjlt(t + 8) = Kjlt( g(t), g(s)), l,j,m + n, J.l E ML,ljl' 
(3.32) 

also satisfies (3.29), for 8 and t sufficiently small. Therefore, 
the existence and uniqueness of the one-parameter sub
groups of H viewed as a Lie group are established. 

We can extend these results to H viewed as a supergroup 
by recalling that the mapping L: B ';"n-+R d is a homeomor
phism. Thus,~(t) = L-

1
( g(t ))isauniquesolutionof(3.13). In 

terms of components, we write 

gj(t) = L gjlt(t)/3It' l<j<m + n, (3.33) 
It eML•111 

and the one-parameter subgroup of the supergroup H satis
fies the composition rule 

gj(t + 8) = K j( ~(t), ~(8)), 

= L Kjlt(L(~t)), L(~S)))/3It' l,j<m +n, 
ItEML,JJI 

for sufficiently small sand t. 
Thus, Theorem 1 is established. 

IV. EXPONENTIATION AND CANONICAL 
COORDINATES 

(3.34) 

At this stage, we are able to introduce the concept of 
exponentiation and to relate it to the one-parameter sub
groups of a supergroup H. As for Theorem 1, we will tie the 
concept to its analog in Lie groups. Once the link has been 
developed, we will introduce canonical coordinates for H. 

Theorem 2: Let Hbe a supergroup and letg(t) be a one
parameter subgroup of H. Let W denote the left B L supermo
dule of H. Then, there exists an X E Wo, given by 

m+n 

X= L akXk' 
k=l 

where ak is defined in (3.20), such that 

~t ) = exp(tX). 

In terms of components, 

gj(t) = (exp(tXjV, l<j<m + n, 

and 

(4.1) 

(4.2) 

(4.3) 

(exp(t + s)X)j = K j(exp(tX), exp(sX)), l<j<m + n. 
(4.4) 

Conversely, for any X E Wo,~t) = exp(tX)isaone-parameter 
subgroup of H such that (4.4) holds. Formally, we take 
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exp(tX) as the solution ofEq. (3.13). An expansion forexp(tX) 
is given below in this section. 

Proof: H is a d-dimensional Lie group with Lie algebra 
h ~ WOo Let I(t) be a one-parameter subgroup of the Lie 
group H. Then, by standard Lie theory,17 there exists an 
X E h, given by 

m+n 
X= L L akaX/ca, (4.5) 

k= 1 aEML•1kl 

whereXka is defined in (3.23), such that 

g(t) = exp(tX). (4.6) 

The map exp in Eq. (4.6) is the formal solution of Eq. (3.6). 
Due to the homeomorphism t, we do not distinguish sym
bolically between this exp map and the one in Eq. (4.2). In 
terms of components, 

gil'(t) = (exp(tX))il', l<;j<;m+n, p,EML •1il , (4.7) 

and 

(exp(t + s)X )ip = KiP(exp(tX ),exp(sX)), 

l<;j<;m+n, p,EML •1il . (4.8) 

Conversely, for any X E h, g(t ) = exp(tX) is a unique one-pa
rameter subgroup of H such that (4.8) is valid. 

Since t: B L·n_R d is a homeomorphism, our result can 
be extended to supergroups. By (3.33), we have 

gi(t) = L gil'(t)/3p = L (exp(tX ))iPPp' 
pEML,lJI pEML•U1 

= (exp(IX)ji, 1 <;j<;m + n. (4.9) 

Furthermore, by (2.7), we have 

(exp(t + s)XV = K i(exp(tX), exp(sX)) 

L Kil'[t(exp(tX)), t(exp(sX))] PP' 
I'EML •U1 

(4.10) 

for 1 <;j<;m + n. 
Conversely, for any X E h~ Wo, we have from (3.23) 

m+n 
X= L L akaX/ca, (4.11) 

k= 1 aEML,lkl 

(4.12) 

Also, 

gi(t) = L (exp(tX))iPPp, 
I' E ML,lJI 

= (exp(tX)Ji, l<;j<m + n, (4.13) 

defines a unique one-parameter subgroup, satisfying (4.10). 
Thus, Theorem 2 is proved. 
In the theory of Lie groups,16.17 one-dimensional sub

groups of a Lie group are obtained by iteration of infinitesi
mal transformations. As a further illustration of the relation
ship between Lie group and supergroup structures, we shall 
develop the analogous notion of finite displacements for su
pergroups. Simultaneously, we will obtain the expansion of a 
one-parameter subgroup of a supergroup Hby application of 
Taylor's theorem. 
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Let (v,;.) and (V,¢'.) be charts, as described in para
graphs (7) and (8) of Sec. II. By Eq. (3.4), we have x = t(~) for 
x E V. Let fP (x), p, E ML , be a set of analytic functions and 
define 

f(~) = L fP(t(~))Pp' (4.14) 
pEML 

such that f(~)is a B L -valued superanalytic function. 
First, consider the action on each fP (x) of the one-pa

rameter subgroup (4.6) of H viewed as a Lie group. By Tay
lor's theorem,16 we have 

fP(K{x,l(t))) = [exp(tX)fPJ (x) 

= [(1 + tX + (1/2!)t 2X2 + · .. )fP](x), 

P, EML , (4.15) 

where X is a vector field in h, given by Eq. (4.11). However, 

f(K (~, ~/))) = L f PIt 0 K (~, 8(1))) Pp 
pEML 

= L [exp(tX)fl'] (t(~))Pp 
I'EML 

= [exp(IX)f](~) 

= [(1 + IX + (1/2!)/2X2 + ···)fJ(~), (4.16) 

where X is now the vector field (4.12) in Wo~h. 
Conversely, we can start with fIx) as defined in Eq. 

(4.14) and apply Taylor's theorem directly to obtain Eq. 
(4.16). By virtue ofEqs. (4.11)-(4.13) the analysis can be re
versed, yielding Eq. (4.15). 

Furthermore, if ~ is the identity and f = x\ 
1 <;k<;m + n, then 

gk(t) = [exp(tX)xk Je' (4.17) 

Now, from Eqs. (3.16) and (4.12) it follows that 
m +n m+n 

X= L a
l L x/(~)a}(J' (4.18) 

1= 1 i= 1 

Therefore, we have 

1 m+n 
gk(t)=tak+,t 2 L al(Xxl(~))e+"" (4.19) 

2. 1=1 

wheregk(O) = 0, 1 <k<;m + n. 
Let us now turn to a consideration of canonical coordi

nates for H. Ado's theorem for Lie algebras states l8 that 
every Lie algebra has a faithful finite-dimensional represen
tation. As a consequence, every abstract Lie algebra is iso
morphic to a matrix Lie algebra (e.g., theorem 5.9 of Ref. 17). 

For superalgebras, Kac3 has shown the validity of Ado's 
theorem. Now, for a supergroup H with superalgebra W, the 
even part Wo is isomorphic to the Lie algebra h of H viewed 
as a Lie group. This means that Wo has a faithful finite
dimensional matrix representation. 

The exponentiation of a finite-dimensional matrix rep
resentation makes transparent the applications of Theorem 
2. In fact, parametrization schemes for supergroups are con
siderably facilitated by the use of matrix methods, as in the 
case of Lie groups. Examples in the next section will illus
trate these points. 

For Lie groups, there are two canonical parametrization 
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schemes: canonical coordinates of the first and second 
kinds. 16,19 In the former case, a one-parameter subgroup of a 
Lie group is constructed from a one-dimensional subalgebra 
of the associated Lie algebra h. The parameter is then set to 
unity. Thus, 

(

m+n ) gl = exp L L ajl' Xjl' . 
j= I I'eML,iJI 

(4.20) 

Analogously, we define canonical coordinates of the first 
kind for supergroups by 

( 

m+n ) 
~I = exp L aj~ , 

j=1 

where ~ is related to ~I' by Eqs. (4.11) and (4.12). 

(4.21) 

For canonical coordinates of the second kind, individual 
elements of the Lie algebra basis are exponentiated. Pro
ducts of these exponentials are then constructed. For exam
ple, 

m+n 

gil = II II exp (ajl' Xjl')' (4.22) 
j= 1 I'eML,iJI 

Other product sequences are also possible. Making use of the 
relation f3 I' ~ = ~I" we can write canonical coordinates of 
the second kind for supergroups as 

(4.23) 

An interesting point emerges here. A more natural para
metrization, analogous to (4.23), would have been 

m+n 

~III = II exp{aj~), (4.24) 
j= 1 

whereajis given by (3.21). We shall refer to this parametriza
tion as canonical coordinates of the third kind. It has no 
analog in conventional Lie theory. 

In a subsequent paper,20 we develop Baker-Campbell
Hausdorff relations that relate these different schemes. 

V. EXAMPLES: SQM(2) AND OSP(1/2) 

In this section, we illustrate the formal results of the 
earlier sections. The two simple examples we have chosen 
are the semisimple superalgebra of supersymmetric quan
tum mechanics, sqm (2), and the simple superalgebra 
osp{l/2). 

The superalgebra sqm{N) has21 one even generator XI 
and N odd generators X2, ... ,xN + I' It satisfies the graded 
commutation relations 

[XI' X;] =0, 
(5.1) 

where i,j = 2, ... ,N + 1. This general superalgebra, first in
troduced21 into physics in 1981, has received most attention 
in the form sqm(2), although representations for arbitrary N 
have been considered.22 
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For our example, we shall be concerned with sqm(2). 
This superalgebra, already known23 mathematically before 
its introduction into supersymmetric quantum mechanics by 
Witten,21 has in a remarkably short time attracted much 
attention,24-26 including two proposed physical applica
tions.2s 

There are three generators of sqm(2). One, XI' is even 
and two, X2 and X3, are odd. These generators close under 
the graded commutation relations 

(5.2) 

This superalgebra has23 a faithful 2 X 2 matrix represen
tation27 

From it, we shall construct a matrix representation of the 
(1,2)-dimensional supergroup locally homeomorphic to BY 
First, though, let us determine a one-parameter subgroup of 
the supergroup. 

Let 

3 (1 
X= L aj~ =a l 

j= 1 0 
0) 2(0 1) 3 (0 0) 1 +a 0 0 +a 1 0 ' 

(5.4) 

where a l E °BL and a2
, a3 E IBL • Exponentiating, we get 

exp(tX) = exp t (tl aj~ ). 

[ 
I (1 0) 2 (0 1) 3 (0 00)] = exp tao 1 + a 0 0 + a 1 

(5.5) 

For details of this calculation, see Appendix C. Equation 
(5.5) indeed represents a one-parameter subgroup, since 

exp{tX) exp{sX) = exp(t + s)X. (5.6) 

Let us now construct a matrix representation of the su
pergroup, using canonical coordinates of the first kind, Eq. 
(4.21). Let TI be the supergroup representation that we get 
when we set t = 1 in (5.5). 

That is, for q = (a l ,a2,a3
), 

(5.7) 

where the Grassmann variables q are canonical coordinates 
of the first kind. Then, by the homomorphism property, 28 

(5.8) 

whereq 0 Q denotes group composition. Let~ = q 0 Q.ltfol
lows that 
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(5.9) 

We find 

(5.10) 

Therefore, a matrix representation ofthe supergroup in terms of canonical coordinates ofthe first kind is (5.7), where 

(5.ll) 

The supergroup composition law is 

q 0 il = (a l + b I _ !(a2b 3 + a3b 2),a2 + b 2,a3 + b 3). (5.12) 

Let us next turn to a representation using canonical coordinates of the third kind. This scheme is defined in Eq. (4.24). For 
this superalgebra, canonical coordinates of the second and third kinds are equivalent, due to the simple form of the relations 
(5.2). 

We need the subgroup coordinates 

( IX) pI (1 0) I 0B (P2X) (1 p2) 2 I 3 C 0) 3 I exp P I = e 0 1 ' pEL' exp 2 = 0 1 ' P E BL , exp(p X3) = 3 1 ' P E BL • (5.13) 

A representation T3( l!) can be written 

= epl (e ~:2p3 ~2). (5.14) 

Note the difference between supergroup elements in terms of canonical coordinates of the first kind, Eq. (5.7), and those in 
terms of canonical coordinates of the third kind, Eq. (5.14). These two schemes are connected by a BCH relation.20 Due to the 
difference in parametrizations, the supergroup composition laws will be different. 

By the homomorphism property, the representation T3 satisfies 

Let~ = l! 0 q. We find 

Solving the implied equations for Zl, Z2, and r we have 

Zl = K I( l!,q) = pi + ql _ p3q2, 
(5.17) 

Z2 = K 2(l!,q) = p2 + q2, r = K3(l!,q) = p3 + q3. 

Therefore, 

T3(l!)T3(q) = T(P1 + ql _ p3q2,p2 + q2,p3 + q3), 

with supergroup composition law 

l! 0 q = (pi + ql _ p3q2,p2 + q2,p3 + q3), 

in canonical coordinates of the third kind. 

(5.18) 

(5.19) 

Let us now turn to our second example: the (3,2)-dimen
sional supergroup associated with the five-dimensional su
peralgebra osp(l/2). This superalgebra arises26 in the treat
ment of spin-orbit coupling for the harmonic oscillator, for 
example. In fact, a supergroup for it has previously been 
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(5.15) 

(5.16) 

I 
constructed,29 but the method lacked the superanalytic su
permanifold structure of Refs. 9 and 12. 

The superalgebra has three even generator.s XI' X2, and 
X3 and two odd generatorsX4 andXs' They satisfy the grad
ed commutation relations 

[XI,x2] = - 2X3, [X3,xI] = XI' 

[X3,x2] = - X2, I X4,x41 = XI' 

I Xs,xs I = X2, I X4,xs I = X3, 

[XI,x4] = 0, [X2,x4] = Xs, 

[X3,x4] = ~ X4, [XI,xs] = - X4, 

[X2,xs] = 0, [X3,xs] = - ~ Xs. 
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In this case, we shall be satisfied with the construction of 
an element of the supergroup in B t2 using canonical coordi
nates of the third kind, including the associated supergroup 
composition law. The calculation is somewhat tedious, but 
presents illuminating examples of the application of simple 
special superfunctions, i.e., functions of Grassmann varia
bles. 

The superalgebra has3
•
30 a faithful 3 X 3 matrix repre

sentation27 

X,~G 
0 !). X, ~G 

0 

~), 0 0 
0 -1 

0 0 

x,~G 
0 

~). ! X4= 1 
0 0 -

0 -! {l 

0 0 0 

0 
1 

0 -
{l 

X5= 0 0 0 (5.21) 

1 
0 0 --

{l 

The subgroup coordinates take the form 

explp'X,} ~ G 
o 0) 
1 pi , 

o 1 

exW'x,}~G 
0 

V' _p2 

exW'x'}~G 
0 

o ) eP3/2 o , (5.22) 

0 e- p3/2 

explp'X,} ~ G'~v'2 o P'/1 10, 

o 0 

exp(p'X,} ~ ( ~ p'/v'2 0) 
1 O. 

_p5/{l o 1 

A representation T3(P) can be defined with canonical 
coordinates e of the third kind: 

T3(e) = exp(pIXI) exp(p2X2) exp(p3X 3) 

(5.23) 

Computing the matrix product, we obtain the representation 

(1 _ plp2)e P3/2e - p4pS/2 pie - p3/2 . 
p5/{l p4/{l ) 

(5.24) 
2 p3/2 _p4pS/2 _p3/2 -p e e e 

From the homomorphism property, 

T3(e)T3(q) = T3(e 0 q), (5.25) 

we can compute the composition rule. We follow the same 
procedure as in the previous example. Some details of the 
general method are given in Appendix C. Also, Appendix B 
contains our expressions for reciprocals and natural loga
rithms of Grassmann variables. 

Let us define 

Q = 1 _ p2q l eP3, P = p2eP
3 + q2Q. (5.26) 

The results are 

le P3 1 eP3 
K I(e,q) = pi + -T -Q2 

X [qlp4p5 + eq3/2p4q4 + qleQ3/2p5q4), (5.27) 

K 2(e,q) = PQe- p3 + Hq2 _ p2(1 _ qlq2)(Q _ 1)] p~5e-p3 

+ Hp2e-p3eQ3/2 _ p2Qe Q3/2J p4q4 

+!P[1_(1_qlq2)Q] e-p3eQ3/2p5q4 

361 

+ !pQe-p3e-Q3/2p4q5 

+ ![qIPQe-p3e q3/2 _ Qe- p3e-q'12] pSqS 

+ ![P(Q + 1)e- p3 + p2qIQe- Q3 ] p~Sq4qS, 
(5.28) 
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I 
K 3(e,q) = p3 + q3 - 21n Q 

(p2qleP3p~S + p2eP3eq'/2p4q4 + eQ3/2p5q4) 

Q 

K 5( e,q) = eP4pS /2q5 _ q2e q3/2e - q4QS /2p4 

(5.29) 

(5.30) 

+ (1 - qlq2)eq'12e - q4qS/2p5. (5.31) 

The correct structure constants follow directly from Eqs. 
(3.14) and (3.18). 
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APPENDIX A: GLOSSARY OF FREQUENTLY USED 
SYMBOLS 

Here, we give a glossary offrequently used symbols. We 
adhere as closely as possible to the conventions of Rogers. 9.12 

real Grassmann algebra with L generators 
set of integer sequences, with 
/-l = (/-ll,· .. ,/-lk)' 1</-l1 </-l2 < ... </-lk<L, 
l<k<L; n is the null sequence 

basis element in B L; /30 = 1 
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sial 

E(a) 

the "soul" of a e Jj L' i.e., the nilpotent 
part ofa 
the "body" of a e B L' given by 
E(a).1 = a - sIal 
the subset of ML with an even (odd) 
number of elements 

d=2L
-

I (m+n) 

"fiat superspace": the Cartesian pro
duct of m copies of the even part, ° B L' of 
B L with n copies of the odd part, I B L 

dimension of B 'E,n viewed as a vector 
spaceoverR 

H 
homeomorphism t: B 'E,n-+R d 

supergroup; also, supergroup viewed as 
a Lie group 
left B L supermodule 
Lie algebra with Lie group H 
even part of W, isomorphic to h 
element in B 'E,n 
element in R d 

K(~,y) 
K(x,,) 
xj(~) 

composition mapping for supergroups 
composition mapping for Lie groups 
transformation function for super-
groups 

x'!: (x) transformation function for Lie groups 

APPENDIX B: LEMMAS CONCERNING 
SUPeRFUNCTIONS 

In this Appendix, we prove several lemmas concerning 
the properties of superfunctions, i.e., functions of Grass
mann variables. These lemmas are of great help in the techni
cal calculations of Sec. V. 

Lemma Bl: Let XI' x2 e IBL. Then 

exp(xlx2) = 1 + X IX 2' (Bl) 

Xj exp(xlx2) = Xj' j = 1,2, (B2) 

exp(AxIX2) + P IX2 = exp(A + P,)xIX2' A, p, e R. (B3) 

Proof: Expanding exp(xlx2)' we have 

exp(xlx2) = 1 + XIX2 + (1/2!)(XIX2f + ... , (B4) 

The series terminates after the second term since xJ = 0 for 
Xj e IBL • 

From (Bl), for j = 1,2, 

Xl exp(xlx2) = xj(1 + XIX2) = Xj' (BS) 

Expanding the exponential in Eq. (B3), we get 

exp(AxIX2) + PIX2 = 1 + A.xIX2 + P IX2 

= 1 + (A + P,)xIX2 

= exp(A + P)xIX2' (B6) 
Lemma B2: Let a e BL, E(a)#O. Then, 

1/a = [1/E(a)](1 - a + a2 - ... + (- an (B7) 
for n <.L, where 

, 
a = L al'/3,.. (B8) 

l'eML 

The prime on the summation indicates that p, = n is ex
c]uded, and al' = aI'IEla). 

Proof: For 4O(a) #0, 

1/a = l/[E(a).l + s(a)) = 1/E(a)(1 + a). (B9) 
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Let Ita) = 1/(1 + a). Now, expand Ita) in a Taylor series 
about a = 0: 

f(O) = 1, 

:~ 10 = -/31" (BlO) 

a
2

f 1 aal' aa v ° = 2/3v /31" 
and so on. Thus, 

f(a) = 1 - L al'/31' + L L a v/3val'/31' - ... 
I'EML l'eML veML 

= 1 - a + a2 
- '" • (Bll) 

However, a is nilpotent,9 i.e., (at # 0 but (a)n + I = 0 for some 
n<.L. This means that the series converges for all finite val
ues of a 1'. Hence, the lemma is proved. 

LemmaB3: Leta eBL, E(a)#O. Then, 1/a is the inverse 
of a, i.e., 

(1/a)o = a(1/a) = 1. (BI2) 

Proof: We have 

a(1/a) = E(a)(1 + a)[(1/E(a))(1 - a + a2 - ... + (- at]) 

= (1 + a)(1 - a + a2 - ... + ( - a)n) 

= 1 - a + a2 
- ... + ( _ a)n 

+ a - 0.1 + .. , - ( - at + ( - at + I 

= 1. (B13) 

The proof for (1/a)o is analogous. 
Lemma B4: Let a e °BL such that E(a) #0. Then, 

bala = ab la = b, (BI4) 

for any b e °BL • 

Proof: Since a,b e °BL, ab = ba. The rest follows from 
LemmaB3. 

Lemma B5: Let a e ° B L such that E(a) > O. Then, 

In a = In E(a) + a - a2/2 + ... - (- t(anln), (BlS) 

where n<.L and a is defined in Eq. (B8). 
Proof: It maybe shown that the definition (BlS) for In a, 

aeoBL, E(a»O, is the inverse of exponentiation, i.e., 
exp(ln a) = a. It follows that 

In a = In E(a)(1 + a) = In E(a) + In(1 + a), (BI6) 

where the second equality is obtained by noting that for any 
a e °B£> E(a)#O, there exists a unique be °BL such that 
eb=a. 

Let f(a) = In(1 + a) and expand /(a) in a Taylor series 
about a = O. Then, 

flO) = 0, af I =/31" 
aal' ° 

and so on. Thus, 

f(a) = a - a2/2 + ... , (BI8) 

which terminates for some n <.L, since a is nilpotent. Hence, 

In(1 + a) = a - a2/2 + ... - (- tWin), (B19) 

which is valid for any finite a. 
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APPENDIX C: SOME DETAILS OF TECHNICAL CALCULATIONS 

Here, we provide some details of the technical calculations of Sec. V. Let us repeatthe steps in Eq. (5.5). From Eq. (5.4), we 
have 

exp(tX) = exp {t [a l (~ ~) + a2 (~ ~) + a3 (~ ~)]} 

=(~ ~)+t[al(~ ~)+a2(~ ~)+a3(~ ~)]+~;[al(~ ~)+a2(~ ~)+a3(~ ~)r+· ... (Cl) 

We adopt the convention that matrices with Grassmann variable entries are linear combinations of the generators and 
their products, multiplied from the left by Grassmann parameters. For example, in this convention, 

(a
l 

a2) I (1 0) 2 (0 1) 3 (0 0) 
a3 al : = a ° 1 + a ° ° + a 1 ° . (C2) 

Expression (CI) may be simplified by performing the matrix multiplications, being careful to recall that an odd generator 
must anticommute with an odd Grassmann variable. Thus, 

(C3) 

This strange-seeming result arises because the faithful matrix representation that we are using for sqm(2) cannot incorporate 
the effects of the odd Grassmann variables. For example, 

[ 
I (1 0) 2 (0 1) 3 (0 0)]2 

a ° 1 +a ° 1 +a 1 ° 
= I (1 0) 1 (1 0) 1(1 0) 2 (0 1) a l (1 0) a3 (0 0) 

a ° 1 a ° 1 +a ° 1 a ° ° + ° 1 1 ° 
+a

2 (~ 1) 1 C 0) 2 (0 1) 3 (0 0) 3 (0 ° a ° 1 +a ° ° a I ° +a 1 
= (al)2 (~ 0) 2a1 2 (0 1 + a ° 1) 2a13 (0 ° + a I 0) 2 3 (0 -a a 

° ° 
= (al)2 (~ 0) 2a1 2 (0 1 + a ° 1) 2a13 (0 ° + a 1 

0) 2 3 C ° -a a ° 
where we have used Eq. (C3) to go from Eq. (C4) to Eq. (C5). 
The final step follows because the Grassmann variables a2 

and a3 are odd. We treat the matrices multiplying the pro
duct a2a3 in Eq. (C6) as even. 

The expression (Cl) then reduces to 

I (1 - t 2
a

2
a
3/2 ta2 ) ex tX _eat 

p( ) - ta3 1 + t 2a2a3/2 . (C7) 

Using Lemma Bl, we find the desired result, Eq. (5.5). 
As a second example, we provide an explanation of the 

solution (5.10) ofEq. (5.9) for ~in terms ofq and I}. To com
pute an expression for Zl, take a product of the diagonal 
elements: 

X (e02a3/2eb2b3/2 _ a3b 2), 

= exp(2(al + b I) _ a2b 3 _ a3b 2), (C8) 

by Lemma Bl. This implies the solution for Zl given in Eq. 
(5.10). 

Next, note that 

(fIr = eol + b I (a2eb 2b 3/2 + b 2e - 0203/2). (C9) 

Substituting for exp(zl) from (5.10) and applying Lemma Bl 
again, we find the result for Z2 given in (5.10). The solution 
for Z3 is similar. 

363 J. Math. Phys., Vol. 27, No.1, January 1986 

I 

0) I (1 0) 3 (0 0) 2 (0 1) ° a ° 1 +a lOa ° ° ' (C4) 

~) (~ ~) _ a
3
a

2 (~ ~) (~ ~), (C5) 

0) 23(0 0) ° +aa ° 1 ' 
(C6) 
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A new method of constructing the symmetry-adapted linear combinations 
based on the correspondence theorem and induced representations 
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The theory of induced representations is incorporated into the method of constructing symmetry
adapted linear combinations for a symmetry group based on the correspondence theorem 
developed previously. The theory is effective for a highly symmetric molecule with a set of 
equivalent radicals, each of which again consists of a number of equivalent atoms. An illustrative 
example is given to construct the internal symmetry coordinates of molecular vibrations of 
qCH3)4 with the frozen configuration belonging to the point group Td • 

I. INTRODUCTION 

In previous papers l
,2 (hereafter referred to as I and II), 

the author has introduced a general method of constructing 
the symmetry-adapted linear combinations (or simply 
SALC's) of equivalent atomic orbitals of a molecule belong
ing to a symmetry group G. This method has been extended 
to construct the symmetry coordinates of molecular vibra
tions3 (referred to as III). It is based on the correspondence 
theorem, which describes the parallelism between the 
SALC's and the elementary basis functions l

•
4 of the space 

variables belonging to the same irreducible representations 
(or simply irreps) of G. More specifically, let S (s) be a set of s 
equivalent points in space with respect to G. Then the 
SALC's of s equivalent basis functions located at S (s) are 
described by the elementary basis vectors defined on the s
dimensional vector space S (s). The method is direct and gen
eral. It is effective for degenerate as well as for nondegener
ate irreps. It requires neither additional symmetry 
consideration of the equivalent basis functions nor the actual 
matrix representations of the irreps. It simply requires the 
knowledge of elementary basis sets. This is quite a contrast 
to the conventional method of the projection operators. 

Let A(s) be the principal induced representation of G rel
ative to the subgroup H which leaves a point in S (s) invariant. 
Hereafter, it will simply be called the permutation represen
tation of G by H. Now, if A(s) is not simply reducible, the 
method of the correspondence theorem becomes laborious 
since then it is necessary to introduce more than one set of 
mutually orthogonal elementary basis vectors on S (s) for 
some irreps. This kind of undesirable situation arises when 
S (s) consists of a number of equivalent subsets, each of which 
again consists of a number of equivalent points. Such a set 
may conveniently be said to be doubly equivalent. A molecu
lar example can be seen in the cyclopropane (CH2h belong
ing to D3h • In such a case, a similar difficulty also arises in the 
ordinary method of the projection operators. A way out of 
this difficulty was introduced through examples by Wilson, 
Decius, and Crosss in their treatise on molecular vibrations. 
It is based on the induced representation6-8 of G via the ir
reps of an intermediate subgroup K (H < K < G ) that leaves 
one of the equivalent subsets invariant. Their treatment was, 
however, limited to the case where the intermediate sub
group K has only nondegenerate irreps. 

The purpose of the present work is to incorporate the 
theory of induced representation into the method of the cor
respondence theorem in its full generality. For this purpose, 
we shall first reformulate the induced representation of a 
group G based on a simple algebraic identity that follows 
from the coset decomposition of G. It effectively eliminates 
the complicated arguments encountered in the conventional 
heuristic approach.6 With a minimum presentation of the 
general theory we shall then express the permutation repre
sentation A (s) of G by H in terms of the permutation represen
tation A(n) of G by K with index n using the transitivity of 
induction. This may avoid the aforementioned difficulty 
since A(n) may simply be reducible even if A(s) is not (Sec. II). 
We shall then construct the general expressions for the 
SALC's of the equivalent basis functions on S (s) via those on 
Sin), which provides the basis of Ain

) (Sec. III). As an illustra
tive example we shall apply the formalism to construct the 
internal symmetry coordinates of vibration for the tetra
methyl methane molecule qCH3)4 with the frozen configu
ration belonging to Td • 

II. BASIC THEORY 

Let G = {A 1 be a finite group and K = {B 1 be a sub
group of G with index n. The left coset decomposition of G by 
K may be written as 

(2.1) 

where the A/s are the coset representatives. It means that 
any element of G can be expressed as a product of a coset 
representative and an element of K. Thus, we obtain an iden
tity 

AAv = L t5(B, A", -IAAv)A",B, A E G, (2.2) 
""BEK 

where t5(X, Y) is Kronecker's delta. This is the basic identity 
for the induced representations of G via the representations 
ofK. To see this, let {\liP;; i = 1,2, ... ,dp J be the basis belong
ing to a representation D P (B ) of K. Then operating the both 
sides of(2.2) on this basis we arrive at the induced representa
tionsD(/31 )(A) ofG via D (/3)(B) of K, 

D(/31)(A),ui,v; = L t5(B,A", -IAAv)D(/3)(B)ji' (2.3a) 
BEK 

through the induced basis 
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\II(tI1 lv/ = Av \IIp/, V = l, ... ,n, i = l, ... ,dp. (2.3b) 

Let H = (e} be a subgroup of K with index m and let 
the left coset decomposition of K by H be 

(2.4) 

Then, from (2.1) and (2.4) we obtain the left coset decomposi
tion of G by H, 

(2.5) 
v.u 

This leads to the transitivity ofinduction9 

A A 

(H t K) t G = H t G (2.6) 

written in terms of the notations due to Robinson.6
•
7 Here H 

A 

denotes a representation of Hand (H t K) the induced repre-
A 

sentation of K via H. 
In a simple special case where D (tI I is the identity repre

sentation of K we have from (2.3a) the permutation represen
tation of G by K: 

A(lIl(A )v~ = Lc5(B,A~ -IAAv)' (2.7) 
B 

It describes the permutations of the cosets of K by the ele
ments of G. Analogously, one obtains the permutation repre
sentations A (ml(B ) of K by H from (2.4) and A (al(A ) of G by H 
from (2.5). Then the transitivity of induction (2.6) yields 

A(al(A) = A(m I I(A), VA e G. (2.8) 

For the present purpose we need the relation between 
A(s)(A) and A(lIl(A) ofG. To obtain this we shall first express 
A (ml(D ) of K by a representation subduced by a representa
tion of G. Obviously, A (al(A ) of G subduces a representation 
of K but it is not equal to A (ml(B ) in general. One way to find 
such a subduced representation is through decomposition of 
A(ml(B) into its irreducible components, 

(2.9) 

where - denotes the equivalence and D (tI I(B ) is an irrep of 
K. Using the group and subgroup compatibility tables 10 one 
obtains 

(2.10) 

where D (a I I(D) is the representation of K subduced by 
D (al(A ) of G. In general, there exist more than one choice of 
the set (D (al(A )} that are compatible with the set {D (tI I(B )} , 
as will be discussed later. 

Now, let D (a I I I(A ) be the induced representation of G 
via the subduced representation D (a I I(B) of K. Then we 
have from (2.3a) the following equivalence: 

D(a I n(A )_A(nl(A )XD(al(A). (2.11) 

Combining (2. 7H2.l1) we obtain the desired relation in a 
factorized form: 

(2.12) 
a 

This reduces the problem of constructing the SALC's of the 
equivalent basis sets belonging to A (al(A ) of G to those be-
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longing to A(nl(A )XD(al(A) of G. Note that the basis sets 
belonging to two different A(nl(A )XD (al(A)'s are orthogonal 
provided that the overlap integrals are neglected. Obviously, 
one can extend the above result to construct the SALe's of 
those belonging to A(SI(A )XD(Al(A) of G through those of 
A(n)(A )XD(a)(A )XD(Al(A), as will be formulated explicitly 
in the next section. 

We shall next discuss the nonuniqueness of the factori
zation (2.12). Let is)(A ), inl(A ), ia)(A ) be the characters of 
A(sl(A), A(nl(A), andD(al(A), respectively. Then we have from 
(2.12) 

(2.13) 

If K is a proper subgroup of G, then any coset representative 
of K that is not an element of K permutes all the cosets of K as 
well as those of H( <K). Accordingly, is)(A )li"l(A) be
comes indefinite for such an element of G. This establishes 
the nonuniqueness of (2.12) and hence of (2.10). Since this 
nonuniqueness should not affect the final result we can 
choose the set {D (a)} in (2.10) such that it has the most con
venient elementary basis sets. 

In particular, if one can choose D (a)(A ) of G such that 

D(a)(A")/j = c5ij (2.14) 

for all the coset representatives Av of K, then we have 

D(al n(A) = A(nl(A )XD(al(A), (2.15) 

where both sides are truly equal (not within a similarity 
transformation). This is possible, however, if and only if the 
set of coset representatives {Av} of K forms an invariant 
subgroup N of G. In such a case G is called the semidirect 
product of N by K and is denoted by8 

G=N~K, N= {Av}. (2.16) 
For such a G, every irrep D (tI)(B) of K engenders an irrep 
D (al(A ) of G that contains N in its kernel so that 

D(a I I(B) = D(tI)(B), VBeK. (2.17) 

This choice is particularly convenient for constructing 
SALC's since then one can use the induced basis for the basis 
of A(n)(A )XD(a)(A) (see 3.12). 

The semidirect groups occur quite frequently for highly 
symmetrical molecules or crystals. For example, in the case 
of cyclic conjugate double bond system of hydrocarbons, 
(CH)n' belonging to Dnh , we haveDnh = en ~ C2v ' For the 
tetramethyl methane qCH3)4 with the frozen configuration 
belonging to Td, we have Td = D2 ex e3v ' For a symmorphic 
space group G, we have G = T ex Go, where Tis the transla
tional group and Go is a point group that describes the rota
tional symmetry of the crystal. 

III. CONSTRUCTION OF SALC's 

We shall first introduce a set of equivalent points in 
space that provides the basis of the permutation representa
tion A (s) of G introduced in Sec. II. Let If 1 be a point in space 
thatisinvariantwithrespecttoH «K <G). Then from (2.5) 
the basis of A(s) is given by the set S(SI defined by 

1;.0- =AvBulfl' (3.1) 

V = 1,2, ... ,n, u = 1,2, ... ,m. 
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Here both A I and B I represent the identity element. Analo
gously, the subset slml = {r?u J provides the basis of.:1(ml of K 
by H. The basis set S (n) = {~J belonging to a (nl of G by K is 
given by 

_D ~ ~u rv = £.. -, v = 1,2, ... ,n, 
u m 

(3.2) 

where r? is invariant with respect to K. 
The above system of numbering the equivalent points in 

space is quite natural for a doubly equivalent set. The subset 
S (ml = {r?u J merely permutes itself under B e K while it 
transforms to another subset S (ml v = {~u J under Av e G. In 
terms of these equivalent points, the permutation represen
tations take more explicit forms. For example, 

(3.3) 

Now, following (2.12) we shall construct the SALC's of 
the equivalent basis functions defined on S (sl through those 
on S (n l. Let us consider the simplest special case of the equi
valent scalar functions defined by 

(3.4) 

Extension from this simple case to the general case is rather 
trivial. Let {uai(r) J be an elementary basis set belonging to 
D (al(A ) of G contained in (2.12). It follows from the corre
spondence theorem developed in I and II that the basis be
longing to a (nl(A ) X D (al(A ) of G is given by 

(3.5) 
u 

Here, ~ on the right-hand-side is inserted for convenience. If 
D (YI(A ) is an irrep contained in a(nl(A ) xD (al(A ), then its 
basis is given by 

tf'Yj,a(r) = L [TYj(r')g'";(r'fL, = r~tPa;(r, ~), (3.6) 
v, ; 

where {TYj(r') J is an operator basis of D Y(A ) and {~i(r')] is 
an elementary basis set of D (al(A ) [see Sec. II (2.6)]. Combin
ing (3.5) and (3.6) we simply write 

(3.7) 
v,u 

where the linear coefficients are defined by (3.5) and (3.6). 
We shall next extend the above result for the general 

case. Let { jAp (r - ~u) J be an equivalent basis functions be
longing to a(SI(A ) XD (AI(A ) of G. Then simple replacement 
of tPvu(r) in (3.7) by jAp(r - ~u) yields, for the basis belong
ing to D (YI(A ) XD (AI(A ) of G, 

(3.8) 
v,u 

Accordingly the basis of D (.5I(A ) of G contained in the direct 
product D (YI(A ) xD (AI(A ) of G is given by 

(3.9) 

where the linear coefficients are the coupling coefficients for 
the direct product D (a)(A ) X D (AI(A ). These are tabulated by 
Koster et al.1O for the 32 point groups. A method of their 
construction has also been discussed in II based on the corre
spondence theorem. The above two equations (3.8) and (3.9) 
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describe all the SALC's of jAp(r - ~u) defined on SIs) 

through the decomposition (2.12) in the following steps: 

D(.51 eD(YlxD(AI e (a(nIXD(a))XD(AI e a(sIXD(AI. 

(3.10) 

Finally, we shall discuss the subtle difference between the 
basis of a(nl(A )XD(al(A) given by (3.5) and the basis of 
D (a I tI(A ) given by 

n 

tP(a I tlv;(r) = L ua;(r?u - r?ltPvu(r). (3.11) 
u=1 

Here, the linear coefficients are independent of v while those 
of tPai(r,~) are dependent on v in general. These two bases 
are connected by 

tPa;(r, ~) = L tP(a I tlvj(r)D (al(Avfij' 
j 

(3.12) 

As is discussed in (2.14) and (2.15), both bases become identi
cal in the case when D (al(A ) is an engendered irrep of G. This 
will be explicitly shown by the illustrative example given in 
the next section. 

IV. ILLUSTRATIVE EXAMPLE 

To show the effectiveness of the present formalism we 
shall first construct the SALC's of the s-orbitals of the 12 H 
atoms in the tetramethyl methane molecule QCH3)4 with 
the frozen configuration belonging to the point group Td • 

The subgroup H that leaves an H atom invariant is Cs while 
the subgroup K that leaves a (CH3) radical invariant is C3 •• 

Since Td = D2 <2< C3., we can use the engendered irreps of Td 
from the irreps of C3• in constructing the SALC's. The result 
is then applied to construct the internal symmetry coordi
nates of the molecule under small vibrations. 

A. The SALC's of C(CH3)4 

Let us define the set of coordinates of 12 equivalent H 
atoms, S(l2) = {~u' V = 1, ... ,4, u = 1,2,3 J following 
(3.1). We place the coordinate origin at the central carbon 
atom, and define the set of the coordinates of the four equiva
lent carbon atoms S (4) = {~J in the order as follows: 

(1, 1, 1), (- 1, - 1, 1,), (- 1, 1, - 1), (1, - 1, - 1). 
(4.1) 

These are given in a relative scale. This is sufficient to deter
mine the SALC's since the elementary basis functions are 
homogeneous with respect to the space variables. Let r? be 
the invariant point with respect to the subgroup C3• and the 
coordinates of the three H atoms bonded to the carbon at r? 
be 

r?u - r? = (1,0,0), (0, 1,0), (0,0, 1). (4.2) 

Then the remaining coordinates of S(l2) are automatically 
defined by three C2 operations belonging to D2 according to 
(3.1). 

For later use we may classify the irreps of Td by their 
elementary bases, 

1, 

(u, v), 

r 2; xyz, 
r 4; (x, y, z), 

(4.3) 

r 5; (x, y, z), 
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where u = ~ - x2 - y2, V = 31/2(X2 - r), and 
x = yz' - zy', etc. The above notations r v are in accordance 
with those of KDWS (see Ref. 10). 

The primary problem is to construct the SALC's of the 
12 scalar functions ~vu(r) located at the H atoms ofqCH3)4' 

Following (2.9) we first decompose the permutation repre
sentation 11(3) (B) of C3v into its irreducible components, 

(4.4) 

From the compatibility table lO ofirreps between Td and CM 

we find that the engendered irreps corresponding to the 
above are given byll 

r 1 + r3 E Td • (4.5) 

Thus, from (2.12) we have 

11(12) -11 (4) + 11(4) X r 3 e Td • (4.6) 

From (3.5) the equivalent basis functions belonging to 11(4) 

are given by 

~v(r)=3-1/2(~vl +~v2 +~v3)' V= 1, ... ,4, (4.7a) 

and those belonging to 11(4) X r 3 are 

~u(r,~) = 6-1/2(~V3 - ~vl - ~v2)' 

(4.7b) 
~v(r,~) = 2-1/2(~vl - ~v2)' 

Note that the linear coefficients in (4.7) are independent of v 
since we have chosen the engendered irreps of Td in (4.5). 

The rest of calculation is almost routine now with the 
use of (3.6). For the later application, however, we write 
down the final expressions of the SALC's of 12 s-orbitals of 
Hatoms. 

(i) The SALC's e 11(4) = r 1 + rs: 

1 
¢'(r) = 4" 5; ~v, 
"'x(r) =.!. L xe~v(r), 

2 v 

(4.8a) 

~y(r) = ! Lye~v(r), 
(4.8b) 

1 "'z = "2 5; ze~v(r), 
where the coordinates (xe,ye, ze) are given by (4.1). 

(ii) The SALC's e 11(4)xr3 = r3 + r4 + rs: 
1 r 3; "'u(r)=-L~u(r,~), 
2 v 

1 
~v(r) ="2 5; ~v(r. ~), 

r 4 ; "'.dr) = 8-1/2Lxe(~V2 - ~v3)' 

v 

"'z(r) = 8- 1/2L ze(~vl - ~v2)' 
v 

rs; "'~ =(24)-1/2Lxe(2~Vl -~v2 -~v3)' 
v 

v 

"'; =(24)-1/2Lze(~vI +~v2 -~v3)' 
v 

368 J. Math. Phys., Vol. 27, No.1, January 1986 

(4.9a) 

(4.9b) 

(4.9c) 

Here we have used theoperatorbasisx = ya laz - z a lay .... 
for (4.9b) and a lax, a liJy, a laz for the (4.9c). 

As is expected, two basis sets ("'x, "'y, "'z) and 
("'~, "';, "';) belonging to rs of Td are orthogonal provided 
that the overlap integrals are neglected. The results given 
above provide the starting point for the calculation LCAOMO 

or the internal symmetry coordinates of qCH3)4' which will 
be discussed next. 

B. The Internal symmetry coordinates ofC(CH3)4 

There exists a total of 45 internal coordinates of small 
vibrations for the molecule qCH3)4 e Td • Their symmetry 
coordinates may be constructed from the results given in 
Sec. IV A for the most part by mere correspondence between 
the internal coordinates and the equivalent basis functions 
through the rules given in III. 

1. The bond stretching coordinates 

There exist 12 C-H bond stretching (svu; v = 1, ... ,4, 
u = 1,2,3) e 11(12) and 4 C-C bond stretchings I tv) el1(4). 
Since I Svu ) transforms like the set of equivalent scalar func
tions I ~vu ), by replacing ~vu in (4.7) with Svu and using (4.8) 
and (4.9) we obtain their symmetry coordinates written as 
follows: 

s, (su,sv)' (sx,Sy,sz), 

(4.10) 

(sx, Sy, sz), (s~, s;, s;). 

Analogously, replacing ~v in (4.8) with tv we obtain the sym
metry coordinates of the C-C stretchings written as 

(4.11) 

2. The valence angle bending coordinates 

There exist 12 H-C-H bendings lavu ), 12 C-C-H 
bendings {p vu ), and 6 C-C-C bendings {y v 1'; v> /.t, 
1,2,3,4). All these coordinates transform like scalar func
tions. More specifically the former two sets transform like 
the stretchings {svu) and thus their symmetry coordinates 
are given by replacings in (4.10) with a or p. Among these 24 
angle bendings, however, only 20 of them are independent 
because of redundancy conditionss: 

3 

L (avu +Pvu) = 0, v = 1,2,3,4. (4.12) 
u=1 

The remaining 6 C-C-C bendings {y v 1') belong to the per
mutation representation 11(6) based on S (6) = I (~ + r:! )/2, 
V<l-t, 1,2,3,4) given by 

(0,0,1), (0, 1,0), (1,0,0), (- 1,0,0), 

(0, - 1,0), (0,0, - 1). 

The irreps contained in 11(6) are 

11(6) = r l + r3 + rs, 

(4.13) 

(4.14) 

and their symmetry coordinates are, using the correspon
dence theorem, 

(4. 15a) 

r 3 ; Yu = (12)-1/2(2YI2 - Y13 - YI4 - Y23 - Y24 + 2Y34)' 

Yv =! (- YI3 + Yl4 + Y23 - Y24)' (4. 15b) 
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rs; y" = 2- 1/2(YI4 - Y23)' Yy = 2- 1/2
(YI3 - Y24)' 

Yz = 2- 1/2(YI2 - Y34)' (4. 15c) 

Note that only five of them are independent since Y = o. 

3. The hindered rotations of the 4 CH3 radicals about the 
respective C-C bond, (Tv J 

According to the correspondence rules given in III, the 
hindered rotation transforms like a pseudoscalar xjiz e r 2 of 
Td analogous to a torsion. Thus, the set (Tv 1 belongs to 
11(4) X r 2' The irreducible components are 

(4.16) 

Since r 2 is one dimensional their bases are given by, replac
ing ~v in (4.8) with Tv' 

r 2; T, (4. 17a) 

r 4; (Tx' Ty ' Tz). (4.17b) 

These four modes will tum into free rotations as the tem
perature rises. 

In the above, we have obtained a total of 45 symmetry 
coordinates for the molecule qCH3)4 under small vibra
tions; there exist 16 stretchings, 25 bendings, and four hin
dered rotations. It is noted that the completely symmetrical 
hindered rotation T'is the only vibrational mode belonging to 
r 2' Summarizing these we have 

r 1; s, t, a,p, 
r 2; T, 

r 3; (s", sv)' (a", av), I/J", Pv), (y", Yv), 

r 4; (sx' Sy' sz)' (ax' ay ' az), I/Jx' P" Pz)' 
(Tx' Ty ' Tz), 

rs; (s",Sy,sz)' (t", ty, tz)' (a""ay,az), 

1/J""Py,Pz), (y", Yy' Yz)' (s~,s;,s;), 

(a~,a;,a;), I/J~,P;,P;). 
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(4.18) 

The redundacy conditions for the valence angle bendings are 
given by (4.12). 

v. CONCLUSION 

By incorporating the theory of induced representation 
into the correspondence theory we have formulated a syste
matic method of constructing the SALC's of equivalent 
atomic orbitals for a molecule with a doubly equivalent 
structure. It requires only the knowledge of the elementary 
basis functions belonging to the irreps of the symmetry 
group of the molecule. The general expressions of the 
SALC's are given by (3.7H3.9). To show its effectiveness we 
have applied them to construct the SALC's of 12 equivalent 
H atoms ofqCH))4 molecule in (4.7H4.9). This is then ap
plied to construct 45 symmetry coordinates of vibration for 
the molecule as summarized in (4.18). In principle, the meth
od can easily be extened for a molecule with a triply equiva
lent structure. The present formalism is particularly effec
tive for the space groups since almost all crystals have 
doubly equivalent structure. This will be discussed in a 
forthcoming paper. 
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In the frame of the spinor formalism of the electromagnetic field, the propagation of a plane wave 
in a random medium with a view to obtaining the moments of the energy density is considered. 
Using two different approximations to the solution of the spinor wave equation, it is shown that 
the energy conservation requires, on the statistics of the refractive index, some extra conditions 
difficult (eventually impossible) to satisfy. For the variance of the light intensity, a result valid for 
weakly scattering media is given. It is concluded that "dishonest" methods (in Keller's 
terminology) have to be used. 

I. INTRODUCTION 

In a well-known paper, Keller l discerns "honest" and 
"dishonest" methods of solving problems of wave propaga
tion in random media. In an honest method, the solution u is 
first defined, most often by an approximation process, and 
then the statistics of u are computed from the explicit expres
sion. 

In a dishonest method, randomness is first used and if 
the moment (un) of u is sought, where the symbol ( ) de
notes an ensemble average, the original equations after mul
tiplication by un - I have to be averaged. Then dishonesty 
enters through an unproven assumption about some statisti
cal property of the random wave function (for instance, 
(1Ju) = (1J)(u), where 1J is the refractive index) in order to 
obtain the equation for (un). This assumption in general 
makes the problem solvable. 

As a consequence, for a problem depending on a param
eter, the dishonest solution is applicable for all values of the 
relevant parameter while the honest solution, obtained 
through a perturbation method, is valid only for small val
ues. This explains why many important results in the theory 
of wave propagation in random media have been obtained by 
dishonest methods. Moreover most of these results agree 
with experiments. 

In this paper, we discuss these problems in the frame of 
the spinor formalism of the electromagnetic field that we 
recently developed and that we start with.2 

In a medium with the refractive index 
1J(x) = 1 + Ev(X), lEI < 1 the stationary spinor equation for 
the spinor field 'I1(x) is 

(ioJ aj + ko)'I1(x) = - Ekov(x)'I1(x), i =..J=T. (1) 

In this equation 'I1(x) is a spinor with two complex com
ponents t/ttlx) and t/t2(X), ko is the wave number, u j are the 
three Pauli matrices, aj the derivatives with respect to 
xj,j = 1,2, 3, and we use the usual summation convention 
Ujaj = 0'2 at + 0'2 a2 + 0'3 a3, and x denotes a point in R3. 

The connection between the electromagnetic field 
(E, H), and the spinor field '11 is given by the relation 

#oEj(x,t) + iJiiHj(x,t) 

=e2ikoct[1J/I'I1(x)i]'I1T(x)1'j'l1(x), j= 1,2,3, (2) 

where Eo,jJ" and 1J are, respectively, the dielectric constant, 
the magnetic permability, and the refractive index; 'I1T is the 
transpose spinor, and 1'I1(x)i = ('11 + (x)'I1(x) 112, where '11 + (x) 
is the Hermitian conjugate spinor. The matrices 1'j are de
fined by the relations 1'j = - iuzu j' 

Eq. (1) can be put in an integral form: 

'I1(x) = 'I1o(x) + Eko Iv v(x')r(x,x')'I1(x')dX', (3) 

where 'I1o(x) is a solution of the homogeneous equation 
(iujaj + ko)'I1 o(x) = 0, and r(x,x') is the 2 X 2 Green's matrix3 

satisfying 

(iu j aj + ko)r(x,x') = - uoO(x - x'). (4) 

In this equation, 0'0 is the 2 X 2 identity matrix and 
l5(x - x') the Dirac distribution. Because of the identity 
(iuj aj + ko)( - iUkak + ko) = I::.. + k~, where I::.. is the La
placian operator, one has3 

(5) 

where G (x,x') is the Green's function of the wave equation 

(I::.. + k ~)G (x,x') = -15(x - x'). 

We then consider the propagation along Oz of a light 
plane wave so that ko is very large which will allow some 
approximations. When there is no perturbation (E = 0) one 
has, in agreement with Eqs. (1) and (2), 

t/t1.O(X) = aeik.,z, t/t2.0(X) = 0, (6) 
in which a denotes the amplitUde of the plane wave, while the 
zero index corresponds to E = O. 

We further assume that v(x) is a random field and that 
we look for the moments of the light intensity 
fIx) = 'I1T(X)'I1(X). So, in the frame of honest methods, we 
first have to obtain approximate solutions of'l1(x) either us
ing Eq. (1) or Eq. (3). We start with this last equation. 

II. PARAXIAL APPROXIMATION TO THE SPINOR FIELD 

Using the Born method and the zero-order approxima
tion (6), the first term of the perturbation series deduced 
from Eq. (3) is 
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(7) 

tP21(X) = aEko L V(X')Y2 I (x,x')eikoz' ax', 
where Yl1 and Y21 are two elements in the first column of the 
Green's matrix y. We are then facing the following two diffi
culties: (i) the higher terms in the perturbation are unman
ageable; and (ii) the approximation (7) is not good enough to 
obtain the statistical properties of the intensity f (x). But let us 
assume that Y2J(x,x') is negligible, and let us apply the Ray
leigh renormalization technique4 to tPI,1 (x); then we get from 
(7) 

tPI(X) = aeik"zeu(x), 

u(x) = koE L v(X,x')Yl1(x,x')eiko
(Z' - z) dx', (8) 

tP2(X) = O. 
Using (4), it is easy to show that (8) is a solution ofEq. (1) so 
that we have to discuss when Y2J(x,x') can be neglected. We 
shall prove that this is possible at the paraxial approximation 

[(x - X')2 + (y - y'f ]I(z - Z')2 < 1. (9) 

In fact the Green's function 

G(x,x') = (1I41T)[eir(x-X')/r(x,x')] 

of the wave equation in free space 
[r(x,x') = (x - X')2 + (y - y')2 + (z - Z')2] can be written 
when Eq. (9) is taken into account: 

1 iko(z - z') 

G (- -') e i/1(x,x') x,x ~- e, 
41T z-z' 

fJ(x,x') = [kol2(z - Z')] ((x _ X')2 + (y _ y')2). 

Therefore, according to (5), we get 

Y21(X,x') = (likoHax + i ay)G(x,x') 

1 (x -x') + i(y - y') 
~ 41T (z -z'f 

X exp [ iko(z - z') + ifJ (x,x') J , 

which gives 

I (X _ x')1 =_1_ ~(x - X')2 + (y - y')2 
Y21 - 4 (')2 ' 1T z-z 

which is using (9) 

I Y2J(x,x') I <41T(z 1_ z')' 

(10) 

so we may neglect Y21 in the far field and as long as relation 
(9) holds true. 

Let us now consider Yl1; using (5) and (10), we obtain 

(X x')~2k (1 + i _ fJ(x,x') ) G(x -'I. 
Yl1' 0 2ko(z _ z') 2ko(z _ z') ,x 

Using (9), the last term on the right-hand side of the previous 
equation may be neglected and one has 

Yl1(X,X') = 2ko(1 + [iI2ko(z - z')])G (x,x'). (11) 

This result together with (8) completes the determination of 
¢t1(X). 

Using (8) the light intensity becomes 

fIx) = a2e2v(x), v(x) = ~(u(x) + u*(x)), (12) 
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where the asterisk denotes the complex conjugation. 
Remark: The wave equation 

(a + k ;)'1' (x) = - 2k ~EV(Xl'P (x) 

is generally used to discuss the electromagnetic wave propa
gation in random media together with Rytov's perturbation 
method.4 One gets for a plane waves 

fIx) = a2e~v,(x), vl(x) = ~(UI(X) + uT(x)), (13) 

with 

ul(x) = 2Ek ~ Iv v(x,x')G(x,x')eiko(Z' -z) dx', (13') 

so that according to (11) the expressions (8) and (13) are simi
lar except for the existence of the term [iI2ko(z - z')]G (x,x') 
(negligible in the far field) in (8). The slight difference is not 
surprising since Eq. (1) is exact while the wave equation as
sumes that the term - 2V(V7JI7J) . E), where V is the nabla 
symbol and E the electromagnetic field, is dropped. 

We may now discuss the statistics of the light intensity 
f (x). Using (12), we get for the mean intensity 

(f(x) = a2 (exp(2v(x))), 

and using a well known result,6 we get 

{ 

00 Xk I2V)} 
(f(x) =a2 exp L -- , 

k=1 k! 
(14) 

where Xk(2v) denotes the k th cumulant of the random field 
2v(x). But because energy must be conserved and refractive 
index variations do not dissipate optical energy in the propa
gation of an infinite plane wave, we must have 

00 1 
L-xd2v) =0. 

I k! 
(15) 

We conjecture that this relation is only possible [provided 
that v(x) has a genuine continuous probability distribution 
(see Appendix E)] if Xd2v) = 0, for k> ko. (In Appendix A, 
we give some reasons to support this conjecture.) But using a 
theorem from Marcinkiewicz,6 one can then show that all 
the cumulants are zero for k> 2, so that the random field 
2v(x) has a Gaussian distribution. As a consequence, Eq. (15) 
reduces to 

XI(2v) + ~X2(2v) = 0, 

that is, from the definition6 of cumulants, 

(v(x) + (v2(x) - (V(X))2 = O. (16) 

To sum up, if the previous conjecture is true, the random 
field 2v(x) has a Gaussian distribution whose mean and vari
ance are bound by the relation (16). Of course, had we used 
(13) instead of(12), we should have still obtained the relation 
(16) with vl(x) instead ofv(x). 

Let us now discuss the consequences of (16). From (8), 
(10), and (11), we get 

u(x) = 2qE r V(X')(1 + i )eXP(ifJ (x,x')) dx' dy'. 
41T Jv 2ko(z - z') 

For a source in the plane z' = 0 and the volume Vin the 
half space z' > 0, asuming the back scattering negligible, the 
integral over the region V in the last expression can be re
placed by an integral on the part of v which lies inside the 
plane layer O<z' <z 
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+00 

L dx' = f dz'I I dx' dy', 

so, using (12) together with the last two relations, we get 

+00 

V(x) = k~ r ~IIv(x') 
21T' Jo (z - z') 

x (cos ()(X,x') - sin ()(x,x')) dx' dy', 
2ko(z -z') 

which gives 
+00 

(v(x) = k~ (z ~II(v(x') 
21T' Jo (z - z') 

x (cos ()(x,x') - sin ()(x,x')) dx' dy'. (17) 
2ko(z -z') 

With (13'), one obtains similarly 
+00 

(vl(x) = k ~ r ~ II (v(x') cos () (x,x')dx' dy'. 
21T' Jo (z - z ) 

(17') 
Of course (v(x) is constant in the transverse planes 
z = const, but we may assume that this constant depends on 
z so that we get 

(v(x) = vf(z). (18) 

Then in Appendix B, using (17), (17'), and (18), we prove the 
following results: 

- v iZ 

f(z')dz' -(v(x) = - --,' (vl(x) = O. 
2 0 z-z 

(19) 

Of course (vl(x) = 0 is nonsense, since with (16) it implies 
that /(x) has no fluctuation, but the resulton (v(x) is no 
more satisfactory. On one hand (v(x) has a logarithmic sin
gularity, and on the other hand, Eq. (16) leads to a functional 
relation for the correlation function B (x,x') = (v(x)v(x') 
with no simple solution. 

To sum up, the honest methods leading to expressions of 
/(x) such as (12) or (13) fail to supply the statistics of the light 
intensity. Using (13) and assuming that vl(x) is a Gaussian 
random field, many authors 7.8 obtained the relation (16) but 
failed to note (19) (a noticeable exception is Ref. 9). The reme
dies proposed to cure these difficulties are not always very 
convincing.7,9,10 

III. THE BORN APPROXIMATION TO THE SPINOR FIELD 

With 

U I = I~ ~I, U 2 = I~ ~l U 3 = I~ 
as a representation of the Pauli matrices, we get from Eq. (1) 

(i az + ko)t/lI(x) + i(ax - i ay)t/l2(X) = koEvt/lI(X), 

i(ax + i ay)t/lI(X) - (i az - kO)t/l2(X) = - koEvtP2(X), 

and we look for solutions of (20) in the form 

372 J. Math. Phys., Vol. 27, No.1, January 1986 

(20) 

(21) 
t/l2(X) = aeikoZ(EVI(X) + CV2(x) + 0 (~)), 

which for E = 0 reduces to the plane wave (6). (We hope that 
no confusion is possible with the functions u, v, of the pre
vious section.) 

From (21) we get 

1t/l112 = a2{1 + E(U I + uT) + c(u2 + ui + uluT) + O(~)l, 
1t/l212 = a2(cvlvT + 0 (~)), 

which gives 

/(x) = a2! 1 + E(UI(X) + uT(x)) + c(u2(x) 

+ u1(x) + ul(x)uT(x) + vl(x)vT(x)) 

+ O(~)l. (22) 

The energy conservation implies 

(/(x) = a2
, (23a) 

(ul(x) + uT(x) = 0, (23b) 

(U2(X) + u1(x) + ul(x)uT(x) + vI(x)vT(x) = O. (23c) 

Now according to (22), one has 

/2(X) = a4 ! 1 + 2E(U I(X) + uT(x)) + 2c(u2(x) + u1(x) 

+ ul(x)uT(x) + vl(x)vT(x)) + c(ul(x) + UT(X))2 

+ O(~)}, 
and using (23) we get 

(/2(X) = a4(1 + c«(ul(x) + uT (xW) + O(~)), (24) 

so that the variance of the light intensity is 

U; = a4 ! c«(ul(x) + UT(X))2) + O(~)}. (24') 

This is a rather simple result but we still have to obtain u I (x) 
and check whether the conditions (23b), and (23c) hold true. 

Substituting (21) into (20) leads to the following equa
tions: 

(25a) 

(25b) 

(ax + i ay )U2(X) - 2ikoV2(X) - av2(x) = kov(x)vl(x). 
az 

Assuming azv l, and azV2 negligible with respect to kOVI> and 
kOV2' the previous systems become, after elimination of VI 

and V2 in the first equations 

2ikoazul(x) + a1(x) = - 2k~v(x), 
(26a) 

vl(x) = ( - iI2ko)(ax + i ay)ul(x), 

2iko azU2(X) + a1U2(x) = ko(ax - iay)V(X)VI(X) 

- 2k ~ v(x)u I (x), 
(26b) 
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where A 1 denotes the transverse Laplacian a 2/ ax2 + a 2/ ai. 
Since ko is very large, we make the further assumption 

that VI(X) and V2(X) are negligible, respectively, with respect 
to U I (x) and U2(X), so we get from (26a) [we have no need of the 
second equation (26b)] 

2iko azUI(X) + Ai UI(X) = - 2k ~v(x), 
(27) 

2ikoazU2(X) + Ai u2(X) = - 2k~v(x)uI(x), 

But the Green's function GI(x,x') of the equation 
2iko azu(x) + Ai u(x) = - c5(x - x') is 

GI(x,x') = [l/41T(z - z')]exp(iO (x,x')), 

with 0 (x,x') given in (10). So, we obtain at once 
+00 

ul(x) = k~ t d:t, ff dx' dy' v(x')ei9 (X,X'I, (28a) 
211" Jo z - z 

+00 

u2(x) = k ~ t dz', ff dx' dy' v(x')u l(x')ei9(X,x'l. (28b) 
211" Jo z-z 

We now have to discuss (23b) and (23c). It is clear from (28a) 
that if (v(x) = 0 then the condition (23b) holds true. Now, 
since VI is negligible, the condition (23c) becomes 

(U2(X) + u1(x) + uf(x)ul(x) = o. 
But according to (2S) we get 

ul(x)uf(x) 
+00+00 

(29) 

= k ~ t t dz' dz" If ff dx' dx" dy' dy" 
4~ Jo Jo (z - z')(z - z") 

x v(x')v(x")e(9(x,X'I- 9 (x,x"l), 

U2(X) 
+00+00 

= k ~ r r' dz' dz" II II dx' dx" dy' dy" 
4~ )0)0 (z - z')(z' - Zll) 

x v (x')v(x")e'19 (x,x'l + 9(>:',x"l), 

which gives 

(ul(x)uT(x) 
+00 +00 

= k~ t r dz: dz" " ff fI dx' dx" dy' dy" 
~ )0 Jo (z - z )(z - z ) 

(30a) 

k 4 iZ 

{' d ' d " f+foo f+foo o Z z d'd"d'd" =- x x y y 
4~ 0 0 (z - z')(z' - z") 

-00 -00 

XB (x' ,x ")ei(9(x,x'1 + 9 (>:',x" I), (30b) 

where B (x,x') is the correlation function 

B(x',x") = (u(x')u(x"). 

Let us assume that B (x' ,x") is the Gaussian function 
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B (x',x") = ...!.L(v)c5(z' - z") 
2.,fii 

{
(x' _ X")2 + (y' _ y")2} 

Xexp - 2 ' 
10 

(31) 

where 10 is the transverse correlation length, c5(z) the Dirac 
distribution, and (v) the variance of the index of refraction 
fluctuations; then in Appendix C we prove the following 
relations in agreement with (29): 

(ul(x)uf(x) = - (u2(x) + u1(x) = k~/o(v)z/2.,fii. 

We may now computeu;. Using (24'), (2Sa), (2Sb), and (31), 
one obtains in Appendix D 

u i = 2f3Z(l _ arctan Z) Z =!...., zr = k04/~ , 
(1)2 Z' zr 

with 
f3= c(v) k~ loI2.,fii. 

(32) 

(32') 

This result, valid for a weakly scattering medium (f3z<l), 
was previously obtained by UscinskP I using a "dishonest" 
method. This agreement can be considered as an a posteriori 
justification of this method. 

Let us note that for the coherent intensity (ifJI)(ifJT), 
one obtains according to (32') and (CS) 

(ifJI)(ifJT) = a2
{ 1 + c(u2(x) + u! (x) + 0 (~)} 

=a2{l-f3z+0(~)J, 

which is an approximation valid for f3z< 1 of the exact value 
e- f3z • 

IV. CONCLUSIONS 

Let us start with a discussion of Eqs. (27) which could 
also have been obtained from the so-called parabolic approx
imation of the wave equation (see Ref. 5, for instance). Two 
kinds of assumptions are needed to deduce (27) from (26). 

(i) First, vI(x) and v2(x) should be slowly varying func
tions so that one has 

lazvl(x)I<lkovl(x)l, laz V2(X)1 < IkoV2(X)I· 

Some similar assumptions are necessary to obtain the para
bolic equation whose validity is discussed in Ref. 12. 

(ii) Second, UI(X) should be a slowly varying function of 
x,y to have 

Ivl(x)l< -l-I(ax + iay)uI(x)l· 
2ko 

From Eq. (2) one easily sees that the electromagnetic waves 
corresponding to the spinor field are circularly polarized 
transverse waves. Since, for z = 0, one has ifJ2 = 0, neglecting 
vl(x) with respect to ul(x) is equivalent to assuming that po
larization does not change along propagation. 

If we now assume that all the conditions are fulfilled to 
make Eqs. (27) valid, we still have to ask why the "honest" 
methods fail to describe electromagnetic wave propagation 
in random media. First, at least for plane waves, we get into 
trouble since the energy conservation is not satisfied for each 
term ofthe perturbation series so that we have to impose on 
the random field some drastic conditions that are difficult 
and even impossible to satisfy. Second, the convergence of 
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the perturbation series to the exact solution of the wave 
equation does not guarantee the uniform convergence ofthe 
averaged series to the mean value of the solution. Moreover 
only the first two or three terms in the series can be comput
ed. 

These reasons explain why one has to look at "dishon
est" methods, which, leaving aside some unproven statistical 
assumptions, have two important advantages: (i) the energy 
conservation is automatically fulfilled; and (ii) if one needs, 
for instance, only the first two moments of the light intensity 
I (x) (the determination of the probability distribution is a 
rather difficult problem 13), then we just have to solve the 
equations corresponding to these moments, a nontrivial 
task, but not as difficult as looking for solutions of equations 
like Eq. (1). 

We discussed elsewhere14 "dishonest" methods in the 
frame of the spinor formalism of the electromagnetic field. 

The "dishonest" methods were thoroughly discussed by 
Van Kampen 15 in an outstanding paper. Let us transpose his 
discussion in spinor terms for wave propagation with ran
dom refractive index. 

We start with the integral equation (3). To first order in 
the Born approximation \fI(x') is replaced under the integral 
by \fI o(x'), 

\fI(x) = \fIo(x) + €ko I v(x/)r(x,x')\fIo(x')dX', 

which gives (\fI(x) = \fIo(x) and 

(1\fI(xW) = l\fIo(xW + €2 k~ II r+(x,x")r(x,x') 

X (v(x')v(x") \fIo+ (x')\fIo(x")dX'dx", 

and we have proven here that these formulas lead to unsatis
factory results. Let us now iterate Eq. (3): 

\fI(x) = \fI o(x) + €ko I r(x,x')v(x')\fI o(x')dx' 

+ ~ k~ I r(x,x')v{x')dx' I r(x',x")v(X")\fI(X")dX". 

Replacing \fI(x") in the last integral with (\fI{x") , rather than 
\fIo(x"), we get 

(\fI(x) = \fIo{x) + ~ k ~ I r(x,x')dx' 

X I r(x' ,x")( v(x')v(x") (\fI(x")dX". 

Applying the differential operator iqj aj + ko and using (4) 
we get 

(iqj aj + ko)(\fI(x) 

= - ~ k~ I r(x,x')(v(x')v(x")(\fI(x')dX', (33) 

which we may call Bourret's spinor integral equation for the 
average. 

The longitudinal correction length Ie plays here the part 
of the correlation time Te in Van Kampen, so we may trans
late his result. On a course-gained level determined by 
f:.z (we assume propagation along Oz) such that €kof:.z<l 
and f:.z> Ie the process is approximately Markovian, and in 
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(33) the terms of order (€ko Ie )3 are neglected. Thus as long 
as €ko Ie < lone obtains satisfactory results with "dishonest" 
methods. 

APPENDIX A: HINT FOR CONJECTURE (15) 

When the moment-generating function (fJ (t ) exists, 16 one 
has 

(fJ (t) = exp {~( - l)~k ~~}, 
so that Eq.(15)isequivalentto(fJ( - 1) = l.Butfort>O,(fJ(t) 
possesses derivatives (fJ(n) of all orders l6 and (- It 
(fJ (n) (t ) > O. In particular (fJ '(t ) has a constant sign for t > O. If 
(fJ '(t ) also has a constant sign for - 1 (;1.;;;0, then the conjec
ture is proved since one has (fJ (0) = 1, because in this case, 
Eq. (15) is only possible if there exists a relation between 
cumulants which requires that the series (15) reduce to a 
polynomial. 

In fact all the checks we made with known generating 
functions showed that(fJ (t ) is an increasing function for t < O. 

APPENDIX B: PROOF OF EQ. (19) 

From (17) and (18), we get 

(v(x) = q (v) (3 f(z')dz' 
21T Jo z -z' 

+00 

II (COS (} (x -I) - sin (} (x,x')) dx' d '. (B 1) 
X ,x 2ko(z _ z') y 

Using the Fresnel integrals c(x) ands(x) and their limit values 
c( (0) = s( (0) = ~, 

J + "" (ko(X - X')2)d' J + 00 • (k (x - X')2) d ' cos X= sm 0 x 
_ "" 2(z - z') - "" 2(z - z') 

= ~1T(z - Zl). (B2) 
ko 

From the definition (10) of (} (x,x'), and using the relation 

cos (} (x,x') = cos (ko(X - X')2) cos (koly - i)2) 
2(z - z') 2(z - z') 

. (ko(X - x'f) . (koly - if) - sm sm --"-'~--=-'-
2(z - Z/) 2(z - z') 

and the similar relation for sin (} (x,x'), we deduce at once 
from (B2) 

+00 I I cos (} (x,x')dx' dy' = 0, 

+00 (B3) 

I I sin (} (x,x')dx' dy' = ~: (z - z'), 

which leads to the relations (19) in the main text. 

APPENDIX C: PROOF OF EQ. (29) 

From (30a) and (31) and after integration on z" we get 

(ul(x) ut(x) = k~ 10 (v) [ dz', 2 II(z,z')I2(z,z') 
411 2fii 0 (z - z ) 

(el) 
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with 
+00 

I I(z,z') = II dx' dx"exp { - (x' ~t")2 
-00 

iko(x - X')2 iko(x - X")2} + - , 
2(z - z') 2(z - z') 

(C2) 

and 12(z,z') is the same expression withy's instead of x's. 
With U = x - x', v = x - x", andp2, q2 such that 

~-~(1- iko/~) ~=_1 __ p2 (C3) 
p2 - n 2(z - z')' q2 p*2 1 f 

I I(z,z') becomes 

f + 00 , .' f + 00 (U
2 

2UV) I I(z,z') = dv e - v /p du exp - 2" + -
- 00 - 00 p 10 

f
+OO 

=.J11'P _00 e-v'/q'dv 

= 11' P q, 

and since I I(z,z') = 12(z,z'), we get 

I I(z,z')I2(z,z') = rrp2q2 = (4rr Ik ~)(z - Z')2. 

Substituting (C4) into (C1) gives 

(u I(X) uf (x) = k ~ lo( v) (3/2[ii). 

In the same way, from (30b) and (31), we get 
+00 

(U2(X) = k~ ~ (v) t dz', II dx' dy' 
4rr 2[ii Jo z - z 

- 00 

X exp {ik (x - X')2 + (y - i)2 } F (x') 
o 2(z -z') , 

with 

F(x') = (z· dz' ~(z' ~ z") (J + 00 du e - u,/p~)2, 
Jo z-z -00 

(C4) 

(C5) 

(C6) 

(C7) 

where u = x' - x", (1/p~) = (1//~)( 1 - iko 1~/2(z' - z")), 
and where we used the fact that both integrals on x" andy" 
are equal. So, taking into account the relation 

i
b 1 
flt)81t - x)dt = - fIx - 0), for x = b, 

a 2 
we get 

F(-') - iz' 2 ~(z' - z") d " _ i11' 
X - 11' PI , " Z - -k . 

o z -z 0 

With this last result, (C6) becomes 
+00 

(U2(X) = ik~ ~ (v) (Z dz', II dx' dy' 
411' 2[ii Jo z-z _ 00 

Xexp (iko[(x - X')2 + (y - y')2]12(z - z'). 

Still using the Fresnel integrals, we get 
+00 

II ( (X - X')2 + I .. - y')2 ) (z - z') 
dx' dy' exp iko v: = 2i11' --, 

2(z-z) ko 

and finally 
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(U2(X) = - (k~ loZ/2)(v)/2[ii), 

which gives 

(u 2(x) + u~ (x) = - (k~ loZ(v)/2[ii). 

APPENDIX D: COMPUTATION OF a ~ 

(CS) 

According to (2Sa) and (31) and after integration on z" , 
we get 

( 2 (-) k~ 10(V) t dz' ~ ( ') ~ ( ') (01) 
UI x = 4rr 2[ii Jo (z _ Z')2 if I z,z if 2 z,z , 

where 
+00 

/"I(Z, Z') = II dx' dx" exp{ - (x' ~t")2 

+ iko(x - X')2 + iko (x - X")2}, (02) 
2(z-z') 2(z-z") 

and /" 2(Z, z') is the same expression with y's instead of x's. 
With the expression (C3) ofp2 and with 

l/r=p2(1/(p2f-1//~), (03) 

a computation similar to the computation made in Appendix 
B gives 

(u~(x) = k~ 10 (v) (Z p2r dz'. (04) 
4 2[ii Jo (z - Z')2 

Now, according to (C3) and (03), one has 

2r 4 1 ~ (z - Z')2 

P = - ko(ko 1 ~ + 4i(z - z'))' 

which gives 

2r + (p2r )* _ 8(z - Z')2 
P - - k~ -1-+-16-(z---z-')2-I-k-~-I-f' 

and, using (04) 

(ui(x) + Uf2(X) = _ k~ 10 (v) (Z ____ dz_'--:-----:---:-
[ii Jo 1 + 16(z-z')2Ik~ I~ 

k~ I~ 4z = - -- (v) arctan -- (05) 
4fii ko Ir 

From (C5) and (05), we get 

«(u I (x) + uf (X))2) = (v) k ~ loZ (1 _ arctan (4zlko 1 ~ )). 
[ii 4zlko I~ 

(06) 

APPENDIX E: COMMENT ON CONJECTURE (15) 

The conjecture (15) is equivalent to assuming the exis
tence of a random variable X with a genuine continuous 
probability density fIx) such that (~ ) = 1. By genuine, we 
mean that one discards any random variable y = x 
- I~(~ ). Moreover whenf(x) is not a continuous function 

the conjecture need not be valid. For instance, let us consider 
fIx) = :I aj~(x - x j) with :Iaj = 1 and :Iaj~j = 1; then one 
has (~) = 1. 
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In previous work by the author on connected diagram expansion methods for the problem of 
scattering from a random rough surface a stochastic Lippmann-Schwinger integral equation in 
Fourier transform space for the scattered part of the Green's function was derived. Averaging 
techniques using homogeneous statistics and a statistical cluster decomposition on the surface 
interaction function yielded a connected diagram expansion for the coherent and incoherent 
Green's functions. Here it is demonstrated that the smoothing method applied to this stochastic 
integral equation yields a result that agrees with the connected diagram expansion only to second 
order in the surface interaction. For third- and higher-order interactions, the smoothing method 
does not yield connected terms. 

I. INTRODUCTION 

In previous work,1 summarized in Ref. 2, we derived a 
stochastic Lippmann-Schwinger integral equation in Four
ier transform space for r, the scattered part of the Green's 
function describing scattering from a random rough surface 
z = h (x t ), where X t = (x,y). The equation is in three-dimen
sional Fourier transform space off the energy shell. For a 
perfectly reflecting acoustically hard (Neumann boundary 
condition) surface it is given by 

r(k',k") = V(k',k") A (k' - kIt) 

+ I V(k',k) A (k' - k)Go(k)r(k,k")dk, 

(1.1) 

where V is called the vertex function (and is kinematic), 

V(k'k)=~ , , '+p- (1.2) 
2' [k' . (k' - k ) K,2 ] 

, (21T)3 k ~ - k
z 

k ~ , 

with P representing the Cauchy principal value, K' 
= (K~ - k ;)1/2, ko is the free-space wave number, and GO 

the Fourier transform of the free-space Green's function. In 
addition, A is called the interaction function, 

(1.3) 

which is the phase modulation amplitude spectrum induced 
by the roughness element. Since A contains h explicitly (dy
namics), if h is a stochastic variable, so is A, and hence so is r. 
The equation for r can also be viewed quantum mechanical
ly3 as scattering from a noncentral potential VA. Here r has 
actually been stripped of incident and exiting free-space 
Green's functions, and the scattering amplitude T is related 
to the on-shell value of r as 

T(k '" ,k,) = {(1Ti/k ~ )r(k',k)} I kz = _ K; k~= K" (1.4) 

The equation for r describes the transition from inci
dent wave number (or propagation vector) state k" to final 
state k' either through a single interaction given by the Born 
term VA, or through multiple interactions through a contin
uum of (generally off-shell) intermediate states k. If we ex-

press the solution of Eq. (1.1) as a Born series expansion in 
powers of the interaction A , then, for a stochastic surface, the 
ensemble average of any power of r is in principle known 
once the ensemble average of any power of A is known. Anal
ogous coupled equations for vector (electromagnetic) fields4 

and tensor (elastic) fields5 have also been derived. An inter
pretation of Eq. (1) using (stochastic) Feynman diagram 
methods is also available2 similar to the diagram expansions 
in random volume scattering theory.6 

Here we restrict our attention to the first or coherent 
moment ofr represented by (r). The bracket represents the 
average over the ensemble of surface realizations. The ran
dom surface h is assumed to be Gaussian distributed and to 
be a homogeneous statistical process. The ensemble averages 
of powers of the interaction are cluster decomposed to yield 
the "connected" terms of the diagram expansion, again anal
ogous to the random volume problem.6 Explicitly the first 
three moments are 

and 

(A (k) = Al(k) = (21T)2o(k,)exp( - k; 02/2), 

(A (k1)A (k2) =A 1(kl)A 1(k2) +A2(kl,k2), 

(A (kl)A (k2) A (k3) 

= Aj(kil Aj(k2) Aj(k3) 

+AI(kl)A2(k2,k3) + A1(k2)A2(kl,k3) 

+ A1(k3) A2(kl>k2) + A3(kl,k2,k3), 

(1.5) 

(1.6) 

(1.7) 

where u is the root-mean-square height. The general con
nected term A n is also available. 2 

The equation for the ensemble average of r can be writ
ten using these connected terms as 

(r(k',k") = M(k',k") + I M(k',k)GO(k )(r(k,k")dk, 

(1.8) 

where the mass operator6 M is the infinite sum 
00 

M(k',k") = L Mj(k',k") (1.9) 
j=1 

and each Mj term contains only the connected termAj • For 
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example, the first three are given by 

MI(k',k") = V(k',k")AI(k' - k"), (1.10) 

M2(k',k") = J V(k',k)GO(k)V(k, k")A2(k' - k, k - k")dk, 

(1.11) 

and 

M3(k',k") = J V(k',kl)GO(kl)V(kl,k2)GO(k2)V(k2,k") 

XA3(k' - kl,kl - k2,k2 - k")dkl dk2 • 

(1.12) 

All the disconnected terms can be found from an iterate in 
the solution ofEq. (1.8). The two-dimensional delta function 
in Eq. (1.5) expressing overall horizontal momentum conser
vation can be shown to be characteristic of each A j and hence 
each~. ThusEq. (1.8) can be reduced to a one-dimensional 
equation and has been solved numerically when M is trun
cated at the first term.7 The delta function arises due to the 
statistical translational invariance of the problem itself re
sulting from the assumption of homogeneous statistics. The 
description of the result in terms of only connected diagrams 
is an example of a partial summation technique.6 

II. SMOOTHING 

We now apply the smoothing method to Eq. (1.1). Ori
ginally developed by KellerB for wave propagation problems 
it has been applied most recently to the surface scattering 
problem for scalar waves by Watson and Keller9 and to the 
electromagnetic problem by Brown.1O Both applied the 
method in coordinate space whereas here we apply it in the 
transform domain. 

Define the integral operator symbolically as 

L = J VGo dk, (2.1) 

so that Eq. (1.1) can be written symbolically as 

r = VA + LAr. (2.2) 

Since A is stochastic, so is r. Write it as the sum of a mean 
and fluctuating part. It is also convenient since multiple 
averaging is required to replace the bracket average notation 
by the averaging operator E, i.e., 

(r) =Er, (2.3) 

where E operates on any random variable occurring to its 
right. We thus have 

r = Er + r', (2.4) 

where Er' = o. Next substitute Eq. (2.4) in Eq. (2.2) to yield 

Er + r' = VA + LA [Er + r'). (2.5) 

and is independent of the fluctuating part. 
A formal solution by iteration of Eq. (2.7) is 

00 

r' = L [LA - LEA ]"r, (2.9) 
n=O 

which yields the fluctuating part solely in terms of the mean 
field through r. Next substitute Eq. (2.9) in Eq. (2.6) and use 
Eq. (2.8). Combine the second term on the right-hand side of 
Eq. (2.6) with the second term contribution from r to get 

00 

Er =Ms + LEA L [LA -LEA ]nEr, (2.10) 
n=O 

which is the smoothing integral equation on the mean field 
with the smoothing mass operator defined by 

M S = VEA + LEA i [LA -LEA ]nV[A -EA]. 
n=O 

(2.11) 

III. COMPARISON OF DIAGRAM AND SMOOTHING 
TERMS 

We compare the first three mass operator terms in the 
Born expansion for the smoothing method defined by 
Mj, j = 1,2,3, with the corresponding terms in the con
nected diagram expansion given by Eqs. (1.1OH1.12). The 
first term is from Eq. (2.11), 

Mf = VEA, (3.1) 

which, in Fourier transform space and using Eq. (1.5), is 

Mf(k',k") = V(k',k")AI(k' - kH) (3.2) 

and is the same as the connected diagram result. 
The second term is for n = 0 in Eq. (2.11) 

Mf =LEAV[A -EA] =LV[EAA -EAEA], (3.3) 

which in Fourier transform and bracket notation is 

Mf (k',k") = J dk V(k',k)GO(k )V(k,kN
) 

X {(A (k' - k)A (k - k") 

- AI(k' - k)AI(k - k")J. (3.4) 

Using Eq. (1.6) we see that this again is the same as the con
nected diagram expansion term Eq. (1.11). 

The third term, n = 1 in Eq. (2.11) is 

Mf = LEA [LA -LEA JV[A -EA], (3.5) 

which in Fourier transform notation can be written as 

Mf(k',k") 

= J J V(k',kl)GO(kl)V(kl,k2)Go(k2)V(k2,k") 

XA f (k' - kvkl - k t ,k2 - k")dkl dk2, (3.6) 

where A f is given by four terms Take the ensemble average of Eq. (2.5). This is 

Er = VEA + LEAEr + LEAr'. (2.6) A f (k' - kvkl - k2,k2 - k") 

Subtract Eq. (2.6) from Eq. (2.5) to give 

r' = r +L [A -EA Jr', 

wherer is 

r = V[A -EAJ +L[A -EA]Er 
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= (A (k' - k l) A (kl - k2) A (k2 - k") 

(2.7) - (A (k' - kl)A (kl - k2)AI(k2 - k") 

(2.8) 

-AI(k' - kl)(A (kl - k2)A (k2 - k") 

+AI(k' - kl)AI(kl - k2)A I(k2 - k"). 
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Comparison with Eq. (1.7) illustrates that Eq. (3.7) differs 
from the connected diagram result A3 in two respects. It 
neglects the initial-final state two interaction correlation 
term 

(A (k' - k.)A (k2 - k")A.(k. - k2) 

and has a different sign for the product of the three single 
interaction correlations. Higher-order terms can also be 
computed and they also differ. 

Thus we have our conclusion. The connected diagram 
and smoothing methods agree to the first two orders of ap
proximation and differ beyond that. For third- and higher
order terms the smoothing method does not produce con
nected terms. In order for it to do so some sort of 
renormalization in the method would appear to be neces
sary. 

Finally, note that in this comparison, it makes sense to 
only compare the respective Born terms of the two methods. 
If we were to include the integral terms in an interaction 
expansion, both methods would fully resum to the same re
sult to any given interaction order. 
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A Hamiltonian approach is used to treat the nonlinear problem of normal mode coupling in an 
unmagnetized homogeneous Coulomb plasma. It is shown that this method yields results 
consistent with well-known equations of plasma physics. 

I. INTRODUCTION 

In a previous paperl we showed how the Hamiltonian 
structure for two-fluid plasma dynamics presented in Ref. 2 
could be used to obtain the electrostatic normal mode fre
quencies in an unmagnetized homogeneous Coulomb plas
ma. The purpose of this paper is to show how the formalism 
of Ref. 1 can be extended to the much more difficult problem 
of mode coupling in an unmagnetized homogeneous Cou
lomb plasma. 

For simplicity, we restrict our analysis to the one-di
mensional problem. The results of Ref. 1 may be summar
ized as follows. 

For the system under consideration, the state vector of 
dynamical variables is f/!{x) = (8pe ,8ue ,8Pi ,8ui ). Here, with 
the subscript s labeling the two species present, electrons and 
singly charged positive ions, 8ps and 8us represent density 
and velocity-field perturbations on a homogeneous station
ary equilibrium. The Hamiltonian may be expanded as 

H=Ho +Hl +H2 +H3, (1) 

where H2 is the term which gives the linear behavior of the 
plasma, while H3 determines the nonlinear behavior. 

After Fourier transformation from x space to k space, 
the normal modes were obtained in the following way. H2 
was expressed in the form 

H2 = f d3~ 1. ii(k )C(k )tP(k )*, (2) 
(21T) 2 

where 

[v. + ~:/k' 0 aeaJk 2 

p~j Pea 0 
C= (3) 

aeaJk 2 0 Vi + a:lk 2 

0 0 0 

and the tilde denotes transpose, while the fundamental Pois
son bracket was written as 

{ t/J(k ),t/J(k ')* I = - i(21T)3 B (k )8(k - k '), (4) 

where 

B- [~ 
k 0 

n 0 0 
0 0 
0 k 

(5) 

In Eq. (3) and in the following, we have abbreviated 

.) Current address: Harvard Medical School, 25 Shattuck Street, Boston, 
Massachusetts 02115. 

Vs = [a 2lps Us)/ap:] ip.o' where U.lps) is the specific inter
nal energy of species s, as is the charge-to-mass ratio 
as = q.1ms' andpllJ denotes the equilibrium density ofspe
ciess. 

Equations (2) and (4) were then combined to obtain the 
linear equation of motion in the form 

ip = At/J, 
where 

A=-iBC 

(6) 

= -ik [v. +~~/k' p~ a.a;k' }oiOj. (7) 

aea;lk 2 0 Vi + aYk 2 

In order to proceed, we must now analyze the linear 
problem in more detail. 

II. LINEAR THEORY 

Although we are considering a dissipationless system, 
the matrix A is non-Hermitian. Thus, there are two separate 
eigenvalue problems which may be considered: the "right" 
problem, defined by 

Aua = _ ima ua , 

and the "left" problem, 

(8) 

a uA = _ i a m au. (9) 

Although the set of right eigenvectors {ua I is not expected 
to be equal to the set ofleft eigenvectors {a U I (after transpo-
sition), the two sets of eigenvalues {ma I and {a m I must be 
identical. They were found in Ref. 1 to be the solutions of the 
equation 

(m; + c; k 2 - (
2)(m: + q k 2 - (

2
) = m; m7, (10) 

where m: = P.o a; and Cs = T.lm .. with Ts denoting the 
temperature of species s. A straightforward calculation 
shows that the inverse transpose of the matrix of left eigen
vectors is equal to the matrix of right eigenvectors (up to 
normalization). 

Upon solving Eq. (8) for the ua
, we find the usual solu

tions to the linearized equations of motion 

u~ = (ma Ikpea) uj, 

u~ = {m;/ [ mf + q k 2 - (ma)2] I uj, (11) 

ma m! 
u~ =-- uj. 

kpea m7 + c7 k 2 _ (ma)2 
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Solving Eq. (9) for the left eigenvectors a U, one finds 

aU2 = (kpeO/wa)a UlJ 

au) = { [w~ + ~ k 2 _ (Wa)2 ]/w:J a U1, (12) 

kp W2 + t!:. k 2 _ (Wa)2 
a to e e a 

U .. =-- U 1• 

W
a wf 

We now consider the normalization of the eigenvectors. 

and 

Proposition: ua = K(a uB ), where K is a constant. 
Proof: Equations (7H9) imply 

(13) 

PuBC=PwPu. (14) 
Using the fact that B and C are symmetric, and taking the 

transpose of Eq. (14), we obtain P w r.; = CB Pii' = C P";B. 
This leads to wfl (P;B) = wfl B r.; = BCB Pi = BC P";B, 
which, upon comparison with (13), proves the claim. 0 

The above proposition may also be verified explicitly 
from Eqs. (5), (11), and (12). 

We now define normalized right and left eigenvectors 
v" and a y in terms of normalization coefficients (!Z and a e, 
according to 

(15) 

It follows from (8), (9), and (13) thatPy. (v")* = 0 for a:FfJ, 
and now impose the condition 

(16) 

This requires the normalization coefficients to satisfy 

pc· (eIl)* = (P u · UP)-I. (17) 

In addition, consistent with the above proposition, we im
pose the condition -- ..-a v = avB = B avo (18) 

Combining with (16), this implies P v • B <TV* = bap . or 

la e l2 = [auB<i"jj]-I. (19) 

Similarly. we get 

lea 12 = [~-Iua]-I. (20) 

Of course, Eqs. (17), (19), and (20) are consistent with each 
other, and anyone of them is implied by the other two. Thus 
these eight independent equations suffice to determine the 
eight normalization coefficients {ea J and {a e J • 

We are now ready to change variables to normal coordi
nates. First, we observe the following. Form the linear com
bination 

(21) 

Then aa = a V • if = a V • A", = _ iwa a V • '" = _ iwa aa . 
Hence aa is a normal mode, a linear combination of state 
vectors which evolves sinusoidally, according to 

(22) 

Indeed, using Eqs (21), (12), and (15), one finds 

kp ~ .• 2 + k 2 e2 (~ .• a )2 
a 10: eO 10: "'e e - '" 10: a cr:. UPe + -a- uUe + 2 up; 

W We 
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kpeO w~ + k 2 ~ _ (ll)a)2 
+-- 2 bu;, 

ll)a ll)/ 

and it can be verified explicity from the equations of motion 
that aa = - ill)a aa . 

Although A is not Hermitian, we assume that its sets of 
right and left eigenvectors form complete sets. Then, for an 
arbitrary state vector ,p, we write 

(23) 
a 

The expansion coefficients Aa are just the ao defined in (22), 
as may be seen by forming the inner product ofEq. (23) with 
P y and using (16). Thus 

a a 

and the aa are in fact the amplitude coefficients in the nor
mal mode expansion of,p. Reality of the physical fields im
plies f/!{k)*=f/!{-k), so that ao(-k)=ao(k)*, 
v"( - k) = v"(k )*, and wa( - k) = -ll)a(k). 

Proposition: The change of variables from ,p to (aa J dia
gonalizes H 2• 

Proof: Inserting (24) into (2), we find 

H2 = ")' f d 3~ !aP (t )(;P)*Caa (t )*v", 
::/J (217) 

which, after some manipulations, becomes 

H =" f d 3

k -Lza(tjaa(t)*ll)a 
2 ~ (217)3 2 ' 

(25) 

or 

H " f d 3 k 1 a ( a)* a 2= ~ --3-aO aO W • 
a (217) 2 

(26) 

It is instructive to take another view of the diagonaliza
tion procedure, as follows. 

Defining .0 = BC, we have nv" = ll)a v" . Let T be the 
matrix of right eigenvectors of A, so that Tva = v~. One 
shows in the usual way that T diagonalizes .0: 
niM T J.a = ll)(a) T,.a = T,.yll)(a) bra' so that, defining .0' to be 
the diagonalized form of .0, n~a =ll)(a)bya , that is, 
nT= ro' or T-1nT= .0'. 

We now write Eq. (8) in the form 

aa • (v")* = - inti' . (vIl)*. 

Then 

aa T!. = - iaP niM T!p, 
from which aa = - in:.e aP = - iw(a)ba{JaP = - ill)a aa , 
consistent with (22). 

We now consider the transformation of the Hamilton
ian H2 and the Poisson tensor B. 

In H2 there appears 

ii£,p* = aP vIl C (aa )*v" 

= aP (aa)* T~cvp, T,.a 

= afl(aa)* T1"e",. T p,a' 

where t denotes the Hermitian conjugate. We define 

C' = TtCT. (27) 

Therefore, 

Richard G. Spencer 381 



                                                                                                                                    

H2 = L f d 3~ J..aa (t)tll (t)* C;.p. 
a,fJ (211") 2 

From Eqs. (4) and (24), 

T JUZ (k )*[aa(k ),oP(k '}]Tvtdk ')* 

= - i(211")3B (k )8(k + k '), 

so that, using T( - k) = T*(k), and defining 

B' = T- 1B(T-1)t, 

we have 

(28) 

(29) 

[a<i:'(k );oP(k'}] = - i(211")3B '(k)8(k + k'). (30) 

To recapitulate, we define a change of basis from t/J to the 
aa, defined by t/Jp. = aa(v:)* = T!a aa, i.e., 

t/J = Ta, (31) 

where a" denotes the vector of nonnal mode amplitud~; 
0: = T -1 BCT, diagonal, implies iJa = .:..- i{J)a aa; 
C' = Tt CT implies 

and B' = T -lB (T -l)t implies [aa (k), af1(k'}] = - i(211") 

b ;.p (k )8(k + k '). 
We obtain the equations of motion for the aa by first 

computing that 13H2/13aa = (211")-1(a")*{J)(a). Then by the 
chain rule, 

iJa(k) = [aa(k ),H2] = f d 3k , [a"(k ),aI1(k ')] ~H2 
{j (k') 

= - i f d 3k '(211") b;.p (k )8(k + k') 

x~aI1)*(k 'j{J)(P)(k') 
211" 

= i b;.p (k )oP(k )(J)(P). 

We see then that we require, in addition to 

O;.p = (T - 1 BCT)ajJ = {J)(a)13 ajJ' 

that 

b;.p = (T- 1B(T- 1)i)ajJ = 13"p, 

and, so that H2 appears in normal form, 

c;.p = (TtCT)ajJ = {J)(a)13ap ' 

Of course, B'C' = 0'. 

(32) 

(33) 

(34) 

We denote the two branches ofthe dispersionrela.tion 
by SUbscripts for Bohm-Gross (bg) and ion acoustic (ia). 
Then, with the requirement {J)a ( - k ) = - {J)a (k I, the 
choices we make are, for the four {J)a, 

382 

k>O, 
k<O, 

k>O, 
k<O, 
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(35) 

(J)4(k ) = { - {J)ia (k ), k > 0, 
Ulia(k), k <0. 

Diagonalizing the matrices 0', B " and C' according to 
the requirements of Eqs. (32)-(34), one obtains 

[
UI~g 0 0 0 1 

n'~ ~ w~ _~ _:;.' (36) 

C' = [UI~g UI~a ~ ~ 1 (37) 
o 0 Ulbg 0' 

. 0 0 0 Ulia 

B' ~ [~ ~ ~ 1 Il (38) 

III. NONLINEAR THEORY 

We first write the expression for H 3, Eq. (7d) in Ref. 1, in 
terms of Fourier transformed dynamical variables. Using 
the relations 

f 
dx f(xfg(x) = f dk f dk' I(k If(k ')g(k + k ')* 

211" 211" 

= f dk f dk' f dk" I(k If(k ') 
211" 211" 211" 

xg(k ")13(k + k' + k H), 

one obtains 

H3 = L ~ f dk f dk' f dk" U.(k )u.(k '!Os(k H) 
s 2 211" 211" 211" 

X13(k+k' +k")+ L~f dk f dk' fdk" 
s 6 211" 211" 211" 

X a3~s3u.) 1p~Ak !OAk '!Os(k ")13(k + k' + k H). 
'Ps 

(39) 

It can be verified that the equations of motion, Eqs. (1) in 
Ref. 1, are given to second order in perturbation quantities 
by 

X.(k) = [X.(k),H2 +H3J 

= f dk'[X.(k),Xt(k'l] 13(:;t;~3), (40) 

where X. andXt represent the fields. 
In terms of'the state vectors t/J(k ), (39) may be written as 

H3=f dk f~fdk" 
211" 211" 211" 

X GP.VA t/Jp.(k )t/Jv(k ')t/J,dk ")8(k + k' + k "), (41) 

where the only nonzero components of G p.vA are 
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1 
G221 =-, 

2 

1 
G443 =-. 

2 

(42) 

where 

xgafJy(k,k ',k "~(k + k' + k ") 

=f dk f dk' f dk" ag(k)ag(k')ab(k") 
21T 21T 21T 

xgafJy(k,k',k ")e-i("'" +d'+ "'''ltc5(k + k' + k H), 

(43) 

Inserting the expansion (24) into (41), we obtain finally 
the normal mode form of H3: gaPr(k,k ',k") = GILV). v~ (k)* ~(k ')* vI(k ")*. (44) 

To relate the gaPY (k,k ',k") to the mode coupling coeffi
cients, we first calculate the functional derivatives of H 3• We 
have 

I 

f 
c5H3 a). (s)ds = .!!-.IE=oH3({aa}a#,a). + Ea).) 

c5a).(s) dE 

= f dk f dk' f dk" a).(k) L aP(k ')aY(k ")g).py(k,k ',k "~(k + k' + k") 
21T 21T 21T p,y 

+ f dk f dk' f dk" a).(k ')L aa(k )aY(k ")ga).y(k,k ',k ")c5(k + k' + k") 
21T 21T 21T a,y 

+ f dk f dk' f dk" a). (k ") L aa(k )aP (k ')gaP). (k,k ',k ")c5(k + k' + k "), 
21T 21T 21T a,/3 

(45) 

Performing the k " k ", and k integration in (45), one finds 

f 
c5H3 a). (s)ds = f..!!!.... a). (S){f dk" aP( - s - k ")aY(k ")g).py(s, - s - k ",k II)} 

c5aA (s) 21T 21T 

+ f :; a).(s){f ~: aa(k )aY( - k - s)gaAy(k,s, - k - S)} 

+ f :; a).(s){f ~~' aa( - k' - s) aI3(k ')gafJ).( - k' - s,k ',s)}. (46) 

Finally then, 

c5H 1 f __ 3_ = --2 ds{ aI3 ( - k - s)aY(s)g).py(k, - k - s,s) + aa(sjaY( - S - k )ga).y(s,k, - S - k) 
c5a). (k ) (21T) 

+ aa( - s - k )aP(s)gaP). ( - S - k,s,k)}. (47) 

Now 

iJa(k') = [aa(k'),H2 +H3] = [aa(k'),H2] + [aa(k'),H3]' 
aa(k) = f capy(k,k ',k - k ')aP(k ')aY(k - k ')dk', (50) 

(48) 
where the linear term, involving H 2, has been given in (22) as 
[aa (k '),H2] = - i(j)a (k ')aa (k '). For the nonlinear term in
volving H3 , we use Eq. (30) and the fact that B ' is diagonal to 
write 

[aa (k '),aA (k )] = - i(21T)b ~a c5 aA c5(k + k '). 

Then 

[aa (k '),H3] = f dk { - i(21T)b ~a c5H3 c5(k + k ')} 
c5aa(k) 

= _ 21Tib ' c5H3 (49) 
aa c5aa( _ k ') 

Using (47), we get for the nonlinear time evolution of aa 
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where 

capy(k,k') = - (i/21T) b ~,a {gayp( - k,k - k ',k') 

+ gpay(k', - k,k - k ') 

+gy{3a(k - k',k', - k)J 

are the desired coupling coefficients. 
Equation (50) may also be written as 

aa(k) = f fCapr(k,k ',k ")aP(k') 

XaY(k ")8(k - k' - k ")dk' dk" 

Richard G. Spencer 
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or 

ag(k) = J JCa,8r(k,k ',k") tIo(k ') Qb(k ") 

Xe + /(","(k) - ""'(k') - ",Y(k O))t 

X~k- k' - k ")dk' dk ". (53) 

This is the form given by Davidson,3 Eq. (19) on p. 105. 
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Using a computer, the Fermi surface for the one-electron model of an infinite crystal in three 
dimensions with zero range interactions, i.e., with so-called point interactions, is studied. A 
computer program is available which has, as input, the crystal structure, the scattering length of 
the solid considered, and the Fermi energy, and, as output, a drawing of the corresponding Fermi 
surface inside its Brillouin zone. 

I. INTRODUCTION 
The notion of Fermi surface is of great importance in 

solid state physics. Let us first recall what we mean by a 
Fermi surface. 

In the one-electron model of an infinite three-dimen
sional crystal we consider the Schrodinger operator 
H = -!1 + V (in units where Ii = 1, m =!) on L 2(R3

), 

where !1 is the Laplacian and V is periodic with periodicity 
A, where A is a three-dimensional lattice in R3. By standard 
techniques, this implies that 

H= L" H(k)d 3k, 

where the dual group A = R3/r can be identified with the 
Brillouin zone B, i.e., a Wigner-Seitz cell of the orthogonal 
(or dual) lattice r. 

The band spectrum of H dissolves into discrete eigenval
uesEI(k )<E2(k )< ... ofH(k) and the Fermi surface is the set 
(keB IE" (k ) = E F for neN I, where E F is the Fermi energy 
that distinguishes the occupied states from the nonoccupied 
states at zero temperature in the Fermi-Dirac statistics. 

Instead of considering the Fermi surface inside the Bril
louin zone B, we can consider it on R3 by extending it peri
odically. 

The actual computation of the Fermi surface for a spe
cific solid is an impressive combination of theory and experi
ment. However, there is no unifying rigorous theory, and we 
always have to make a large number of approximations that 
are difficult to control a priori. See Ref. 1 for an extensive 
introduction to the subject. 

In this paper we compute explicitly, with the aid of a 
computer, the Fermi surface from first principles for a parti
cular interaction, namely a point interaction. Of course the 
point interaction represents an approximation to the real 
potential. However with this potential we do not make any 
further approximation. 

The study of SchrOdinger operators with point interac
tions, i.e., zero-range interactions or Fermi pseudopoten
tials, was started by, among others, Fermi, Peierls, Breit, and 
Thomas in the thirties in nuclear physics,2 and continued in 
the fifties by Huang, Yang, Lee, Luttinger, and others in 
statistical mechanics. 3 

In addition, and in this connection more interesting, we 
have the celebrated Kronig-Penney model,4 dating from 
1933, which is a model of an infinite one-dimensional crystal 
with point interactions. 

The nontrivial rigorous study of these operators espe
cially in three dimensions was started in 1961 by Berezin, 
Faddeev, and otherss and made into a systematic theory by 
Grossmann, H0egh-Krohn, and Mebkhout.6

•
7 In particular, 

in Ref. 7, the periodic point interaction model is constructed, 
and its spectral properties are determined. 

Thus the model we study here is a three-dimensional 
analog of the Kronig-Penney model. 

More detailed properties of the spectrum when we re
move some points with a point interaction and thus destroy 
the periodicity are studied in Ref. 8. 

Starting from this there has been a thorough rigorous 
study of these operators and related operators with more 
realistic short-range potential. For an extensive exposition of 
all this we refer to Ref. 9. 

We also note en passant that in the beginning of this 
rigorous study nonstandard analysis played an important 
part. 10 

One property of the point interactions is that the only 
parameter needed to specify the interaction completely is the 
scattering length. 

Thus the equation we derive for the Fermi surface con
tains only the scattering length of the one-center problem, 
the Fermi energy, and the lattice. 

This implies that the computer program II has, as input, 
the lattice, the scattering length, and the energy, and as out
put, the Fermi surface with the following four options: (i) the 
surface within the corresponding Brillouin zone, (ii) the sur
face over an arbitrary rectangle in the plane, (iii) contour 
maps of (i), and (iv) contour maps of (ii). 

The Fermi surface is mathematically a multi-valued (ac
tually infinite-valued) function. 

The computer program is, however, only able to draw 
single-valued functions, so we can only see half the surface in 
(i) and a single sheet in (ii). In this short paper we can only 
give some examples of Fermi surfaces for a small number of 
different lattices and values of the parameters. 

However, a specific Fermi surface with a particular lat
tice and values of the parameters can be obtained from the 
authors on request. 

One may argue that a point interaction is not a realistic 
interaction. However, one virtue of the point interaction is 
that we can actually compute a nontrivial Fermi surface 
starting from a potential. In addition it is a possible starting 
point for a more general approach. 

That is, we can show12 (see Sec. II) that the SchrOdinger 
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operator with point interactions is very well approximated 
(actually in the norm resolvent sense) by SchrOdinger opera
tors with more general short-range interactions. We will re
turn to this in connection with Fermi surfaces later. 

II. POINT INTERACTIONS AND FERMI SURFACES 

We study here the one-electron model of an infinite 
crystal in three dimensions with point interactions. 

More precisely, let A be a Bravais lattice in R3, i.e., 

A = {nla l + nz.02 + n3a3 1ni EZj , (I) 

where a l,a2,a3ER3 are three independent vectors. We consid
er here the case where we have exactly one atom for each 
Bravais lattice point. 

The SchrOdinger operator -!:Aa corresponding to 
point interactions with strength a at each point in A has a 
resolvent with an integral kernel 

(-!:Aa _E)-I(p,q) 

= (p2 _ E)-18(p _ q) + (217')-3 

[( 
i$) - ] - I X L a - - 8 A.). , - GE(A - A') 

A,A 'eA 417' A.). , 

Xe'lJM-qA'lj(p2 _ E)(q2 - E), (2) 

where 1m $ > 0 and 

- {eiJEIXI/41Tlxl x-'O GE(x) = ' r, 
0, x=O. 

(3) 

Recall that eiJElx-yl/41Tlx - yl is the integral kernel of 
( - !:A - E ) - I on L 2(R3)] and [ ] ~ I, denotes the (A,A. ')th ele
ment of the inverse of the matrix [ ] on 12(A). 

We briefly digress here to give some insight into the 
definition of Ha' Formally, we are interested in the operator 

H= -!:A-} v8(· -A), 
1E'A 

(4) 

where 8 is Dirac's delta function and v> 0 which is not a 
well-defined self-adjoint operator on L 2(R3). 

By making a Fourier transform we obtain the operator 

H = p2 - } VltPA) ( tPA I , 
1E'A 

(5) 

where 

tPA(P) = (217')-3/2eiPA, (6) 

and the operator S = 1/) (gl is defined to be Sh = /Ig,h ), 
[Ig,h ) is the inner product onL 2(R3)] andp2 is considered as a 
multiplication operator, i.e., Ho = p2 means (Ho/)(p) 
=p2j(p). 

To make this operator well defined we modify H in the 
following way: Replace tP A with t/If., where 

t/If.(p) =Xo>(P)tPA(P) , (7) 

where X .. is the characteristic function of a ball with radius 
w, i.e., 

{
I, Ipl<w, 

Xo> (p) = 0, I pi >w, 

and let v be w-dependent, v = v(w). 
By choosing 
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(8) 

v(w) = (w/2~ + a)-I, (9) 

where aeR is arbitrary, one can show that H"', where 

H'" = p2 - v(w) ~ It/If.) ( t/lf.1 , (to) 

will converge in strong resolvent sense as ~ 00 to the opera
tor - !:Aa. Note that the coupling constant v(w) tends to zero 
as ~oo. For more details see Refs. 6, 7, and 9. 

The constant a can be interpreted as related to the scat
tering length in the sense that a = 1!41Ta is the scattering 
length of the one-particle system with a single point interac
tion. 

We now return to the operator - !:Aa. Using the invar
iance under A we can write 

(11) 

where the dual group A = R3/r (r is the orthogonal lattice, 
i.e., r = {nlbl + n2b2 + n3b31nleZj, where al • bl = 217'81/) 
can be identified with the Wigner-8eitz cell of the orthogo
nallattice, i.e., the Brillouin zone B, and where - !:Aa (k ) is a 
self-adjoint operator on /2(r) with an integral kernel 

(- !:Aa(k) -E)I-t., r.r 

= (Ir+ k 12 -E)-18"", 

+ (217')-3 [ a - i$/417' -gE(k)]-1 

X [(Ir+ k 12 -E)(Ir' + k 12 _E)]-I, 

where 1m $ > 0 and 

gE(k) = } GE(A )e- .... · k . 
1E'A 

See Ref. 7 for more details. 

(12) 

(13) 

We see from (12) that the negative part of the spectrum 

of - !:Aa(k) consists of points where a - i$ 1m 
-gE(k)=O. 

Using this, we can7 explicitly compute the spectrum of 
- !:Aa 

(14) 

where EI(a) < 0 provided a < ao < 0, where ao is a suitable 
constant. Here Eo(a), EI(a) will also depend on the lattice. 

The equation for the Fermi surface is then 

} GE(A)e- .... ·k=a- i$, (15) 
1E'A 41T 

where A, a, and E are input and the implicit function in k is 
output and we recall that 

GE(A) = e 141TA , A #0, 
{

ilEA 

0, A=O. 
(16) 

When we let E < 0 (15) can be written 

e-JlETIAI 
} COsk.A=41Ta-.J1ET. (17) 

1E'A III I 
A ",,0 

A few words may be appropriate here to indicate how 
we solve this equation. 

We sum all the terms in the infinite series with III I < R 
for some fixed R, use the symmetry of the lattice (which 
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implies that the program works for all Bravais lattices except 
for triclinic) to simplify and obtain a polynomial equation 
which can be solved by standard techniques. 

In general an nth degree equation has n solutions. How
ever, adding more and more terms in (17), which increases 
the degree of the equation, will not yield more and more 
different solutions, which is reasonable since Eq. (17) with a 
finite sum converges exponentially to the equation for a 
unique Fermi surface. 

But as the computer is only able to draw single-valued 
functions, we usually end up with a small number of differ
ent drawings corresponding to different roots of the equa
tion. To visualize the Fermi surface one has to superimpose 
visually the different drawings. 

For example, in Fig. 1 we use an approximation which 
yields a third-degree equation, and we obtain three drawings 
that are all, however, identical to the one in Fig. 1. 

However, in Fig. 2 we see an approximation which gives 
rise to a sixth-degree equation, and we obtain six drawings. 
In this case there are only two with major differences, Fig. 
2(a) and 2(b). 

In Sec. III we present some examples of Fermi surfaces 
with various values of the parameters and for some lattices. 

As mentioned in the introduction, point interactions 
represent a first approximation to more realistic short-range 
interactions. 

To be precise, let 

(18) 
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where V is a real-valued potential that is Rollnik [i.e., 
S R3 S R3 IV (x)v ( y)/lx - yl-2 dx dy < 00] with compact 
support and ,utE) is an analytic function with ,u(0) = 1. 

We assume that - A + V has a simple zero-energy res
onance, i.e., the equation 

(19) 

has a simple solution "', which does not belong to L 2(R3
). To 

be more specific, using the standard decomposition (E < 0) 

(- A + V _E)-1 = GE - GEv(1 + uGEV)-luGE , (20) 

where 

(21) 

and 

u = 1VIl/2sgn V, V= 1V1 1/2 , (22) 

we see that eigenvalues of - A + V correspond to nontrivial 
solutions of 

(23) 

We can show, see Ref. 14, that if rP is a solution of (23) then 

'" = GEVrP (24) 

is a solution of 

( - A + n", = E", . 

So we assume that 

rP + uGovrP = 0 

(25) 

(26) 

has a simple nontrivial solution rPeL 2(R3
). Then we can still 

prove that 

FIG. 1. The simplest Fermi sur
face we include here is for a sim
ple cubic crystal (SC or cubic P) 
with E= - I, a = 0.12, and 
a = b = c = 1 (for notation con
cerning the lattices, see Kittel13

) 

inside the upper half of its Bril
louin zone. Completely vertical 
or horizontal parts of the illustra
tion are not parts of the Fermi 
surface. 
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1/J=Govt/J 
is a solution of 

(- A+ V)tf=O 

(27) 

(28) 

in the sense of distributions, and what we assume is that this 
1/J is not in L 2(R3

). 

From this assumption we can prove the following 
theorem. 

Theorem 1: The operator HE converges in a norm resol
vent sense to the operator - ll.a given by (2) where a is given 
according to 
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FIG. 2. The Fermi surface of a body
centered cubic (bbc or cubic I) crys
tal with E = - 1 and a = - 0.14 
inside the upper half of its Brillouin 
zone. The total surface within the 
upper half of the Brillouin wne is the 
union of the two surfaces depicted 
above. 

a = p'(O)(vtf,1/J)I(V,tf)I-2 
• (29) 

Remark: The tf in the definition of a is the 1/J given by 
(27). 

Proof See Ref. 12. 

Using the same decomposition for HE as for - Aa, i.e., 

(30) 

we dissolve the bands of the spectrum into discrete eigenval
ues. 

We can then prove the following result. 

H0egh-Krohn et al. 388 



                                                                                                                                    

Theorem 2: Let Eo < 0 be an eigenvalue of - 1l.a (k ). 
Then there exists an eigenvalue E" for H,,(k) such that E" 
--Eo when E-+O, and E" is analytic in E. We have the follow
ing expansion: 

E" =Eo+EE' +O(E) , 

where 

E' = h ~ (A + EoB ) 

and 

(31) 

(32) 

(33) 

Here IB I is the Lebesgue measure of the Brillouin zone, and 
A,B are constants only depending on properties of - 1l. + V. 

Remark: The explicit form of A and B are given in 
Ref. 12. 

Proof: See Ref. 12. 

Figures 13-19 show how the Fermi surface inside the 
upper half of its Brillouin zone varies with E for an ortho
rhombic P crystal with axes a = 3, b = 2, c = 1, and with 
a=O. 

Figures 20-22 show a similar series for a tetragonal P 
crystal with axes a = b = 2, c = 1, and with a = O. 

Figures 23 and 24 show the Fermi surface inside the 
upper half of its Brillouin zone for a tetragonal P crystal with 
axes a = b = 2, c = 3, and with a = 0 for two values of E. 

Figures 25-27 show surfaces of a monoclinic C crystal, 
and a trigonal crystal. 

Remark: This means that the Fermi surface computed 
with point interactions represents a first approximation to a 
Fermi surface with more general short-range interactions. 

Using a scaling technique, point interactions can also be (a) 
related to a limit other than the zero-range limit. 

That is, let 

H (E) = - 1l. + ,u(E) L v(. - ~) , 
..teA E 

(34) 

where V and,u are as before. Then, using the unitary opera
tor U" defined by 

(U"f)(x) = E- 3/:t(xIE) , (35) 

we see that 

U"-IH"U,, =E- 2H(E) , (36) 

which implies that the eigenvalues E" and E (E) of HE and 
H (E), respectively, are related by 

E" = E- 2E(E). (37) 

Looking at the operator H (E), we see that the limit E-+O 
represents a situation where the centers [i.e., the points 
where each potential V(x - A. IE), A.EA, is concentrated] 
move apart. As usual we decompose H (E), i.e., 

H(E) = 1"' H(E,k)d 3k, (38) 

and we have the following theorem. 
Theorem 3: Let E (E,k ) < 0 be an eigenvalue of H (E,k ) 

such that 

lim E- 2E(E,k) <0. 
E-oO 

(39) 

Then E (E,k ) is analytic and has the following expansion: 

E(E,k) = cEo + ~E' + o(~), (40) 

where Eo is an eigenvalue of - 1l.a (k ) and E' is given by (32). 

III. SOME FERMI SURFACES 

In this section, we present some examples of Fermi sur
faces with various values of the parameters and for some 
lattices. 

Figures 3-12 show contour plots and periodic exten
sions of Fig. 2. 
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;.b 

o 

(b) 

;.b 

o 

FIG. 3. A contour plot of Figs. 2(a) and 2(b). 
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FIG. 4. The Fermi surface of Pip. 
2(a) and 2(b) ~tended periodically. 
Again it is di8lcuJt to visualize the 
total slIJ"face in the 8erIIC that the to
tal Fermi sllJ"face is the union of the 
two slllfllCelJ above exteaded periodi
cally in the positive and necativezdi
rection. 

HHgh-Krohn (If Ill. 390 



                                                                                                                                    

(a) 

) 

(b) FIG. 5. A contour plot of Figs. 4(a) and 4(b). 

) 
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FIG. 6. A magnification of I'art of 
the sUrfllce in Figs. 4(a) ana 4(b). 
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FIG. 7. A magnification of another 
part of the Surface in Figs. 4(a) and 
4(b). 
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FIG. 8. The Fermi surface of a face..centered cubic (fcc or cubic F) crystal with E = - 1 and a = - 0.17 inside the upper half of the Brillouin zone. 

(a) 

~ ~. ') 
~~.~ 

(b) 

~ 
FIG. 9. Contour plot of Figs. 8(a) and SIb). 
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FIG. lO. The Fermi surface of 
Figs. S(a) and SIb) extended peri
odically. 
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( 

(b) 
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FIG. 11. Contour plot of Figs. 10(a) and 
lO(b). 
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FIG. 12. A magnification of a 
part of Figs. 10(a) and lO(b). 
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FIG. 13.E= -1.2. The Fermi sur
face is homeomorphic to a sphere 
around each print of the orthogonal 
lattice. 

FIG. 14. E = - 1.1. 
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FIG. IS. E = - 0.9. The Fermi 
surface is now connected in the x 
direction. 

FIG. 16. E = - 0.425. 
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FIG.17.E= -0.35. The Fermi 
surface is connected in the x and 
y directions. 

FIG. 18. E = - 0.13. 
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FIG. 19.E= -0.1. 

FIG. 20. E= -1.1. 
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! 

FIG. 21, E = - 0.6. 

FIG. 22. E = - 0.4. 
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FIG. 23. E = - 0.2417. 

FIG. 24. E = - 0.2. The Fermi sur
face is now connected in the z direc
tion. 
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FIG. 25. The surface for a mono
clinic C crystal with axes a = 2, 
b = 1.5, and c = 1 inside the upper 
half of its Brillouin zone. The angle 
between the axes a and e is 6(1', 

a=O,andE= -1. 

FIG. 26. The Fermi surfaces of a tri
gonal crystal with a = 0 and E = - I 
for an angle of3O"between the symmetry 
axis and each of the crystal axes. 
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Homogeneous and isotropic, relativistic two-fluid oosmological models are investigated. In these 
models two separate fluids act as the source of the p-avitational field, as represented by the FRW 
line element. The general theory oftwo-ftuid PRW models in which neither fluid need be 
comoving or perfect is developed. However, attention is focused on the physically interesting 
special class of flat FR W models in which one fluid is a comoving .radiative perfect fluid and the 
second a noncomoving imperfect fluid. The first fluid is taken t() model the cosmic microwave 
background and the second to model the observed material content ofthe universe. One ofthe 
motivations of the present work is to model the observed velocity of our galaxy relative to the 
cosmic microwave background that was recently discovered by G. F. Smoot, M. V. Gorenstein, 
and R. A. Muller [Phys. Rev. Lett. 39, 898 (1977)]. Several models within this special class are 
found and analyzed. The models obtained are theoretically satisfactory in that they are 
represented by solutions of Einstein's field equations and the laws of thermodynamics in which all 
the physical quantities occurring in the solutions are suitably well behaved. In addition, the 
models are in agreement with current observations. Consequently it is believed that the models 
obtained are physically acceptable modellt of the universe. 

I. INTRODUCTION 

In this article we shall consider cosmological models 
that have two fluids (possibly imperfect) as the source of the 
gravitational field. In particular, we shall be dealing with 
isotropic and homogeneous models in which the metric is 
the general FRW line element given, in a "spherical polar 
coordinate system," by 

d~ = - c2 dt 2 + R2(t) (dr/(l - kr) 

(1.1) 

where t is the cosmic time, R is the expansion factor, and k 
the normalized curvature constant (i.e., k = - 1, 0, + I, 
depending on whether the model is open, flat, or closed). We 
shall also wish to study such models in "axial coordinates" in 
which the flat (k = 0) line element takes on the form 

d~ = - c2 dt 2 + R 2(t)(dx2 + dy2 + dz2} . (1.2) 

Although we shall be dealing with isotropic and homo
geneous models, the analysis can, of course, be applied to 
general two-tluid cosmological models. In addition, we 
shall, for physical reasons that will be discussed below, focus 
our attention on models in which one of the two cosmologi
cal fluids is a comoving perfect tluid (black-body) radiation 
field. 

The motivation behind this research is twofold. First, it 
has been established that cosmological models, in particular 
FRW models, can be interpreted as solutions of Einstein's 
field equations for a variety of diiferent sources. In the earli
est solutions the source was taken to be a comoving perfect 
tluid. Later, and mainly in the 1960's, authors interpreted 
the gravitational field to be due to two cosmological tluids, 
both perfect and comoving (see Sec. II). More recently, I 

FR W models have been investigated in which the source is a 
noncomoving imperfect tluid either (i) with or without heat 
conduction or (ii) with or without electromagnetic field. It is 
thus the aim to complete this mathematical analysis and in
vestigate FRW models in which two-tluid sources are pres
ent, neither of which need be comoving or perfect. 

It will be noted that models of this type are already im
plicitly available, for if we take a known two-tluid model, 
then we can "reinterpret" each of the two tluids separately 
using the techniques developed in Coley and Tupper. I How
ever, in Secs. III and IV a general analysis of two-tluid cos
mological tluids will be presented. 

It will also be noted that this does not, strictly speaking, 
complete the general investigation of the interpretation of 
FRW models, since articles have been written in which n 
(comoving, perfect) tluids have constituted the source of the 
gravitational field (see Sec. II). Thus in a full analysis there 
would be n tluids, in general noncomoving and not necessar
ily perfect. However, such an analysis will not be undertaken 
here. First, an investigation involving n tluids (rather than 
two) would not introduce any new interesting or significant 
features from a mathematical point of view. Second, there is 
not such a strong physical motivation for studying n (> 2) 
tluid models. 

The second motivation for the present work is strictly 
physical. The presently accepted view of the evolution of the 
universe is that, except for very early times (when T> 1010_ 
1012 K, T - 1010 K corresponds to t - 10 sec), the universe is 
reasonably described by" a FRW model." The conventional 
wisdom is that the universe evolved initially from a radia
tionlike state to a matterlike universe ("dust") at later times. 

The first FRW models to appear had as sources either 
comoving radiation perfect ftuids or comoving matter per-
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fect fluids; each model was supposedly applicable to differ
ent eras in the evolution of the universe. Later, attempts were 
made to take a known radiation model and a known matter 
model and smoothly (or, at least, continuously) match up the 
models at P, = Pm (where P denotes the energy density and 
the indices refer to the radiation and matter fluids) in order 
to obtain a qualitative description of the evolution of the 
universe in terms of a single model (see, for example, Refs. 2 
and 3). 

The discovery in 19654
•
s of the 2.7 K isotropic cosmic 

microwave background, which was presumed to be a rem
nant of the "primeval fireball," stimulated renewed interest 
in the subject, and led many authors to investigate FR W 
models which included both matter and radiation fields (for 
all times). In these models the source of the gravitational 
field is assumed to be two comoving perfect fluids; a brief 
review of this approach will be given in Sec. II. 

Recently it was discovered6 that there is an observed 
motion of our galaxy relative to the microwave background 
radiation. This, in turn, stimulates our present interest in 
models in which there are two cosmological fluids, one rep
resenting the background radiation field and the second a 
matter field constituting the observed galaxies, and in which 
there is a relative motion between the two fields. We shall 
take the cosmic microwave background radiation field as 
comoving and thus seek models in which the matter field is 
noncomoving. Since the isotropy and homogeneity of both 
the cosmic microwave background and the observed matter 
is established to a reasonable experimental accuracy, we 
shall wish to study models in which isotropy and homogene
ity is preserved, that is, FR W models. Thus we shall wish to 
investigate FRW models that have two fluids present, a co
moving radiation field, and a tilting matter field. However, 
this is possibly only if one of the fluids (here assumed to be 
the matter field) is assumed to be imperfect. 

There is one more aspect to this type of research worth 
mentioning here. There are two approaches possible. First, 
the expansion factor R (t) in Eq. (1.1) can be specified and 
solutions are then sought in which two fluids constitute the 
source. The problem of finding such a model is essentially an 
algebraic mathematical problem; the outstanding problems 
that then need to be resolved require a determination of 
whether the resulting fluids are physically interesting. The 
second approach is to specify (physical) equations of state for 
the fluids present; seeking a model then consists of solving 
differential equations for the remaining unknown quantities 
in the model [for example, in the standard two-perfect-fluids 
case we have to solve an ordinary differential equation for 
R (t )). Both approaches have been taken in the literature, and 
both will be discussed in this article. 

As mentioned above, in Sec. III the theory of two gen
eral fluid sources in FRW models will be investigated. We 
shall discuss both "radial" and "axial" systems. In Sec. IV 
we shall restrict attention to the physically important case in 
which one fluid is comoving, perfect (black-body) radiation 
fluid and the second fluid a noncomoving imperfect fluid. 
Several acceptable models will be found, which will be dis
cussed in Sec. V. The notation to be used in this article is 
similar to that found in Coley and Tupperl and McIntosh.7

-
9 
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II. THE STANDARD THEORY OF TWO-FLUID 
COSMOLOGIES 

Einstein's field equations, with metric (1.1), and for a 
comoving perfect fluid source are (in cgs units) 

StrGp = 3 (R 2 + ke
2
) _ Ae2 

R2 R2 ' 
(2.1 ) 

•• • 2 2 

strGp = _ (2R + ~ + ~) + Ae2 , 
~ R R2 R2 

where A is the cosmological constant and a dot denotes dif
ferentiation with respect to t. From these equations follow 
the conservation law 

(2.2) 

To complete the solution an equation of state relating p 
and P is needed. The dimensionless function E(t) is intro-
duced where ' 

E(t) p/pe2 . (2.3) 

[If A:fO, E(t) = (S1TGp/c2 - Ae2)/(S1TGp + Ae2), and A will 
appear in all subsequent equations. For the rest of this sec
tion we shall not include the cosmological constant.] 

Suppose that the model contains both matter (with den
sity Pm' pressure Pm) and radiation (p" p" and temperature 
T,), then we can write 

p = p, + Pm' P = P, + Pm . (2.4) 

Thus the universe consists of two (comoving) cosmological 
perfect fluids. The temperature in these models is usually 
taken to be that of the radiation of the cosmic microwave 
background (i.e., the temperature is taken to be Tr ), since it is 
argued that the thermal balance is maintained by the radi
ation. Indeed, Szekeres and Barnes 10 argue that since the 
entropy of the universe is almost entirely carried by photons 
(the ratio of number densities of photons to baryons is 108 

based on a background temperature of 2. 7 K) the thermody
namics is almost entirely dictated by the photon field. If 
thermal equilibrium is assumed during the expansion all 
components consequently share the common temperature 
T,. 

If the radiation field is black body we also have that 

P, = aT~, p,/c2 = !p, , (2.5) 

where a=7.S7xlO- ls ergcm- 3 deg-4 is Stefan's con
stant. 

For the two-fluid model we can write the conservation 
law (2.2) as 

E, +Em =0, 

where 

E,=~ {e2 !!.. (p, ,R 3) + P, !!.. (R 3)} , 
R dt dt 

Em = ;3 {e2 :t (Pm R 3) + Pm :t (R 3)} , 

(2.6) 

(2.7) 

where E, is the rate of energy transfer per unit volume from 
matter to radiation and Em that from radiation to matter. 
These expressions were first introduced by Davidson II and 
used by McIntosh.7 

A. A. Coley and B. O. J. Tupper 407 



                                                                                                                                    

If the two fluids do not interact then the radiation and 
matter are both independently conserved, i.e., 

Er =Em =0. (2.8) 

Since we have five variables, Pm' Pr' Pm' Pro and R, 
two field equations [two of Eqs. (2.1) or (2.2) or one of(2.8)] 
and essentially two equations of state [(2.5) and one of (2.8)], 
if we assume that the two fluids are separately conserved we 
only need one more equation of state to determine the model. 
This final assumption is usually taken to be that the pressure 
of the matter field Pm is zero; that is, the pressure from the 
random motions of galaxies and interstellar matter is negligi
ble. Thus the matter is taken to be "dust" and consequently 

Pm =0. (2.9) 

Indeed, the inclusion of radiation in the FRW models is only 
slightly affected by its interaction with matter and, in fact, 
such an effect is of about the same magnitUde as that of 
in;luding a nonzero Pm .12 

As an illustration, with the above assumptions we ob
tain 

Pr =elR -4, Pm =e~ -3, (2.10) 

and thus 

E(t) = 1/3(1 + cR) or R (t) = e*(1 - 3E)/E (2.11) 

(where el, e2' c, and e* are constants). There remains one 
ordinary differential equation to solve for R (t ). We note that 
cR < 1 initially so that E = !, and that cR is large at later times 
(regardless of k ) so that E = 0; hence the model expands out 
of a pure radiation state towards a final matter (dust) state. 
This is, in fact, a general feature of all such two-fluid models, 
and is regarded as a desirable feature. 

Lemaitre l3 was the first to find a model of this type. 
Lemaitre only considered the case k = O. Other early solu
tions were found by Alpher and Hermanl4 (for the case 
k = + 1) and by Chernin l5 (for general values of k, i.e., 
k = - 1,0, or + 1). Chemin's solutions were shown by 
McIntosh8 to be equivalent to results obtained by Tolman. 16 
Further models of this type, in which the universe consists of 
two noninteracting fluids, were found by Cohen,17 McIn
tosh,8 and more recently by Nowotny 18 (all three for general 
k). Paynel9 used models of this type to investigate the effect 
of a cosmic microwave background with present tempera
ture greater than 3 K (increasing To decreases the age of the 
universe). Harrison 12 argues that if Tr > Tb - 5 X 109 K the 
models above break down due to lepton and hadron pair 
production, and so developed a model in which a (quantum 
mechanical type) single-fluid FRW model with equation of 
state E(t) = const is matched continuously at Tr = Tb (at 
t = tb -10 sec) to a Lemaitre model. 

A slightly different approach to the problem is to con
sider a particular functional form for R (t) (although, tradi
tionally, this approach is not usually taken). There are, of 
course, certain constraints that should be imposed from the 
outset. Let us consider a k = 0 FR W model here. For small t 
we wish the model to be approximated by radiation so that 
R (t )-t 1/2 and the equation of state is E(t )-!. Forlarge twe 
wish the universe to be approximated by the Einstein-de 
SitterdustuniversesothatR (t )-t 2/3 andE(t )-O[moreover, 
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we wish R (t ) to be a monotonically increasing function of t ]. 
Formally, we require thatR (t) - t 1/2 andE(tHast-oand 
R (t )-t 2/3 and E(t )-0 as t_ 00. We note that the specifica
tion of R (t ) will give rise to an algebraic relationship between 
P and p [i.e., will give rise to an equation of state E(t)] that 
mayor may not be physical. Other physical constraints to be 
imposed include P ;;;.0, p;;;'O (for all t ), and possibly we should 
restrict E(t) to be a monotonically decreasing function of t. 
Note that we are allowing the equation of state of the materi
al content of the universe to change with time. 

As a simple illustration of the above we consider the 
expression20 

R (t) = t 1/2(1 + It 3/5)5/18 , (2.12) 

where I is a positive constant such that It 3/5 is dimensionless. 
With this choice of R (t) we note that all the constraints out
lined in the previous paragraph are satisfied, since € < 0 for 
all t where the time varying equation of state E(t), obtained 
from Einstein's field equations (2.1), is given by 

3E(t)=(1 +13 It 3/5)/(1 +it3/5+-,//2t6/5). (2.13) 

With R (t) specified we can calculate the forms of P and 
P explicitly. If we write P = Pr + Pm and P = Pr + Pm we 
cannot find Pr' Pm' Pro and Pm independently unless we 
specify equations of state between Pr and Pr and between 
Pm and Pm' Suppose we again put Pr = (e2/3) Pr' and, for 
simplicity, Pm = 0, then we obtain 

p, = (3/3217'G)(t -2)(1 + It 3/5)-2(1 + Is It 3/5) , (2.14) 

Pm = (//517'G)(t- 7/5 )(1 + It 3/5)-2(1 +Ft 3/5 ). (2.15) 

We note that in this model Em #0. In fact, we find that 

Em = (e2//5017'G )(t -12/5)(1 + It 3/5)-3( 1 - ~ It 3/5) , 

(2.16) 

so that Em is positive for small t and will become negative for 
sufficiently large t. 

With 1= 1.06 X 10-7 we find that the model described 
above is in very good agreement with actual observations 
(see Ref. 20, Sec. V, and Table I). 

This approach was in fact taken by McIntosh9 in which 
he considered a k = 0 model of the above kind. In this model 
a particular functional form was taken for R (t ) and McIntosh 
attempted to show that this produced a model that was phy
sically viable. Unfortunately, as pointed out by Jacobs,3 in 
this particular model Pm = Pr at te - 8 X lOIS sec, whereas 
conventional wisdoml4 suggests that te _1012-1014 sec. The 
time t. is when the universe enters the matter dominated 
stage and Gamow21 has suggested that this is when galaxy 
formation begins. 

This defect is not present in McIntosh's later models nor 
in the other models mentioned here. Nor is this defect neces
sarily present in models in which R (t ) is specified a priori, as 
can be seen from the model represented by Eqs. (2.12H2.16) 
and the models in Ref. 20 (see Sees. IV and V and Ref. 20). 
However, it is a general feature of two-fluid models that the 
including of radiation in a matter universe will tend to de
crease to and the inclusion of matter in a radiation universe 
will tend to decrease To. 

The above comments serve to illustrate that not all mod
els should be restricted by the severe constraints satisfied by 
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TABLE I. The observed or theoretical values of quantities appearing in this article are given below together with their sources where appropriate. We recall 
that a zero subscript denotes a quantity's current value. 

Quantity 

Hubble constant Ho 

Age of universe to 

Temperature of cosmic 
microwave background To 

pol total energy) 

P,.o 

Pm.O 

P ... O 

Within galaxy P. 

P. 

Timet, atwhichp, =Pm 

Time at which elements 
form 

Critical values of T 

Em (early times) 

Em•o 

The velocity of the 
galaxy relative to 
the cosmic microwave 
background 

Numerical value 

2-6 X 1017 sec 
2.S X 1017 sec 

sx 1017 sec 

2.S-3 K 

1O-3O_S X 10-29 g cm-3 

10-34_10- 33 g cm-3 

1-3X 10-24 g cm-3 

S-7X 10- 12 dyn cm-2 

lQ2-W sec 

positive 

200-600 km sec - 1 

the standard noninteracting two-fluid models discussed at 
the beginning of the section. Indeed, very soon after the non
interacting models were developed models were sought in 
which there was some energy transfer between the radiation 
and matter fields (i.e., Em =FO) and (correspondingly) models 
were sought in which Pm =FO. Generically it is thought that 
at present there is a conversion or net rate of gain of energy 
per unit volume from radiation to matter (i.e., Em•o < 0) due 
to the nuclear burning of stars in galaxies, and that Em -0 as 
t_ 00. It is believed that a reliable estimate for Em•o at pres
entisEm.o~ - (10- 31_10- 30

) erg cm-3 sec-I. It is also spe
culated22 that Em > 0 for small t (in the radiation dominated 
era) due to pair production and annihilation. It should be 
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Refs./sources 

various 

various 
Age of uranium and 

thorium isotopes 
Age determined for 

globular clusters 

Refs. 4, S 

Ref. 24 

(based on To between 2.S 
and 3 K) 

Refs. 14,24,29 

Ref. 30 

Refs. 3,14 

Radiation plus matter 
model breaks down due 
to lepton and hadron 
production (Ref. 12) 

Pm no longer negligible 
(Ref. 25) 

Models break down 

Ref. 22 

Ref. 24 

Ref. 6 

stressed that the above are only speculations and other forms 
for Em may be acceptable. 

Models in which the two fluids interact and consequent
ly the energies of each are not separately conserved were 
investigated by many authors. McIntosh 7 developed general 
k models that exhibit the above generic behavior of Em and 
include absorption and emission. Models with k = 0 were 
investigated in detail with equations of state of the form (i) 
E(t) = ~ e - fJt and (ii) E(t) = ~(l + p.t ) -..t (where p, p., A. are 
positive constants chosen so that Em is ofthe "correct" sign 
in the appropriate time periods). As in the models discussed 
earlier, these models generally evolve from an E = ~ radi
ation dominated universe to an E = 0 dustlike final state. 
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Other interacting two-fluid models were found by May and 
Mc Vittie23 and Sistero.24 In May and Mc Vittie Pm is defined 
as an arbitrary function of t but is later restricted by 
E(t ) = !(1 + JLt) - A (and it is shown that McIntosh's solu
tions are the only ones possible in terms of elementary func
tions). The behavior of Em is investigated in all models. Sis
tero also assumes Pm is an arbitrary function of I through 
Pm = fiR ) Pm' where f is a non-negative function, and ex
amines for general k the cases E(t) = 1(1 + JLI ) -1 and 
f(R) = (a - PR + yR 3)-1 in detail. 

Other models in the literature that are variations on the 
above theme include (a) models with multifluids including 
those proposed by Vajk2S [up to four noninteracting (possi
bly relativistic) fluids for general k], Mclntosh26 [n non-in
teracting fluids with equations of state Pi = (Yi - 1) Pi and 
general k], Szekeres and Barnes10 (radiation plus multicom
ponent Synge gas for general k ), and Sister027 (three interact
ing fluids including two radiation fields-photons and neu
trinos-for general k ); (b) models with a nonzero 
cosmological constant including those proposed by May22 
(generalization of May and McVittie23

) and Mclntosh26 (in 
which a nonzero cosmological constant is treated in terms of 
an additional fluid in an n-fluid model); and (c) other two
fluid models in which neither fluid is a radiation field (Mcln
tosh26). 

III. GENERAL TWO-FLUID MODELS 

Einstein's field equations for two general viscous fluids 
are 

(c4/81TG)G /) 

= (p, + c-2 p,)ViVi + p,ti - 2'TJrd/ + q~vi + q!vi 

+ (Pm + c-2 Pm)uiui + Pmti - 2'TJmd~ 

(3.1) 

where d/.m is the shear tensor, 'TJ '.m. the shear viscosity coeffi
cient, q!.m the heat conduction vector, and Vi and ui are the 
velocities of the r and m (radiation and matter) fields, respec
tively. We could investigate models in which these velocities 
are radially or axially directed. For illustration, in this sec
tion we shall co~sider the case when Vi and ui both have 
nonzero components in the radial direction and can be writ
ten 

Vi = (a"p,R -1,0,0), ui = (am,pmR -1,0,0), (3.2) 

where 

a2 _p2=c2 a2 _13 2 =c2 (3.3) r r , m m .• 

Corresponding to (3.2) wealso assume that the q!.m are of the 
form 

q~ = (Q,/c)(p" - a,R,O,O) , 
(3.4) 

q'!' = (Qmle)(Pm, - amR,O,O) , 

so that q~vi = q'!'ui = ° and Q:.m=(q/qi)"m' In addition, 
there will be an appropriate set of thermodynamic laws gov
erning the two fields (see Sec. IV). 

With the metric taken in the form given by Eq. (1.1), 
Einstein's field equations become 
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(3.5) 

_ (R 2 + 2RR + kc2)1c2R 2 

81TG {2 2} =7 P, +"3'TJ,X, +Pm + "3'TJm Xm , 

° = {p, + :2 P, - 3~2 'TJ,X,} a, 13, - ~ (a: + 13:) 

+ {Pm + c~ Pm - 3~2 'TJmXm} am 13m 

- Qm (a!, + P!'), 
c 

where 
X, = (it,1e +13; R -1 -13, R -lr-1)(1_ kr)1/2, 

(3.6) 
Xm = (itmle + 13 '", R -I - 13m R -lr -l)(l - kr)1/2, 

where a· prime denotes differentiation with respect to r. All 
quantities are assumed to depend on rand t only .. 

Solutions ofEqs. (3.5) are already known in certain spe
cial cases. If we have one comoving perfect fluid (for exam
ple, p,¥=O, a, = c, 'TJ, = Q, = 0, Pm =Pm = 'TJm = Qm 
= 0) we have the standard one-fluid FR W models. If we 
have one noncomoving viscous fluid (for example, P, = P, 
= 'TJ, = Q, = 0) we obtain the models of Ref. 1. If we have 

two comoving perfect fluids (a, = am = c, 'TJ. = 'TJm = Q. 
= Qm = 0) we recover the solutions outlined in Sec. II. We 
can use the above solutions to obtain more general solutions 
in the following manner: We take a solution in which there 
are two comoving perfect fluids; each of the "perfect fluids" 
in this model is "equated" with a noncomoving viscous fluid 
according to the prescription in Ref. 1; thus we obtain a 
solution containing two noncolhoving viscous fluids. As 
mentioned in Sec. I there will exist general solutions to Eqs. 
(3.5). However, in Sec. IV and the remainder oftlUs article 
we shall seek solutions ofEqs. (3.5) in a particular configura
tion of physieal interest. 

IV •. RADIATIONAND VISCOUS Fl,..U.DMODELS 

Motivated by ~ argmnents outlined in Sec. I, we shall 
look for two-fluid .m~of the following description. We 
shall assume that the first fluid is a comoving, perfect fluid 
with radiative equations of state (Eq. (2.5)). This fluid will 
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model the observed cosmic microwave background. The sec
ond fluid will be taken to be a noncomoving, imperfect fluid 
modeling the observed matter in the universe. We shall focus 
our attention on k = 0 FRW models with line element given 
by Eq. (1.2) and will assume that the matter is moving axially 
relative to the comoving radiation, thus modeling the ob
served relative velocity between the center of our galaxy and 
the cosmic microwave background. 

In this physical configuration Einstein's equations are 
c4 

-G·· 81TG I) 

= P; (4v jv j + c2
gjj ) + ~m + :2 Pm) UjU j + Pm gjj 

(4.1) 

where a prime denotes differentiation with respect to z. 
The temperature Tr associated with the radiation field 

satisfies Pr = aT;. The physical quantities associated with 
the imperfect fluid will satisfy the set of thermodynamic laws 
set out below. Henceforward we shall drop the suffix m (per
taining to the matter field) on all physical quantities in the 
imperfect fluid (i.e., 71, Q, n, S, T, K) since there should be no 
confusion, retaining the m suffices on Pm and Pm only. In 
general we shall not take Tr and T equal in the models. This 
means that the two fluids will not be in thermal equilibrium 
throughout the history of the universe, which is what we 
expect for imperfect fluid solutions with nonzero heat con
duction vector. However, we shall assume that the following 
set of thermodynamic laws, based on the assumption that 
deviations from thermodynamic equilibrium are not too 
large, are valid. 

The thermodynamic laws are! the baryon conservation 
law, 

(null);JL = 0; 

Gibb's relation, 

positive entropy production, 

(4.5) 

(Sull+T-!qll);Il;;;'O; (4.7) 

and the temperature gradient law, 

qll = ( _ Kh IlV/c2)(T:v + TaJc2) , K;;;'O. (4.8) 

In the above n is the particle density (of the matter field), T 
the temperature, S the entropy density, h IlV = gllV 
+ u lluv/e2 the projection tensor, av = uv;aua the accelera-
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wherevj = (- c,O,O,O). We shall assume Uj has an axial com
ponent and is of the form 

Uj = (-a,O,O,{3R), (4.2) 

where a 2 
- {3 2 = c2

, and a and {3 are functions of z and t. 
We also assume that 

q'!' = (Qm/c)({3,O,O, - aR), (4.3) 

so that q'!'u
j 
= 0 and Q ~ :=.q'!'q:" . 

Using Eqs. (4.1)-(4.3), Einstein's field equations for 
k = 0 become ({3 #0) 

(4.4a) 

(4.4b) 

(4.4c) 

(4.4d) 

tion vector, and K the thermal conductivity. We note that Eq. 
( 4. 7) is automatically satisfied in the models under consi
deration if Eq. (4.8) holds. 

In addition, we insist that the energy conditions Pr > 0, 
Pm > 0, Pm - Pm/c2>0, Pm >0 are all satisfied and we im
pose the "boundary conditions" (I) a~ as t-+oo, (lIa) 
a- 00 as t-o, or (lib) a-+Ac as t-o, where A > 1. 

Solving Eqs. (4.4), we obtain 
• 2 

1 { 1 [R 3 2 {32 Pm=- - -( a - ) 
c2 81TG R 2 

(4.9a) 

(4.9b) 

(4.9c) 

(4.9d) 

The right-hand sides of Eqs. (4.9a) and (4.9b) are positive, 
which always ensures that the terms in braces on the right
hand sides ofEqs. (4.9c) and (4.9d) are positive, so that Q is 
the same sign as f3 and 71 is non-negative if and only if 

a/c+f3'/R<O. (4.10) 

We note that Eq. (4.8) reduces to the single expression 

A. A. Coley and B. O. J. Tupper 411 



                                                                                                                                    

K [ . aT' . Ta' R] 
Q= C2 PT+ cR + TP+ cR +PTR · (4.11) 

For K>O we must have the expression in square brackets 
divided by P non-negative (since Q8>O). 

One final note concerning notation before the various 
models are established. The models set out below may also 
be solutions of Einstein's equations with a comoving perfect 
radiation fluid and a comoving perfect fluid matter field act
ing as the source; and in this sense the new models may be 
thought of as "reinterpretations" of standard-type two-fluid 
models. That is, the right-hand side ofEq. (4.1) may be for
mally equivalent to 

(P~/3)(4vjv j + c2gjj ) + (P!. + c-2 P!.)uju j + P!. gjj , 
(4.12) 

where U j = Vj = ( - c,O,O,O) and P~ = Pro The asterisk nota
tion is being used to denote the pressure and density in the 
standard-type two-fluid FRW model. Using this notation, 
the left-hand side ofEq. (4.4a) can be written as c2Pr + c2p!., 
and the left-hand sides ofEqs. (4.4b) and (4.4c) can be written 
as (c2/31or + p!.. In addition, Einstein's equations (4.9) can 
be written in the new notation as 

Pm = (a2le2)p!. + (P 2le4 )p!. , 

3Pm =p 2p!. + [(3a2 _ 2{32)le2] P!. , 

2"l(ale+p'IR) = _p 2(p!. + P!.Ic2) , 

cQ = ap(P!' + p!./2). 

(4.13a) 

(4.13a) 

(4.13c) 

(4.13d) 

Note that if P!. and P!. are both non-negative, then so are 

Pm and Pm' 
Models will exist in which the physical quantities occur

ring in the models depend upon both z and t. However, such 
models will not be explicitly sought here. Henceforward, we 
shall look for models in which the physical quantities are 
functions of t alone (i.e., a, p, and T are functions of t only). 
This is in keeping with the types of cosmological models that 
we seek, and is also a mathematical simplification that en
ables us to find solutions more easily. With this assumption 
the equations to be solved simplify as follows. 

(a) Einstein's equations: Equations (4.9a), (4.9b), (4.9c), 
and (4.9d) determine Pm' Pm' "l, and Q, respectively. Condi
tion (4.10), which ensures "l is non-negative, reduces to 

a.;;;;O. (4.14) 
(b) Thermodynamical laws: We can integrate the baryon 

conservation law (4.5) to obtain 

n = noR -3a -l, (4.15) 

where no is a constant. If a, p, and n are functions of t alone, 
T = T (t ) guarantees that the Gibb's relation has a solution [T 
is the integrating factor that ensures that the right-hand side 
ofEq. (4.6) is an exact differential]. With T = T(t), Eq. (4.6) 
determines S. The temperature gradient law (4.11) then de
termines K. The condition for K>O [ensuring Eq. (4.7)] re
duces to 

tiT +PIP+RIR>O. (4.16) 
(c) Other restrictions: We recall that all energies must be 

non-negative. We expect T to be a decreasing function of t. 
The conditions on a are 

(I) a-c as t_ (1;) , 

(lIa) a- (1;) as t-o, (4.17) 
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or 

(lib) a-const > c as t-o. 

A.Modell 

We assume that 

Em = 0 and p!. = 0 . (4.18) 

From Eqs. (2.7) we find that 

Pr =clR -4 and P!. =c2R -3. (4.19) 

Einstein's equations now reduce to an ordinary differential 
equation for R (t), whose solution is given by8 

t + const = (2/3..1. 2)(..1.R - 2p)(..1.R + p,)1/2 , (4.20) 

where A. = (81TG 13)c2, P, = (81TG 13)cl' We note that 
Pr =aT~ so that Tr-R -I. From Eq. (4.14) a<O so we 
observe that Tr and T cannot be equal, otherwise Eq. (4.16) is 
violated. Let us choose a, T in the following manner: 

P!. = C3 T31p , T= (C2le3)P/3R -P, 

and 

ell + hR -q) 
a= , 

(1 +2hR -q)1/2 

ckR -q 
P = (1 + 2hR -q)1/2 ' 

(4.21) 

(4.22) 

where p( > i), q, and h are positive constants. With this 
choice of a the conditions (4.17) are satisfied, and Eq. (4.14) is 
satisfied implying "l > 0, since 

ale = - qh 2R - 2q- 1R 1(1 + 2hR - q)3/2 . (4.23) 

From Eqs. (4.21H4.23), Eq. (4.16) becomes 

(1 - p - q) + (2 - 2p - q)hR - q > 0, (4.24) 

which simply implies that 1 - P - q>O (providingq#O). As 
an illustration let us choose p = ~, q = ;, whence from Eqs. 
(4.5), (4.6), (4.9), and (4.11) we obtain 

Pm = c2(1 + hR -117)2R -3/(1 + 2hR -117), 

3Pm lc2 = C2h 2R - 23/7/(1 + 2hR -117), 

"l = (7c2/2)c2(1 + 2kR -117)R -3(p, +..1.R )-1/2, 

QIe = c2h (1 + hR -117)R - 2217/(1 + 2hR -1/7), 

n = (no/c)(1 + 2hR -1/7)1/2(1 + hR -117)-IR -3, 

Kle2 = KO(1 + hR -1/2)(1 + 2hR -1/7)1/2 

x (p, + ..1.R )- 1/2R -12/7 , 

(4.25) 

WhereKO=7c~l7c3-2/7h -I. We note that Pm and Pm areal
ways positive with (3Pmle2Pm)-1 as t-o and 
(3Pmlc2Pm)-o as t-(1;). 

B. Model II 

We assume that 

p!. = 0, Em #0 , 3€(t) = prl(Pr + P!.) . (4.26) 

In particular, we shall investigate 

3€(t) = (1 + p,t) -A. , (4.27) 

where p, and A. are positive constants. Standard two-fluid 
models of this type were investigated by McIntosh 7 and May 
and McVittie,23 and the solutions (4.28) below are due to 
them. We note that with Eq. (4.27) €-! as t-o and £-0 as 
1-(1;). We also note that Em #0; indeed, Em >0 for small t 
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and Em < 0 for large I providing A < j. 
For illustrative purposes we shall investigate the model 

A = !, /-l = 3.S X 10-9
• The observational predictions of this 

model were studied by McIntosh.7 Although the model is in 
reasonable agreement with actual observations, McIntosh 
showed that the model A = n, /-l = 4.4 X 10- 11 is a better 
model in that it is in better agreement with observations. We 
shall consider the former model due to its simplicity, and 
since it serves to illustrate the general nature of such a class 
of models. 

The model is characterized by 7 

( ) -1(1 )-112' _ 9...3 E I - ~ + /-ll ,E - - '1 /-It: , 

cl(1 + 5E)516(1 - 3E)1/2 
R (I) = 4/3 ' 

E 

K=R = 6/-lE
2 

, 
R (1 + 5E)(1 - 3E) 

Pr = (9/817-G)K2E, p! = (3/81TG)K2(1 - 3E), 

where c I is a positive constant. 
We assume that a is of the form 

a (I +h~) {3 h~ 

-;- = (I + 2h~)1/2' -;- = (I + 2h~)1/2 ' 

(4.28) 

(4.29) 

where hand q are positive constants. Note that as 1_ 00, a/ 
c-I and as 1-0 (E-j), a/c-(l + h 3 -q)(1 + 2h 3 -q)-112 
> 1. Also 

aitl{32 = - ~/-lq(1 + h~)c(1 + 2h~)-' , (4.30) 

so that il < 0, which implies that 'TJ > 0 in Eq. (4.9c). We also 
assume T is of the form 

(4.31) 

where P and s are positive constants. 
The condition for K to be non-negative is T /T + ail/ 

{32 + R /R>O, which becomes 

{4(1 - p) - 3(s + q)(1 + SE)(I - 3E)] 

+ 2h~{ 4(1 - p) - 3(s + q/2)(1 + SE)(I - 3E)] >0, 

(4.32) 
which is certainly satisfied if the first term in the braces is 
positive for all E. Since (I + SE)( I - 3E) is always positive and 
has a maximum value of ~, Eq. (4.32) is (strictly) satisfied if 

I - P - ~(s + q»O . (4.33) 

In this model we wish to relate the temperature of the 
radiation Tr and the temperature of the matter T. The tem
peratures Tr and T cannot be equal for all I otherwise Eq. 
(4.16) would be violated for particular eras. Nor would we 
necessarily expect that Tr = T for all I, since the two fields 
would then always be in thermal equilibrium. However, as 
1-00, Em and Er (and Q) tend to zero so that we might 
expect that there will be thermal equlibrium as 1- 00 . There
fore, in this model we shall add the restriction that 

as t-oo, T /Tr-l . (4.34) 

From (4.28), as 1-00 (E-o), K_c, R--'>-E-4I3, Pr-c, 
Tr~/4, p! _E4, T ~4p + 3s)l3, so that Eq. (4.34) implies 
that 

(4.35) 

413 J. Math. Phys .• Vol. 27. No.1. January 1986 

(Note that p! _TI615asl_00 asaconsequence.)Sinces>O 
we have that p<~, and Eqs. (4.33) and (4.3S) imply that 
p - 12q>0. 

As an illustration let us choose p = ~, s = !, q = -h. With 
these values T /Tr-I as 1-00, and 'TJ andK are always posi
tive, so that the model is physically acceptable. From Eqs. 
(4.S), (4.9), and (4.11) the full solution becomes 

Pm = (27/-l2/21TG)(1 + hE1/16f(1 + 2hEI/16 )-1 

XE4(1 + 5E)-2(1 - 3E)-I, 

3Pm/c2 = (27/-l2h 2/21TG)(1 + 2hEI/16)-1 

X~3/8(1 + SE)-2(1 - 3E)-1 , 

T = T oCl- 3/4(1 + SE)-5/8(1 _ 3E)-3/8C I4 , 

(4.36) 
'TJ = (24c2/-l/1TG)(1 + 2hEI/16) I12c(l + SE)-2(l- 3E)-I, 

Q/c = (27hq2/21TG)(1 + hE1/16)(1 + 2hEI/16)-1 

XE65/16(1 + 5E)-2(1 _ 3E)-I, 

n = (nolcct)(1 + 2hEI/16)1f2(1 + hEI/16)-1 

XE4(1 + 5E)-5/2(1 _ 3E)-3/2, 

K/C2 = Ko(1 + 2hE'/'6)'/2(1 + hEI/l6)(1 + SE)1/8 

X (I - 3E)3/8~/4 [ {2 - ¥(l + SE)( I - 3E)] 

+ hE1/16{4 - ¥(I + SE)(I- 3E)]] -I, 

where Ko = 9ci/4/128/-l1TGTo. We note that Pm and Pm are 
always positive and that 

3pm /c2pm-o as 1-00 (E-o) 

and 

3pm h 23- 1/8 0.872h 2 

c2Pm - (I + h 3- 1/16)2 = (I + 0.934h)2 ' 

as t_O (E-j). Note that this last expression continues in
creasing as h increases but is always less than 1. 

c. Model III 

We consider the model with 

R (t) = I 112(1 + It 3/5)5/18, (4.37) 

as outlined in Sec. II. From Eqs. (2.14) and (2.IS) we have 
that 

Pr = (3/321TG)(I-2)(1 +lt 3/5)-2(1 +/slt 3/5 ), 

p! = (I /S1TG)(t -7/5)(1 + It 315)-2(1 + ift 3/5) , (4.38) 

p! =0. 

We note that E(I) and Em (;60) are given by Eqs. (2.13) and 
(2.16), respectively. 

We assume that a and {3 are of the form 

a I + hI - q {3 ht - q 

-;- = (I + 2ht -q)1/2' -;- = (I + 2ht -q)l/2 ' 
(4.39) 

where hand q are positive constants. With this choice of a we 
note that as t_oo, a/c-I and as t-o, a!c-oo. From Eq. 
(4.39) we have that 

ail _ t -I (I + ht - q) 
-- -q 
{32 (I + 2ht -q) , 

(4.40) 
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so that a <0 guaranteeing 71 >0 [Eq. (4.9c)]. We also assume 
T is of the form 

T= TcI-bR -Pas, (4.41) 

where b, p, and s are positive constants. 
Condition (4.16), ensuring K is non-negative, becomes 

(! -!p - b - q) + H - ~p - 3b - 2q)ht- q 

+ (1 - P - q - 2b - sq)h 2t - 2q 

+ (~- ~p - b - q)/t 3/5 

+ (2 - 2p - 3b - 2q)hlt -qt 3/5 

+ (t - t p - q - 2b - sq)/h 2t - 2qt 3/5>0 . (4.42) 

We note that this inequality is satisfied for all t (and all h and 
l) if (i) so;;;l and ! - p/2 - b - q>O or (ii) s> 1 and 
1 - P - 2b - q - sq>O. There will be various solutions de
pending on the desired behavior of physical quantities (such 
as T) as t-o or t- 00. Here, we shall make the following 
assumptions. First, we shall find that as t-o, E(t H, so that 
we ~hall assume that P;; IT4-const as t-o, which implies 
that ! + q - 4b - 2p - 2qs = O. Second, we shall assume 
that as 1-00, P;; I Ta-const, where 00;;;4, which implies 
that b /2 + p/3>1. Finally, for simplicity we shall assume 
that b = 0 and so;;; 1 so that the conditions to be satisfied be-

(4.43a) 

(4.43b) 

~ + q - 2p - 2qs = 0 , (4.43c) 

1 - P - 2q>0 (or Oo;;;qo;;;A) . (4.43d) 

Writing q = ! - p/2 - 8/2 (8)0), Eq. (4.43c) becomes 

2s/5 = (H - p -8/5)/(1 - p - 8), 

so that Eq. (4.43a) implies H>p. This suggests two straight
forward solutions: 

K = (5c2/To1TG)(1 + It 3/5)-71 /90(1 + ~ It 3/5) 

x(1 + 2ht -3125)112(1 + ht -3/25) t -31/50 

X [1 + (3h /1) t -18/25 + 5ht -3125] -I. 

We note that Pm and Pm are always positive and mono
tonically decreasing and that 3Pm/c2Pm_1 as t-o and 
3Pm / c2Pm -0 as t- 00 • The observational predictions of this 
model will be analyzed in Sec. V. 

D.ModelIV 

In previous articles I we have considered imperfect ftuid 
models for which the metric is that of a standard FR W mod
el with a perfect ftuid obeying the equation of state p = rp. 
As a final example we consider a model based on the Bin
stein-de Sitter metric, i.e., we take R = t 2/3. In this case the 
field equations become 

Pmc2 - 3Pm = c2/61TGt 2 , 

!p,(3a2 +p2) +Pm c2 =a2/61TGt2. 
(4.46) 

These equations imply that 

3Pm p2 P, 3p2 
- < - - < (4.47) 
c2Pm a 2 ' Pm 3a2 +p2' 

and the second of these inequalities shows that P,/Pm <l 
always so that the model can describe only the later part of 
the matter-dominated era. Accordingly, there is little po~t 
in requiring 3Pm/c2Pm-1 as t-o and a-co as t-o, al
though we could do this and then assume that the model is 
applicable only for t> 1012 sec approximately. 

Bearing in mind the inequalities (4.48) we shall assume 
that 

P'/Pm = 3p2/4a2 , (4.48) 

which leads to 

(A) p = ~, q = l, s = To (b = 0) , 

(B) p = H, q = -A, s = 0 (b = 0) . 

(4.44a) 3Pmle~m =p 2C2/4a
4 

. (4.49) 

(4.44b) The field equations now yield 

Note that in solution (A) Pm - T4 for large t and in solution 
(B) Pm - T 75

/
1
9 for large t. 

We shall concentrate on model (B) henceforward. In this 
case T = ToR -19125, 71 and K are always positive, and the 
model satisfies the end conditions outlined above. The model 
is consequently physically acceptable. Using Eqs. (4.5), (4.9), 
and (4.11) the solution becomes 

Pm = (I /51TG )(1 + It 3/5)-2(1 + ilt 3/5) 

x(1 + 2ht -3/25)-1(1 + ht -3/25)2t -7/5, 

3Pm le2 = (/h2/51TG)(1 +lt 3/5)-2(1 +i It 3/5) 

X(1 + 2ht -3125)-lt -41/25, 

61TGpm = 4a4(4a4 _ P 2C2)-lt -2 , 

61TGpr = 3a2p2(4a4 _ p 2C2)-lt -2, 

611"6Pm = !P 2C4(4a4 _ p2C2)-l t -2. 

As suitable functions for a and p we choose 

(4.50) 

a = c[ 1 + h 2(t + to) - 2b ]1/2, P = ch (t + to) - b , 

(4.51) 

where b, h, and to are positive constants. We also choose T to 
be of the form 

T = To(t + to) - m , 

where m is positive. The complete solution is 

Pr = (1/211"6)h 2(t + to) - 2b [ 1 + h (1 + to) - 2b ] 

(4.52) 

71 = (5c21 /61TG)(1 + It 3/5 )-2(1 + ~ It 3/5) 

X(1 + 2ht -3/25)1/2t -2/5, 

QIe = (/h /51TG)(1 + It 3/5 )-2(1 + ~ It 3/5) 

(4.45) X [4 + 7h 2(t + to)-2b + 4h4(t + to)-4b]-lt -2, 

414 

x (1 + 2ht -3/25)-1(1 + ht -3/25 ) t -38/25 , 

n = (no/c)(1 + It 3/5)-516(1 + 2ht -3125)112 

X(I + ht -3/25)1 -3/2, 
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Pm = (2/31TG)[ 1 + h 2(t + to) - 2b P [ 4 + 7 h 2(t + to) - 2b 

+ 4h 4(t + to) - 4b] -It -2 , 

3Pm/c2 = (c2/61TG)h 2(t + to)-2b [4 + 7h 2(t + to)-2b 

+ 4h 4(t + to) - 4b] -It -2 , (4.53) 
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'TJ = (c2/121TGb ) [ 4 + 3h 2(t + to) - 2b ] 

X [ 1 + h 2( t + to) - 2b ]I 12 [ 4 + 7 h 2( t + to) - 2b 

+ 4h 4(t + to) - 4b ] -I(t + to)t -2 , 

Q Ie = (1!61TG ) h (t + to) - b [ 4 + 3h 2(t + to) - 2b ] 

X [1 + h 2(t + to) - 2b ]1/2 

X [4 + 7h 2(t + to)-2b + 4h4(t + to)-2b]-lt -2, 

n = (no/c)[l + h 2(t + to)-2b ]1/2t -2, 

K = (1!181TG )c3T 0- 1(1 + tot + 1[4 + 3h 2(t + to) - 2b] 

X [1 + h 2(t + to) - 2b P/2[ 4 + 7h 2(t + to) - 2b 

+ 4h 4(t + to) - 4b] -I [ 2to + (2 - 3m - 3b ) t ] -It -I , 

where we require 
2 - 3m - 3b>0, (4.54) 

in order to ensure that K;;'O at all times. Provided that this 
condition holds, all quantities are positive and Pr' Pm' and 
Pm are montonically decreasing functions such that 
Pr/pm-D and 3Pmle2Pm-D as t-oo. We note that the 
choice m =~, b = Iin, which satisfies the condition (4.54), 
results in Pm - T 3

.
03 for large t. 

v. DISCUSSION 

In the first three models discussed in Sec. IV, R (t) is a 
monotonically increasing function of t, changing from 
R (t) = t 1/2forearlytimes, sothatthe universe was initially in 
a pure radiation state, to R (t) = t 2/3 for later times, so that 
the universe evolves towards a final dustlike state. In all the 
models Pro Pm' and Pm are always positive, monotonically 
decreasing functions of time and all positive energy condi
tions are satisfied. Einstein's equations and the laws of ther
modynamics (4.5) to (4.8) are satisfied. In addition, 'TJ and K 

are always positive. We conclude that the models are physi
cally acceptable from a theoretical point of view. In order to 
show that the models are acceptable in the sense that they 
agree with the actual nature of the universe, we need to in
vestigate the observational predictions of the models. 

In actual fact all of the models are in good agreement 
with observation, as can be seen from Refs. 7, 8, 20, and 23. 
As an illustration we shall present a detailed investigation of 
the observational predictions of model III. 

We let the SUbscript zero denote the present time. All 
numerical values will be calculated to three significant 
places only. We shall assume that the value of the arbitrary 
positive constant I is given by 1= 1.06 X 10- 7 (see Ref. 20). 
Based upon a Hubble parameter Ho = 55 km sec- I Mpc- I 

we find that t ~ _H 0- I = 5.67 X 1017 sec, so that from the 
definition of Ho and Eq. (4.37) we find that to = 3.78X 1017 

sec (the age of the universe). Note that It ~/s=3.73 X 103
• 

We shall assume that the present velocity of our galaxy 
relative to the cosmic microwave background is three 
hundred kilometers per second,6 so that from Eqs. (4.39) we 
find that ht 0- J/2S = 1.00 X 10-3, which fixes h as 
h = 1.29 X 10- 1

• 

From Eq. (4.45) we find that Pm.O = 5.57 X 10-30 

g cm- 3
• From Eq. (4.38) we find that Pr.O = 4.47 X 10-34 

g cm- 3
• Consequently, we find that Tr•o = 2.70 K from the 
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relationship Pr = aT:. In addition, Eq. (4.45) yields 
(1!c2)Pm.O = 1.86x 10-36 g cm-3. Therefore, from Eq. 
(2.3), Eo = 2.71 X 10-5 and, finally, Pm.Ole2Pm.0 
= 3.33X 10-7

• 

Let te be the time when Pr = Pm' From Eqs. (4.38) and 
(4.45) we then obtain a quadratic equation in It ;IS. Taking 
the positive root, and using the established value of I, we find 
thatte = 1.01 X 1011 sec. As remarked earlier, Em is positive 
for small t, and from Eq. (2.16) we find that Em•o 
= - 7.16x 10-32 erg cm- 3 sec-I. 

Comparing the above with the values indicated in Table 
I we see that the predictions of the model are in excellent 
agreement with actual observations. Indeed, it could be 
claimed that the model is in better agreement with observa
tions than existing cosmological models since, in addition to 
comparing very favorably with regard to the standard obser
vations, the model is also able to predict the relative velocity 
of the galaxy with respect to the cosmic microwave back
ground. Regardless of such merits, it is clear that the model 
is a bona fide cosmological model. The same is true of the 
other models outlined in Sec. IV. We conclude that the mod
els in Sec. IV are physically acceptable models of the uni
verse. 

In general the temperature of the radiation Tr and the 
temperature of the matter T need to be taken to be equal. In 
the models established in the previous section Tr and Tare 
certainly not equivalent, although in model II the possibility 
that Tr and Tare related as t_ 00 was investigated. Indeed, it 
is important that Tr and T are not equivalent in two-fluid 
cosmologies in which (at least) one fluid is imperfect with a 
nonzero heat conduction vector. In such models the two 
fluids will not be in thermal equilibrium throughout the evo
lution of the universe. (It might be noted that it is presently 
believed that the current temperature of the "matter" in the 
universe is about four times higher than that of the cosmic 
microwave background.) 

In Sec. IV we demanded that the models satisfy the set of 
thermodynamic laws represented by Eqs. (4.5)-(4.8). It 
should be noted that these laws are based on the assumption 
that deviations from thermodynamic eqUilibrium are not too 
large. In view of the comments made in the previous para
graph it might be argued that the models outlined here (and, 
in fact, all models of this type) deviate sufficiently from ther
mal equilibrium that more general laws of thermodynamics 
ought to be considered (see, for example, Israel and 
Stewart28

). Indeed. it has been suggested before that a more 
general set of laws of thermodynamics is needed in the cos
mological arena. I However, the issue of determining the 
"appropriate thermodynamics" of the universe is a very dif
ficult and controversial question that is at present unan
swered. We shall assume here that the laws of thermody
namics that have been used are adequate for our purposes. 
The fact of the matter is that for reasonable values of t the 
deviations from thermodynamic equilibrium are not suffi
cient to raise doubts about the validity of the laws of thermo
dynamics that have been used [so that Eqs. (4.5)-(4.8) do 
govern the evolution of the universe for most values of t ]. 
Presumably, if the laws of thermodynamics do break down, 
they will break down for small values of t, where more gen-
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erallaws will consequently be needed. However, the FR W 
description of the universe breaks down for very small values 
of t regardless. 

We recall that the motivation for the present work was 
twofold. We wished to complete the work of Ref. 1 regarding 
the study ofFRW cosmological models, in which the FRW 
models are interpreted as solutions of Einstein's field equa
tions for a variety of different sources. In the present work 
we study FRW models in the most general case-that in 
which the source of the gravitational field is due to two (gen
eral) imperfect fluids (see Sec. III). The special cases studied 
previously can be listed as follows: The case in which there 
are two comoving perfect fluids was reviewed in Sec. II. The 
case in which there is one noncomoving imperfect fluid was 
studied in Ref. 1. The case in which there is one comoving 
perfect fluid gives rise to the so-called standard FR W mod
els. 

Although we have alluded to the general case (as set out 
in Sec. III), we have, in fact, focused our attention on the 
special case in which one fluid is a comoving (radiative) per
fect fluid and the second a noncomoving (matter) imperfect 
fluid moving with an axial velocity relative to the comoving 
radiation (Sec. IV). This special case is one of particular 
physical interest. We shall assume that the comoving perfect 
fluid models the cosmic microwave background and the 
noncomoving imperfect fluid models the observed matter of 
the universe. The motivation behind the study of such mod
els is to model the observed velocity of our galaxy relative to 
the cosmic microwave background. 

There are several reasons why we have chosen to at
tempt to model this effect in the context of two-fluid FRW 
cosmological models, namely the following: (1) both the ob
served material content of the universe and the cosmic mi
crowave background are observed to be (approximately) ho
mogeneous and isotropic; (2) it is generally believed that the 
universe is described with reasonable accuracy by a FR W 
radiation model for early t and by the Einstein-de Sitter 
model for later t; and (3) with the discovery of the cosmic 
microwave background (which was presumed to be a rem
nant of the radiation era), it became desirable to model the 
universe as consisting of two fluids, each existing forever, 
and each "dominating" in the appropriate evolutionary 
phase of the universe. 

We remark that the only way that our objective can be 
reconciled with the desire to remain within the context of a 
FRW model is for one of the fluids to be a noncomoving 
imperfect fluid. The models of Sec. IV are of this form. As 
mentioned previously, these models are theoretically reason
able and are in excellent agreement with observation. More
over, through these models, we have achieved our objective 
of modeling the observed motion of our galaxy relative to the 
cosmic microwave background. We note that the assump
tion of a noncomoving imperfect fluid implies that there is a 
general motion of all matter relative to the cosmic micro
wave background. 

The present work can be generalized somewhat. First, 
although we have concentrated on FR W models for the rea
sons given above, we could, of course, repeat the analysis in a 
more general setting. Indeed, it might be argued that such an 
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analysis would be more appropriate in a nonisotropic and 
inhomogeneous model. Presumably one would investigate 
models that approximate FR W models (at least for later 
times) in order that agreement with present observations is 
retained. Second, in the actual models that have been de
scribed in Sec. IV we have assumed that k = 0 and that phys
ical quantities appearing in the models depend on t only. 
Although both of these assumptions may be relaxed, they 
have been made here partly for simplicity, but mainly be
cause they give rise to models that exhibit precisely the type 
of behavior we seek. 

We have one final note. This present article represents a 
natural development of the work by the authors as set out in 
Ref. 1. In Ref. 1 the imperfect fluid moves relative to a "hy
persurface orthogonal preferred observer"; however, such 
an observer has no physical role within the models. In the 
present article the imperfect fluid moves relative to the ob
served cosmic microwave background (and thus a physical 
interpretation is given to the hypersurface orthogonal pre
ferred observer within the models). So, from a philosophical 
point of view, the present article presents a more suitable 
environment for the study of imperfect fluid FR W models. 
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A generalization ofBatakis's procedure for imparting vorticity to a Bianchi type II space-time is 
considered. A Bianchi type II rotating model is presented. The limiting case of zero rotation is a 
known vacuum solution. 

I. INTRODUCTION 

The problem of obtaining solutions to Einstein's gravi
tational field equations in which the source of curvature of 
space-time possesses rotation is fairly old. I Nevertheless, as 
has been pointed out by Batakis,2·3 the investigation of cos
mological space-times with vorticity and, particularly, the 
search for exact rotating cosmological solutions has received 
less attention than the search for exact nonrotating models. 
This may be interpreted as a measure of the difficulties 
which vorticity introduces into Einstein's field equations 
rather than of the relative interest in those two subjects. A 
particular way of circumventing the difficulties introduced 
into Einstein's equations by the extra terms due to vorticity 
was first considered by Batakis.2 He introduced a small vor
ticity into an empty spatially homogeneous Bianchi model. 
He was able to isolate a parameter v directly responsible for 
the rotation and solved exactly the linearized field equations. 
In Batakis' paper the parameter v was taken as a perturba
tion ofthe invariant one-forms d (i = 1,2,3) corresponding 
to Bianchi type VIh • 

In this paper, stimulated by Batakis' works,2,3 we pres
ent an exact spatially homogeneous Bianchi type II cosmolo
gical solution of the Einstein-Maxwell field equations in 
which there is a rotating timelike congruence of geodesics. 
However, in a different manner from Batakis' approxima
tion scheme, we shall consider an exact perturbation of our 
invariant one-forms, so that our treatment may be consid
ered as a generalization of his procedure for a Bianchi type II 
space-time. 

Most of the calculations in this paper were performed by 
using computer programs written in the symbolic manipula
tion language SHEEP.4 

II. THE METRIC AND THE VORTICITY 

Let us begin by considering our line element. The invar
iant one-forms a/ (i = 1, 2, 3) of Bianchi type II obey the Lie 
algebra 

dO)l = 0)21\ 0)3, d0)2 = 0, d0)3 = 0, 

and are given by 

0)1 = dx + y dz, 0)2 = dy, 0)3 = dz. 

(2.1) 

(2.2) 

., On leave of absence from Centro Brasileiro de Pesquisas Fisicas. Conselho 
Nacional de Pesquisas (CNPq). with a felIowship from Coordenagao de 
Aperfeic;oamento de Pessoal de Nivel Superior (CAPES). Brazil. 

We define the line element of our space-time by 

ds2 = dt 2 - 2A dt 0)1 _ C 2(0)1)2 - B 2 [(0)2f + (0)3)2], 
(2.3) 

whereA,B,andC 2 = B2 -A 2 depend only on the time coor
dinate t. 

The metric (2.3) may be considered within Batakis' per
turbation scheme by defining the new one-forms 

(JJ = dt + AO)l, 01 = BO)l, 02 = B0)2, ~ = BO)\ 
(2.4) 

and requiring local Lorentzian character, viz., 

ds2 = 1JAB~ff1 (A, B = 0,1,2,3), (2.5) 

where 

1JAB = diag( + 1, - 1, - 1, - 1). (2.6) 
Thus from Eqs. (2.4)-(2.6) it is obvious that our metric is 
different from the standard diagonal Bianchi type II metrics. 
As a matter offact, the term AO) I which we have added to the 
standard Bianchi orthonormal basis may be thought of as a 
perturbation. However, contrary to Batakis' procedure, we 
will not linearize the field equations with respect to A, so as 
to have an exact perturbation scheme. 

We shall now consider the existence of vorticity in the 
model. The presence of the eletromagnetic field together 
with the nondiagonal terms in (2.3) turns out to be the de
sired compromise for the existence of rotation in our space
time. It can be easily verified that the congruence of time like 
curves, defined by 

ua ua =l, UI =Z- I U2, u2 =az, U3=0, 
a = const i: 0, 

is geodesic and has rotation vector field given by 

na =(a/2B 3)[-a, (uo-zv), v, -(y/z)v], 

where 

v = a2z/(C 2uo + aA). 

(2.7) 

(2.8) 

(2.9) 

Throughout this paper Greek letters are tensor indices and 
capital letters are tetrad indices. We shall also use a comma 
for partial derivative, a semicolon for covariant derivative, 
and a bar for the tetrad components of covariant derivatives. 

It should be mentioned that the components of the vorti
city vector field oa can be easily checked by using the 
SHEEp4 program package MATTER. 5 The SHEEP input 
should be the Lorentz frame together with the matrix ZUD 

and the vector UDC (in SHEEP-MATTER notation). 
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III. FIELD EQUATIONS AND SOLUTIONS 

Let us first consider the source-free Maxwell equations 

p AB
IB + yAMBPMB + yCMCPAM = 0, (3.1) 

P(ABIC) + 2FM (C yMAB) = 0, (3.2) 

where the brackets mean total antisymmetrization and 
where yA BC are the Ricci coefficients of rotation. 

From spatial homogeneity and due to the existence of a 
preferred direction, we choose the non vanishing compo
nents of the electromagnetic field as 

FOl = E (t ), FZ3 = - H (t ). (3.3) 

According to Eqs. (3.1 )-(3.3), Maxwell's equations reduce to 

dE 1 B dt - JiH+2JiE=O, (3.4) 

dH 1 B - + -E+2-H=O. 
dt B B 

(3.5) 

Introducing a new time coordinate and new measures for the 
electromagnetic field by 

dt' =B -I dt, E' =EB2, H' =HB2, (3.6) 

Maxwell's equations can be easily integrated to give the gen
eral solution 

E' = a cos(t' - to), 

H' = a sin(t' - to), 

where to is a new constant. 

(3.7) 

(3.8) 

Now the SHEEP programs referred to in the Introduc
tion can be used to display Einstein's field equations, which 
after some further reductions turn out to be 

(3.9) 

AA + A 2 + 3AA (B / B) + .82(A 2 - 6B 2) + 1 = 0, 
(3.10) 

where the dot denotes the derivative with respect to the time 
coordinate and .8 and to are constants which appear in the 
integrations of (3.9), viz., 

B = (1I2.8)cosh(t - 10)' (3.11) 
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If one introduces a new time coordinate l' and a new function 
u by 

u = A 2, T = 1 - to, (3.12) 

Eq. (3.10) can be written as 

(t2 
- l)t ~;~ + (4$2 - 3) ~; + 2tu = ~ (t2 - ~). 

(3.13) 

where t = cosh(1'). A solution of the remaining Einstein 
equation can be written as 

a
2 

[ 1 ] u = 2 --z-2 cosh4(1') - 1 , 
cosh (1') 4a.8 

where the constant a2 must lie within the interval 

0<a2< 114.82
, 

(3.14) 

(3.15) 

so as to make A a real function. The constant a fixes the 
character (spacelike) for the hypersurface of homogeneity. 

To conclude, we remark that when the electromagnetic 
field as well as the rotation tend to zero (a-o) we recover one 
of the Kinnersley vacuum solutions.6 
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ERRATA 

Erratum: On topological boundary characteristics in nonabelian gauge 
theory [J. Math. Phys. 24, 2528 (1983)] 

c. CronstrOm 
Department of Theoretical Physics, University of Helsinki, Siltavuorenpenger 20 C. Helsinki 17, Finland 

J. Mickelsson 
Department of Mathematics, University of Jyviiskylii. Seminaarinkatu 15, Jyviiskylii 10, Finland and 
Department of Theoretical Physics, University of Helsinki, Siltavuorenpenger 20 C. Helsinki 17, Finland 

(Received 12 August 1985; accepted for publication 27 September 1985) 

There is an arithmetic mistake in the proof of Eq. (28). 
Correspondingly, Eq. (All) should read as follows 

C= -3dH. The error is due to an incorrect binomial formula in Eq. 
(AlO). The correct version ofEq. (28) is 

C"'(U) = 3 aaH/UZ(Z). 

The authors are grateful to Adam Bincer for calling their 
attention to the mistake in question. 

Erratum: Hamiltonian operators with maximal eigenvalues 
[J. Math. Phys. 25, 48 (1984)] 

E. M. Harrell" 
School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332 

(Received 19 August 1985; accepted for publication 27 September 1985) 

Egnell l has pointed out that it was not actually proved 
that the maximizer for the set Q (I,e) remains in that set, and 
thus the truncation argument of the proof of Theorem 1 is 
not justified. If the maximizer does not remain in that set, 
then it need not be a mUltiple of a characteristic function. He 
has constructed an example (with mixed boundary condi
tions) where the maximizer is in fact a delta function. I For 

some improved existence results and related material, see 
Refs. 1 and 2. 

'H. Egnell, "Extremal properties of the first eigenvalue of a class of elliptic 
eigenvalue problems," Uppsala University, Department of Mathematics, 
report No.7, 1985. 

2M. S. Ashbaugh and E. M. Harrell II, "Maximal and minimal eigenvalues 
and their associated nonlinear equations," preprint, 1985. 

Erratum: Calculating resonances (natural frequencies) and extracting them 
from transient fields [J. Math. Phys. 26, 1012 (1985)] 

A. G. Ramm 
Mathematics Department, Cardwell Hall, Kansas State University, Manhattan, Kansas 66505 

(Received 1 May 1985; accepted for publication 1 May 1985) 

The last paragraph in Sec. II C should read as follows: 
A similar idea was used in Ref. 11. Convergence of the 

methods given in "Sec. II B and a study of their stability are 
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given in the next subsection. 
The line (3.3) should read as follows: 
provided that hI < h2 < .... 
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